definição



Probabilidade   elementos



                Cálculos
• Conjuntos Numéricos

• Análise Combinatória

• Reconhecer os naipes de um baralho
  e a quantidade de cartas de cada naipe
Probabilidade é a
chance de um evento
ocorrer, em um espaço
amostral.
definição   Chance de um evento ocorrer




Probabilidade
Espaço Amostral
  Espaço Amostral é o conjunto de todos os
resultados possíveis de um experimento. É
indicado pela letra grega Ω.
definição   Chance de um evento ocorrer

                                                          Conjunto de todos
                                            definição       os resultados
                               Espaço
                              Amostral      representação     Ω
                elementos



Probabilidade
Evento
  Evento é qualquer subconjunto de um
espaço amostral. É indicado pela letra E.
definição   Chance de um evento ocorrer

                                                          Conjunto de todos
                                            definição       os resultados
                               Espaço
                              Amostral      representação        Ω
                elementos                 definição       Subconjunto de Ω
                                          representação      E

Probabilidade                 evento
Exemplos:
A) Lançamento de um dado.
  Espaço Amostral: Ω = {1, 2, 3, 4, 5, 6}

   Alguns dos possíveis eventos:
. Um número maior que 5  E = {6}
. Um número par  E = {2, 4, 6}
. Um número par e primo  E = {2}
Exemplos:
B) Lançamento de duas moedas.
  Espaço Amostral:
  Ω = {(k,k);(k,c);(c,k);(cc)}

   Alguns dos possíveis eventos:
. Obter duas faces iguais  E = {(k,k);(c,c)}
. Obter apenas uma coroa  E = {(k,c);(c,k)}
1) Uma urna contém 2 bolas verdes e 4
   amarelas.
a) Defina o espaço amostral do
   experimento: retirar uma bola ao acaso.
b) Defina os eventos E1: retirar bola verde
   e E2: retirar bola amarela.
1) Uma urna contém 2 bolas verdes e 4
   amarelas.
a) Defina o espaço amostral do
   experimento: retirar uma bola ao acaso.
b) Defina os eventos E1: retirar bola verde
   e E2: retirar bola amarela.
a) Ω = {V1, V2, A1, A2, A3, A4}

b) E1 = {V1, V2}

  E2 = {A1, A2, A3, A4 }
Intersecção de conjuntos

 Seja Ω = {2, 3, 5, 16, 17, 20}

 São apresentados dois eventos:

A: ocorrer um número par = {2, 16, 20}
B: ocorrer um múltiplo de 5= {5, 20}

      A ∩ B = {20}  1 elemento
União de conjuntos
 Seja Ω = {2, 3, 5, 16, 17, 20}

 São apresentados dois eventos:

A: ocorrer um número par = {2, 16, 20}
B: ocorrer um múltiplo de 5= {5, 20}

 A ∪ B = {2, 5, 16, 20}  4 elementos
            Atenção!
A) Evento certo
 Eventos certos são aqueles que apresentam
os mesmos elementos do espaço amostral.
              n(E) = n(Ω)
Exemplo:
  Seja o seguinte evento: obter um número
natural menor que 7, no lançamento de um
dado.
          E = Ω = {1, 2, 3, 4, 5, 6}
definição   Chance de um evento ocorrer

                                                           Conjunto de todos
                                            definição        os resultados
                               Espaço
                              Amostral      representação            Ω
                elementos                 definição       Subconjunto de Ω
                                          representação          E

Probabilidade                 evento                    Evento           n(E)=n(Ω)
                                                         certo

                                          tipos
B) Evento impossível
   Eventos impossíveis ocorrem quando não
há elementos no conjunto E.
                   n(E) = 0
Exemplo:
   Seja o seguinte evento: obter 3 caras no
lançamento de duas moedas.
                E={ }
definição   Chance de um evento ocorrer

                                                           Conjunto de todos
                                            definição        os resultados
                               Espaço
                              Amostral      representação            Ω
                elementos                 definição       Subconjunto de Ω
                                          representação          E

Probabilidade                 evento                    Evento           n(E)=n(Ω)
                                                         certo
                                                          Evento
                                                                            n(E)=0
                                          tipos         impossível
C) Evento complementar
   Evento complementar (Ec) é aquele que
ocorre quando o evento E não ocorre.
              n(Ec)=n(Ω)-n(E)
Exemplo:
  Seja Ω = {2, 3, 5, 16, 17, 20}
 São apresentados dois eventos:
A: ocorrer um número par = {2, 16, 20}
Ac: ocorrer um número ímpar= {3, 5, 17}
definição   Chance de um evento ocorrer

                                                           Conjunto de todos
                                            definição        os resultados
                               Espaço
                              Amostral      representação            Ω
                elementos                 definição       Subconjunto de Ω
                                          representação          E

Probabilidade                 evento                    Evento           n(E)=n(Ω)
                                                         certo
                                                          Evento
                                                                            n(E)=0
                                          tipos         impossível
                                                         Evento
                                                        Comple-            n(Ec)=n(Ω)-n(E)
                                                         mentar
Probabilidade é a chance de um evento
ocorrer, em um espaço amostral. Ou seja, é
o número de elementos de um evento,
dividido pelo número de elementos do
espaço amostral.
                  n( E )
              P
                  n( )
Exemplos:
A) Qual a probabilidade de ocorrer um
número natural maior que 4, no lançamento
de um dado?
   E = {5, 6}  n(E) = 2
   Ω = {1, 2, 3, 4, 5, 6}  n(Ω) = 6
              n( E )   2   1
          P
              n( )     6   3
Exemplos:
B) Qual a probabilidade de ocorrer pelo
menos uma cara, no lançamento de duas
moedas?
   E = {(k,k);(k,c);(c,k)}  n(E) = 3
   Ω = {(k,k);(k,c);(c,k);(c,c)}  n(Ω) = 4
                 n( E )   3
             P
                 n( )     4
definição   Chance de um evento ocorrer

                                                              Conjunto de todos
                                              definição         os resultados
                               Espaço
                              Amostral        representação            Ω
                elementos                    definição      Subconjunto de Ω
                                             representação         E

Probabilidade                 evento                      Evento           n(E)=n(Ω)
                                                           certo
                                                            Evento
                                                                              n(E)=0
                                             tipos        impossível
                                                           Evento
                                                          Comple-            n(Ec)=n(Ω)-n(E)
                                                           mentar

                             Fórmula geral
                                                     n( E )
                                                 P
                Cálculo                              n( )
2) No lançamento de um dado perfeito,
qual é a probabilidade de que o resultado
seja:
a) Um número primo?
b) O número 3?
c) Um número menor que 1?
d) Um número menor que 7?
2) No lançamento de um dado perfeito,
qual é a probabilidade de que o resultado
seja:
a) Um número primo?
b) O número 3?
c) Um número menor que 1?
d) Um número menor que 7?
3     1
a) Um número primo? P
                        6     2
                   1
b) O número 3? P
                   6
                                  0
c) Um número menor que 1? P         0
                                  6
                                  6
d) Um número menor que 7? P         1 100%
                                  6
3) Uma caixa contém 10 letras: as cinco
vogais e as cinco primeiras consoantes do
alfabeto. Uma letra é sorteada ao acaso.
Qual é a probabilidade de que a letra
sorteada seja:
a) Uma consoante?
b) Uma letra da palavra bode?
3) Uma caixa contém 10 letras: as cinco
vogais e as cinco primeiras consoantes do
alfabeto. Uma letra é sorteada ao acaso.
Qual é a probabilidade de que a letra
sorteada seja:
a) Uma consoante?
b) Uma letra da palavra bode?
Ω = {a, e, i, o , u, b, c, d, f, g}  n(Ω) = 10

a) Uma consoante?
                  5      1
               P
                 10      2
b) Uma letra da palavra bode?
                  4      2
               P
                 10      5
4) Um dos anagramas da palavra AMOR é
escolhido ao acaso. Qual é a probabilidade
de que seja a palavra ROMA?
4) Um dos anagramas da palavra AMOR é
escolhido ao acaso. Qual é a probabilidade
de que seja a palavra ROMA?
Total de anagramas
                  da palavra amor


Ω = 4! = 4.3.2.1=24

                      1
            Logo, P
                      24
Para calcular a probabilidade da união de
eventos dividimos o número de elementos
do conjunto união pelo número de elementos
do espaço amostral.
                     n(AUB)
              P(AUB)
                      n( )
Exemplo:
  De um baralho de 52 cartas, uma é
extraída ao acaso. Qual é a probabilidade
de sair um valete ou uma carta de ouros?
  A: sair um valete  n(A) = 4
  B: sair carta de ouros  n(B) = 13
  A∩B: sair valete de ouros  n(A∩B) = 1
     Logo, n(A∪B) = 4+13-1=16
A: sair um valete  n(A) = 4
B: sair carta de ouros  n(B) = 13
A∩B: sair valete de ouros  n(A∩B) = 1

Logo, n(A∪B) = 4+13-1=16

            n(AUB)     16    4
     P(AUB)
             n( )      52   13
definição   Chance de um evento ocorrer

                                                                  Conjunto de todos
                                              definição             os resultados
                               Espaço
                              Amostral        representação             Ω
                elementos                    definição        Subconjunto de Ω
                                             representação          E

Probabilidade                 evento                      Evento            n(E)=n(Ω)
                                                           certo
                                                            Evento
                                                                               n(E)=0
                                             tipos        impossível
                                                            Evento
                                                           Comple-            n(Ec)=n(Ω)-n(E)
                                                            mentar

                             Fórmula geral
                                                         n( E )
                                                 P
                Cálculo                                  n( )
                                               Probabilidade                        n(AUB)
                                                                        P(AUB)
                                                 Da união                            n( )
                             Variações
5) Os dados da tabela seguinte referem-se
a uma pesquisa realizada com 155 moradores
de um bairro revela os hábitos quanto ao uso
de TV e Internet pagas.
                           Só TV aberta   TV paga
       Internet gratuita       76           44
        Internet paga          14           21


   Um dos entrevistados é selecionado ao
acaso. Qual a probabilidade de que ele use TV
ou Internet pagas?
5) Os dados da tabela seguinte referem-se
a uma pesquisa realizada com 155 moradores
de um bairro revela os hábitos quanto ao uso
de TV e Internet pagas.
                           Só TV aberta   TV paga
       Internet gratuita       76           44
        Internet paga          14           21


   Um dos entrevistados é selecionado ao
acaso. Qual a probabilidade de que ele use TV
ou Internet pagas?
Só TV aberta    TV paga
   Internet gratuita       76               44
    Internet paga          14               21



A: TV paga  n(A)=44+21=65
B: Internet paga  n(B)=14+21=35
n(A∩B)=21  n(A∪B)= 65+35-21=79
              n(AUB)                   79
       P(AUB)
               n( )                   155
Temos um caso de probabilidade
condicional quando um evento A ocorre,
sabendo que o evento B já ocorreu.
   O cálculo da probabilidade condicional
é dado pela fórmula:
                    P(A  B)
           P(A/B)
                      P(B)
Exemplo:
  Ao retirar uma carta de um baralho de
52 cartas, qual é a probabilidade de sair
um ás vermelho sabendo que ela é de copas?
  A: sair ás vermelho  n(A)=2
  B: sair carta de copas  n(B)=13
  A∩B: ás de copas  n(A∩B)=1
Exemplo:
  A: sair ás vermelho  n(A)=2
  B: sair carta de copas  n(B)=13
  A∩B: ás de copas  n(A∩B)=1
                          1
              P(A  B)         1
     P(A/B)              52
                P(B)     13   13
                         52
definição   Chance de um evento ocorrer

                                                                  Conjunto de todos
                                              definição             os resultados
                               Espaço
                              Amostral        representação             Ω
                elementos                    definição        Subconjunto de Ω
                                             representação          E

Probabilidade                 evento                      Evento            n(E)=n(Ω)
                                                           certo
                                                            Evento
                                                                               n(E)=0
                                             tipos        impossível
                                                            Evento
                                                           Comple-            n(Ec)=n(Ω)-n(E)
                                                            mentar

                             Fórmula geral
                                                         n( E )
                                                 P
                Cálculo                                  n( )
                                               Probabilidade                    n(AUB)
                                                                        P(AUB)
                                                 Da união                        n( )
                             Variações
                                               Probabilidade                   P(A  B)
                                                condicional
                                                                        P(A/B)
                                                                                 P(B)
6) Uma família planejou ter 3 crianças.
Qual é a probabilidade de que a família
tenha 3 homens, já que a primeira criança
que nasceu é homem?
6) Uma família planejou ter 3 crianças.
Qual é a probabilidade de que a família
tenha 3 homens, já que a primeira criança
que nasceu é homem?
Ω=
   {HHH, HHM, HMH, MHH, MMH, MHM, H
   MM, MMM}  n(Ω)=8
A: ter 3 homens  n(A)=1
B: primeira é homem  n(B)=4
A∩B={HHH}  n(A∩B)=1 1
             P(A  B)       1
    P(A/B)              8
               P(B)     4   4
                        8
Questões de
 Vestibular
7) (PUC) Há em um hospital 9 enfermeiras
(Karla é uma delas) e 5 médicos (Lucas é
um deles). Diariamente, devem permanecer
de plantão 4 enfermeiras e 2 médicos. Qual
a probabilidade de Karla e Lucas estarem
de plantão no mesmo dia?
       1      1      8       1      2
    a)     b)     c)      d)     e)
       3      4      45      5      3
7) (PUC) Há em um hospital 9 enfermeiras
(Karla é uma delas) e 5 médicos (Lucas é
um deles). Diariamente, devem permanecer
de plantão 4 enfermeiras e 2 médicos. Qual
a probabilidade de Karla e Lucas estarem
de plantão no mesmo dia?
       1      1      8       1      2
    a)     b)     c)      d)     e)
       3      4      45      5      3
9!       5!
n( ) C9, 4 .C5, 2                      1260
                   4!(9 4)! 2!(5 2)!
                      8!       4!
n( E ) C8,3 .C4,1                     224
                  3!(8 3)! 1!(4 1)!
       n( E ) 224         8
p( E )                       letra c
       n( ) 1260 45
8) (FEI-SP) Numa caixa tem-se 9 fichas
numeradas de 1 a 9. Três fichas são
escolhidas ao acaso e sem reposição. A
probabilidade de não sair a ficha 7 é:

      1      1      2      1      2
   a)     b)     c)     d)     e)
      6      3      9      4      3
8) (FEI-SP) Numa caixa tem-se 9 fichas
numeradas de 1 a 9. Três fichas são
escolhidas ao acaso e sem reposição. A
probabilidade de não sair a ficha 7 é:

      1      1      2      1      2
   a)     b)     c)     d)     e)
      6      3      9      4      3
Probabilidade Probabilidade Probabilidade
de não sair 7 de não sair 7 de não sair 7
 na primeira: na segunda:    na terceira:
       8             7                6
   P            P                 P
       9             8                7

           8 7 6    2  letra e
       P
           9 8 7    3
9) (PUC) Em um ônibus há apenas 4 bancos vazios,
cada qual com 2 lugares. Quatro rapazes e quatro
moças entram nesse ônibus e devem ocupar os
bancos vagos. Se os lugares foram escolhidos
aleatoriamente, a probabilidade de que cada banco
Seja ocupado por um rapaz e uma moça é:
         1       6        3      8       2
      a)      b)      c)      d)      e)
         70      35      14      35      7
9) (PUC) Em um ônibus há apenas 4 bancos vazios,
cada qual com 2 lugares. Quatro rapazes e quatro
moças entram nesse ônibus e devem ocupar os
bancos vagos. Se os lugares foram escolhidos
aleatoriamente, a probabilidade de que cada banco
seja ocupado por um rapaz e uma moça é:
         1       6        3      8       2
      a)      b)      c)      d)      e)
         70      35      14      35      7
n(Ω)=8!          n(E)=4!.4!.24
    8   7          4   4   x2
    6   5          3   3   x2
    4   3          2   2   x2
    2   1          1   1   x2

         4
        2 4!4!   8  letra d
P
          8!     35
10) (UFSC) Em uma caixa há 28 bombons, todos
com forma, massa e aspecto exterior exatamente
iguais. Desses bombons, 7 tem recheio de coco, 4
de nozes e 17 são recheados com amêndoas. Se
retirarmos da caixa 3 bombons simultaneamente,
a probabilidade de se retirar um bombom de cada
sabor é, aproximadamente:

  a)7,5% b)11% c)12,5% d )13% e)14,5%
10) (UFSC) Em uma caixa há 28 bombons, todos
com forma, massa e aspecto exterior exatamente
iguais. Desses bombons, 7 tem recheio de coco, 4
de nozes e 17 são recheados com amêndoas. Se
retirarmos da caixa 3 bombons simultaneamente,
a probabilidade de se retirar um bombom de cada
sabor é, aproximadamente:

  a)7,5% b)11% c)12,5% d )13% e)14,5%
n( )     C28,3    3276


n( E )   C7,1.C4,1 C17,1   7 4 17   476


         n( E )     476
p( E )                     0,145  letra e
         n( )      3276
• Matemática – Volume Único: Iezzi, Gelson;
  Dolce, Osvaldo; Degenszajn, David; Périgo,
  Roberto – Atual Editora – 4ª edição – 2007
  – Páginas: 391 a 412
• Matemática Contexto e Aplicações: Dante,
  Luiz Roberto – Editora Ática – 3ª edição –
  2008 - Páginas: 338 a 367
• Figuras: google imagens

www.AulasDeMatematicaApoio.com - Matemática - Probabilidade

  • 2.
    definição Probabilidade elementos Cálculos
  • 3.
    • Conjuntos Numéricos •Análise Combinatória • Reconhecer os naipes de um baralho e a quantidade de cartas de cada naipe
  • 4.
    Probabilidade é a chancede um evento ocorrer, em um espaço amostral.
  • 5.
    definição Chance de um evento ocorrer Probabilidade
  • 6.
    Espaço Amostral Espaço Amostral é o conjunto de todos os resultados possíveis de um experimento. É indicado pela letra grega Ω.
  • 7.
    definição Chance de um evento ocorrer Conjunto de todos definição os resultados Espaço Amostral representação Ω elementos Probabilidade
  • 8.
    Evento Eventoé qualquer subconjunto de um espaço amostral. É indicado pela letra E.
  • 9.
    definição Chance de um evento ocorrer Conjunto de todos definição os resultados Espaço Amostral representação Ω elementos definição Subconjunto de Ω representação E Probabilidade evento
  • 10.
    Exemplos: A) Lançamento deum dado. Espaço Amostral: Ω = {1, 2, 3, 4, 5, 6} Alguns dos possíveis eventos: . Um número maior que 5  E = {6} . Um número par  E = {2, 4, 6} . Um número par e primo  E = {2}
  • 11.
    Exemplos: B) Lançamento deduas moedas. Espaço Amostral: Ω = {(k,k);(k,c);(c,k);(cc)} Alguns dos possíveis eventos: . Obter duas faces iguais  E = {(k,k);(c,c)} . Obter apenas uma coroa  E = {(k,c);(c,k)}
  • 12.
    1) Uma urnacontém 2 bolas verdes e 4 amarelas. a) Defina o espaço amostral do experimento: retirar uma bola ao acaso. b) Defina os eventos E1: retirar bola verde e E2: retirar bola amarela.
  • 13.
    1) Uma urnacontém 2 bolas verdes e 4 amarelas. a) Defina o espaço amostral do experimento: retirar uma bola ao acaso. b) Defina os eventos E1: retirar bola verde e E2: retirar bola amarela.
  • 14.
    a) Ω ={V1, V2, A1, A2, A3, A4} b) E1 = {V1, V2} E2 = {A1, A2, A3, A4 }
  • 15.
    Intersecção de conjuntos Seja Ω = {2, 3, 5, 16, 17, 20} São apresentados dois eventos: A: ocorrer um número par = {2, 16, 20} B: ocorrer um múltiplo de 5= {5, 20} A ∩ B = {20}  1 elemento
  • 16.
    União de conjuntos Seja Ω = {2, 3, 5, 16, 17, 20} São apresentados dois eventos: A: ocorrer um número par = {2, 16, 20} B: ocorrer um múltiplo de 5= {5, 20} A ∪ B = {2, 5, 16, 20}  4 elementos Atenção!
  • 17.
    A) Evento certo Eventos certos são aqueles que apresentam os mesmos elementos do espaço amostral. n(E) = n(Ω) Exemplo: Seja o seguinte evento: obter um número natural menor que 7, no lançamento de um dado. E = Ω = {1, 2, 3, 4, 5, 6}
  • 18.
    definição Chance de um evento ocorrer Conjunto de todos definição os resultados Espaço Amostral representação Ω elementos definição Subconjunto de Ω representação E Probabilidade evento Evento n(E)=n(Ω) certo tipos
  • 19.
    B) Evento impossível Eventos impossíveis ocorrem quando não há elementos no conjunto E. n(E) = 0 Exemplo: Seja o seguinte evento: obter 3 caras no lançamento de duas moedas. E={ }
  • 20.
    definição Chance de um evento ocorrer Conjunto de todos definição os resultados Espaço Amostral representação Ω elementos definição Subconjunto de Ω representação E Probabilidade evento Evento n(E)=n(Ω) certo Evento n(E)=0 tipos impossível
  • 21.
    C) Evento complementar Evento complementar (Ec) é aquele que ocorre quando o evento E não ocorre. n(Ec)=n(Ω)-n(E) Exemplo: Seja Ω = {2, 3, 5, 16, 17, 20} São apresentados dois eventos: A: ocorrer um número par = {2, 16, 20} Ac: ocorrer um número ímpar= {3, 5, 17}
  • 22.
    definição Chance de um evento ocorrer Conjunto de todos definição os resultados Espaço Amostral representação Ω elementos definição Subconjunto de Ω representação E Probabilidade evento Evento n(E)=n(Ω) certo Evento n(E)=0 tipos impossível Evento Comple- n(Ec)=n(Ω)-n(E) mentar
  • 23.
    Probabilidade é achance de um evento ocorrer, em um espaço amostral. Ou seja, é o número de elementos de um evento, dividido pelo número de elementos do espaço amostral. n( E ) P n( )
  • 24.
    Exemplos: A) Qual aprobabilidade de ocorrer um número natural maior que 4, no lançamento de um dado? E = {5, 6}  n(E) = 2 Ω = {1, 2, 3, 4, 5, 6}  n(Ω) = 6 n( E ) 2 1 P n( ) 6 3
  • 25.
    Exemplos: B) Qual aprobabilidade de ocorrer pelo menos uma cara, no lançamento de duas moedas? E = {(k,k);(k,c);(c,k)}  n(E) = 3 Ω = {(k,k);(k,c);(c,k);(c,c)}  n(Ω) = 4 n( E ) 3 P n( ) 4
  • 26.
    definição Chance de um evento ocorrer Conjunto de todos definição os resultados Espaço Amostral representação Ω elementos definição Subconjunto de Ω representação E Probabilidade evento Evento n(E)=n(Ω) certo Evento n(E)=0 tipos impossível Evento Comple- n(Ec)=n(Ω)-n(E) mentar Fórmula geral n( E ) P Cálculo n( )
  • 27.
    2) No lançamentode um dado perfeito, qual é a probabilidade de que o resultado seja: a) Um número primo? b) O número 3? c) Um número menor que 1? d) Um número menor que 7?
  • 28.
    2) No lançamentode um dado perfeito, qual é a probabilidade de que o resultado seja: a) Um número primo? b) O número 3? c) Um número menor que 1? d) Um número menor que 7?
  • 29.
    3 1 a) Um número primo? P 6 2 1 b) O número 3? P 6 0 c) Um número menor que 1? P 0 6 6 d) Um número menor que 7? P 1 100% 6
  • 30.
    3) Uma caixacontém 10 letras: as cinco vogais e as cinco primeiras consoantes do alfabeto. Uma letra é sorteada ao acaso. Qual é a probabilidade de que a letra sorteada seja: a) Uma consoante? b) Uma letra da palavra bode?
  • 31.
    3) Uma caixacontém 10 letras: as cinco vogais e as cinco primeiras consoantes do alfabeto. Uma letra é sorteada ao acaso. Qual é a probabilidade de que a letra sorteada seja: a) Uma consoante? b) Uma letra da palavra bode?
  • 32.
    Ω = {a,e, i, o , u, b, c, d, f, g}  n(Ω) = 10 a) Uma consoante? 5 1 P 10 2 b) Uma letra da palavra bode? 4 2 P 10 5
  • 33.
    4) Um dosanagramas da palavra AMOR é escolhido ao acaso. Qual é a probabilidade de que seja a palavra ROMA?
  • 34.
    4) Um dosanagramas da palavra AMOR é escolhido ao acaso. Qual é a probabilidade de que seja a palavra ROMA?
  • 35.
    Total de anagramas da palavra amor Ω = 4! = 4.3.2.1=24 1 Logo, P 24
  • 36.
    Para calcular aprobabilidade da união de eventos dividimos o número de elementos do conjunto união pelo número de elementos do espaço amostral. n(AUB) P(AUB) n( )
  • 37.
    Exemplo: Deum baralho de 52 cartas, uma é extraída ao acaso. Qual é a probabilidade de sair um valete ou uma carta de ouros? A: sair um valete  n(A) = 4 B: sair carta de ouros  n(B) = 13 A∩B: sair valete de ouros  n(A∩B) = 1 Logo, n(A∪B) = 4+13-1=16
  • 38.
    A: sair umvalete  n(A) = 4 B: sair carta de ouros  n(B) = 13 A∩B: sair valete de ouros  n(A∩B) = 1 Logo, n(A∪B) = 4+13-1=16 n(AUB) 16 4 P(AUB) n( ) 52 13
  • 39.
    definição Chance de um evento ocorrer Conjunto de todos definição os resultados Espaço Amostral representação Ω elementos definição Subconjunto de Ω representação E Probabilidade evento Evento n(E)=n(Ω) certo Evento n(E)=0 tipos impossível Evento Comple- n(Ec)=n(Ω)-n(E) mentar Fórmula geral n( E ) P Cálculo n( ) Probabilidade n(AUB) P(AUB) Da união n( ) Variações
  • 40.
    5) Os dadosda tabela seguinte referem-se a uma pesquisa realizada com 155 moradores de um bairro revela os hábitos quanto ao uso de TV e Internet pagas. Só TV aberta TV paga Internet gratuita 76 44 Internet paga 14 21 Um dos entrevistados é selecionado ao acaso. Qual a probabilidade de que ele use TV ou Internet pagas?
  • 41.
    5) Os dadosda tabela seguinte referem-se a uma pesquisa realizada com 155 moradores de um bairro revela os hábitos quanto ao uso de TV e Internet pagas. Só TV aberta TV paga Internet gratuita 76 44 Internet paga 14 21 Um dos entrevistados é selecionado ao acaso. Qual a probabilidade de que ele use TV ou Internet pagas?
  • 42.
    Só TV aberta TV paga Internet gratuita 76 44 Internet paga 14 21 A: TV paga  n(A)=44+21=65 B: Internet paga  n(B)=14+21=35 n(A∩B)=21  n(A∪B)= 65+35-21=79 n(AUB) 79 P(AUB) n( ) 155
  • 43.
    Temos um casode probabilidade condicional quando um evento A ocorre, sabendo que o evento B já ocorreu. O cálculo da probabilidade condicional é dado pela fórmula: P(A  B) P(A/B) P(B)
  • 44.
    Exemplo: Aoretirar uma carta de um baralho de 52 cartas, qual é a probabilidade de sair um ás vermelho sabendo que ela é de copas? A: sair ás vermelho  n(A)=2 B: sair carta de copas  n(B)=13 A∩B: ás de copas  n(A∩B)=1
  • 45.
    Exemplo: A:sair ás vermelho  n(A)=2 B: sair carta de copas  n(B)=13 A∩B: ás de copas  n(A∩B)=1 1 P(A  B) 1 P(A/B) 52 P(B) 13 13 52
  • 46.
    definição Chance de um evento ocorrer Conjunto de todos definição os resultados Espaço Amostral representação Ω elementos definição Subconjunto de Ω representação E Probabilidade evento Evento n(E)=n(Ω) certo Evento n(E)=0 tipos impossível Evento Comple- n(Ec)=n(Ω)-n(E) mentar Fórmula geral n( E ) P Cálculo n( ) Probabilidade n(AUB) P(AUB) Da união n( ) Variações Probabilidade P(A  B) condicional P(A/B) P(B)
  • 47.
    6) Uma famíliaplanejou ter 3 crianças. Qual é a probabilidade de que a família tenha 3 homens, já que a primeira criança que nasceu é homem?
  • 48.
    6) Uma famíliaplanejou ter 3 crianças. Qual é a probabilidade de que a família tenha 3 homens, já que a primeira criança que nasceu é homem?
  • 49.
    Ω= {HHH, HHM, HMH, MHH, MMH, MHM, H MM, MMM}  n(Ω)=8 A: ter 3 homens  n(A)=1 B: primeira é homem  n(B)=4 A∩B={HHH}  n(A∩B)=1 1 P(A  B) 1 P(A/B) 8 P(B) 4 4 8
  • 50.
  • 51.
    7) (PUC) Háem um hospital 9 enfermeiras (Karla é uma delas) e 5 médicos (Lucas é um deles). Diariamente, devem permanecer de plantão 4 enfermeiras e 2 médicos. Qual a probabilidade de Karla e Lucas estarem de plantão no mesmo dia? 1 1 8 1 2 a) b) c) d) e) 3 4 45 5 3
  • 52.
    7) (PUC) Háem um hospital 9 enfermeiras (Karla é uma delas) e 5 médicos (Lucas é um deles). Diariamente, devem permanecer de plantão 4 enfermeiras e 2 médicos. Qual a probabilidade de Karla e Lucas estarem de plantão no mesmo dia? 1 1 8 1 2 a) b) c) d) e) 3 4 45 5 3
  • 53.
    9! 5! n( ) C9, 4 .C5, 2 1260 4!(9 4)! 2!(5 2)! 8! 4! n( E ) C8,3 .C4,1 224 3!(8 3)! 1!(4 1)! n( E ) 224 8 p( E )  letra c n( ) 1260 45
  • 54.
    8) (FEI-SP) Numacaixa tem-se 9 fichas numeradas de 1 a 9. Três fichas são escolhidas ao acaso e sem reposição. A probabilidade de não sair a ficha 7 é: 1 1 2 1 2 a) b) c) d) e) 6 3 9 4 3
  • 55.
    8) (FEI-SP) Numacaixa tem-se 9 fichas numeradas de 1 a 9. Três fichas são escolhidas ao acaso e sem reposição. A probabilidade de não sair a ficha 7 é: 1 1 2 1 2 a) b) c) d) e) 6 3 9 4 3
  • 56.
    Probabilidade Probabilidade Probabilidade denão sair 7 de não sair 7 de não sair 7 na primeira: na segunda: na terceira: 8 7 6 P P P 9 8 7 8 7 6 2  letra e P 9 8 7 3
  • 57.
    9) (PUC) Emum ônibus há apenas 4 bancos vazios, cada qual com 2 lugares. Quatro rapazes e quatro moças entram nesse ônibus e devem ocupar os bancos vagos. Se os lugares foram escolhidos aleatoriamente, a probabilidade de que cada banco Seja ocupado por um rapaz e uma moça é: 1 6 3 8 2 a) b) c) d) e) 70 35 14 35 7
  • 58.
    9) (PUC) Emum ônibus há apenas 4 bancos vazios, cada qual com 2 lugares. Quatro rapazes e quatro moças entram nesse ônibus e devem ocupar os bancos vagos. Se os lugares foram escolhidos aleatoriamente, a probabilidade de que cada banco seja ocupado por um rapaz e uma moça é: 1 6 3 8 2 a) b) c) d) e) 70 35 14 35 7
  • 59.
    n(Ω)=8! n(E)=4!.4!.24 8 7 4 4 x2 6 5 3 3 x2 4 3 2 2 x2 2 1 1 1 x2 4 2 4!4! 8  letra d P 8! 35
  • 60.
    10) (UFSC) Emuma caixa há 28 bombons, todos com forma, massa e aspecto exterior exatamente iguais. Desses bombons, 7 tem recheio de coco, 4 de nozes e 17 são recheados com amêndoas. Se retirarmos da caixa 3 bombons simultaneamente, a probabilidade de se retirar um bombom de cada sabor é, aproximadamente: a)7,5% b)11% c)12,5% d )13% e)14,5%
  • 61.
    10) (UFSC) Emuma caixa há 28 bombons, todos com forma, massa e aspecto exterior exatamente iguais. Desses bombons, 7 tem recheio de coco, 4 de nozes e 17 são recheados com amêndoas. Se retirarmos da caixa 3 bombons simultaneamente, a probabilidade de se retirar um bombom de cada sabor é, aproximadamente: a)7,5% b)11% c)12,5% d )13% e)14,5%
  • 62.
    n( ) C28,3 3276 n( E ) C7,1.C4,1 C17,1 7 4 17 476 n( E ) 476 p( E ) 0,145  letra e n( ) 3276
  • 63.
    • Matemática –Volume Único: Iezzi, Gelson; Dolce, Osvaldo; Degenszajn, David; Périgo, Roberto – Atual Editora – 4ª edição – 2007 – Páginas: 391 a 412 • Matemática Contexto e Aplicações: Dante, Luiz Roberto – Editora Ática – 3ª edição – 2008 - Páginas: 338 a 367 • Figuras: google imagens