SlideShare uma empresa Scribd logo
1 de 60
FraçõesFrações
AlgébricasAlgébricas
Matemática - ÁlgebraMatemática - Álgebra
O que são fraçõesO que são frações
algébricas?algébricas?
 São frações que tem variáveis no denominador.São frações que tem variáveis no denominador.
Ex.:Ex.:
xy
a
2
7
)
5
4
)
+
−
y
yx
b
12
5
) 2
+− aa
x
c
O que são fraçõesO que são frações
algébricas?algébricas?
 São frações que temSão frações que tem variáveis no denominadorvariáveis no denominador..
Ex.:Ex.:
xy
a
2
7
)
5
4
)
+
−
y
yx
b
12
5
) 2
+− aa
x
c
O que são?
Frações com variável no denominador
Resumindo...Resumindo...
Denominador sempreDenominador sempre
diferente de 0diferente de 0
 O denominador de uma fração nunca pode serO denominador de uma fração nunca pode ser
zero.zero.
 Assim, deve-se excluir os valores das variáveisAssim, deve-se excluir os valores das variáveis
que anulam o denominador.que anulam o denominador.
0
5
) ≠→ x
x
a
a 3
62
8
) ≠→
−
+
x
x
x
d7
7
1
) ≠→
−
+
y
y
x
b 5
5
2
) −≠→
+
a
a
x
c
7
07
≠
≠−
y
y
5
05
−≠
≠+
a
a
3
2
6
62
062
≠
≠
≠
≠−
x
x
x
x
Denominador sempreDenominador sempre
diferente de 0diferente de 0
 OO denominadordenominador de uma fraçãode uma fração nunca pode sernunca pode ser
zerozero..
 Assim, deve-seAssim, deve-se excluir os valoresexcluir os valores das variáveisdas variáveis
que anulam o denominadorque anulam o denominador..
0
5
) ≠→ x
x
a
a 3
62
8
) ≠→
−
+
x
x
x
d7
7
1
) ≠→
−
+
y
y
x
b 5
5
2
) −≠→
+
a
a
x
c
7
07
≠
≠−
y
y
5
05
−≠
≠+
a
a
3
2
6
62
062
≠
≠
≠
≠−
x
x
x
x
O que são?
Frações com variável no denominador
Denominador deve ser diferente de zeroRegra
Resumindo...Resumindo...
Simplificação de fraçõesSimplificação de frações
algébricasalgébricas
 Para simplificar uma fração, fatoramos oPara simplificar uma fração, fatoramos o
numerador e o denominador.numerador e o denominador.
Ex.:Ex.:
b
a
bbbba
bbbaa
ab
ba
a
3
2
.....3.2
.....2.2
6
4
) 4
32
==
( )( )
( ) 5
3
35
33
155
9
)
2
−
=
+
−+
=
+
− a
a
aa
a
a
b
Simplificação de fraçõesSimplificação de frações
algébricasalgébricas
 Para simplificar uma fração,Para simplificar uma fração, fatoramos ofatoramos o
numerador e o denominadornumerador e o denominador..
Ex.:Ex.:
b
a
bbbba
bbbaa
ab
ba
a
3
2
.....3.2
.....2.2
6
4
) 4
32
==
( )( )
( ) 5
3
35
33
155
9
)
2
−
=
+
−+
=
+
− a
a
aa
a
a
b
O que são?
Frações com variável no denominador
Denominador deve ser diferente de zeroRegra
Operações
Simplificação
Resumindo...Resumindo...
Dividir numerador e denominador pelo divisor comum
Tente fazer sozinhTente fazer sozinh
1- Simplifique:1- Simplifique:
=
−
=
=
x
x
c
x
x
b
yx
xy
a
15
3
)
20
2
)
)
2
2
2
=
=
−
=
22
43
2
33
22
)
16
4
)
48
18
)
yzx
yzx
f
ab
ab
e
rs
sr
d
Tente fazer sozinhoTente fazer sozinho
1- Simplifique:1- Simplifique:
5
1
.5.3
.3
15
3
)
10
1
..10.2
.2
20
2
)
..
..
)
2
2
2
−=−=
−
==
==
x
x
x
x
c
xxx
x
x
x
b
x
y
yxx
yyx
yx
xy
a
3
2
.....11.3
........11.2
33
22
)
4
1
..4.4
..4
16
4
)
8
3
..8.6
...6.3
48
18
)
2
22
43
2
xz
zzyxx
zzzzyxxx
yzx
yzx
f
ba
ba
ab
ab
e
r
sr
srr
rs
sr
d
==
−=−=
−
==
Tente fazer sozinhoTente fazer sozinho
2- Simplifique:2- Simplifique:
=
+
+
=
−
=
+
bybx
ayax
c
a
b
yx
a
)
21
714
)
6
33
)
=
+
+
=
−
=
+
+
17
214
)
23
)
1
)
2
23
2
x
xx
f
xx
x
e
cac
a
d
Tente fazer sozinhoTente fazer sozinho
2- Simplifique:2- Simplifique:
( )
( )
( )
( ) b
a
yxb
yxa
bybx
ayax
c
aaa
b
yxyxyx
a
=
+
+
=
+
+
−
=
−
=
−
+
=
+
=
+
)
3
2
7.3
27
21
714
)
23.2
3
6
33
) ( )
( ) ( )
( ) x
x
xx
x
xx
f
xxx
x
xx
x
e
cac
a
cac
a
d
2
17
172
17
214
)
23
1
2323
)
1
1
11
)
2
2
2
23
2
=
+
+
=
+
+
−
=
−
=
−
=
+
+
=
+
+
Tente fazer sozinhoTente fazer sozinho
3- Simplifique:3- Simplifique:
( )
=
+
−
=
−
−
=
+−
−
33
1
)
7
49
)
44
25
)
2
2
2
x
x
c
x
x
b
mm
m
a
Tente fazer sozinhTente fazer sozinh
3- Simplifique:3- Simplifique:
( ) ( )
( )
( )
( )( ) ( )
( )( )
( )
( )( )
( )
( )
3
1
13
11
13
1
33
1
)
7
7
77
7
7
7
49
)
2
5
22
25
2
25
44
25
)
222
222
22
−
=
+
+−
+
−
=
+
−
+=
−
+−
=
−
−
=
−
−
−
=
−−
−
=
−
−
=
+−
−
x
x
xx
x
x
x
x
c
x
x
xx
x
x
x
x
b
mmm
m
m
m
mm
m
a
Tente fazer sozinhTente fazer sozinh
3- Simplifique (continuação):3- Simplifique (continuação):
=
+−
−
=
+
−
=
−
+−
96
62
)
36
4
)
14
144
)
2
2
2
2
xx
x
f
x
x
e
x
xx
d
Tente fazer sozinhTente fazer sozinh
3- Simplifique (continuação):3- Simplifique (continuação):
( )
( )
( )
( )( ) ( )
( )
( )( )
( )
( )
( )
( ) ( )3
2
3
32
96
62
)
3
2
23
22
23
2
36
4
)
12
1
1212
12
12
12
14
144
)
22
222
222
2
−
=
−
−
=
+−
−
−
=
+
−+
=
+
−
=
+
−
+
=
−+
−
=
−
−
=
−
+−
xx
x
xx
x
f
x
x
xx
x
x
x
x
e
xxx
x
x
x
x
xx
d
Adição e Subtração deAdição e Subtração de
frações algébricasfrações algébricas
Utilizamos as mesmas regras das fraçõesUtilizamos as mesmas regras das frações
numéricas.numéricas.
 Frações comFrações com denominadores iguaisdenominadores iguais::
Ex.:Ex.:
( )
xx
mm
x
mm
x
m
x
m
b
a
c
a
cc
a
c
a
c
a
2
9
2
18
2
18
2
1
2
8
)
3753125312
)
=
+−+
=
−−+
=
−
−
+
+
=
−+
=
−
+
Adição e Subtração deAdição e Subtração de
frações algébricasfrações algébricas
Utilizamos asUtilizamos as mesmas regras das fraçõesmesmas regras das frações
numéricasnuméricas..
 Frações comFrações com denominadores iguaisdenominadores iguais::
Ex.:Ex.:
( )
xx
mm
x
mm
x
m
x
m
b
a
c
a
cc
a
c
a
c
a
2
9
2
18
2
18
2
1
2
8
)
3753125312
)
=
+−+
=
−−+
=
−
−
+
+
=
−+
=
−
+
O que são?
Frações com variável no denominador
Denominador deve ser diferente de zeroRegra
Operações
Simplificação
Soma e Subtração
Resumindo...Resumindo...
Denominadores iguais Trabalhar os numeradores e
manter o denominador
Dividir numerador e denominador pelo divisor comum
Tente fazer sozinhoTente fazer sozinho
1- Calcule e simplifique, se possível, os resultados:1- Calcule e simplifique, se possível, os resultados:
=
+
+
+
=
−
−
−
−
−
=
+
−
+
+
+
1
1
1
)
3
54
3
14
)
1
9
1
9
)
aa
a
c
x
x
x
x
b
x
a
x
a
a
Tente fazer sozinhTente fazer sozinh
1- Calcule e simplifique, se possível, os resultados:1- Calcule e simplifique, se possível, os resultados:
1
1
1
1
1
1
)
3
4
3
5414
3
54
3
14
)
1
2
1
99
1
9
1
9
)
=
+
+
=
+
+
+
−
=
−
+−−
=
−
−
−
−
−
+
=
+
−++
=
+
−
+
+
+
a
a
aa
a
c
xx
xx
x
x
x
x
b
x
a
x
aa
x
a
x
a
a
Adição e SubtraçãoAdição e Subtração d
frações algébricasfrações algébricas
 Frações comFrações com denominadores diferentesdenominadores diferentes::
Devemos tirar o m.m.c dos denominadores.Devemos tirar o m.m.c dos denominadores.
Ex.:Ex.:
( )
x
x
x
x
x
x
x
x
x
b
x
m
x
mm
x
m
x
m
a
6
313
6
3310
6
1310
2
1
3
5
)
2
13
2
310
2
35
)
−
=
+−
=
−−
=
−
−
=
+
=+
Adição e Subtração deAdição e Subtração de
frações algébricasfrações algébricas
 Frações comFrações com denominadores diferentesdenominadores diferentes::
Devemos tirar oDevemos tirar o m.m.c dos denominadoresm.m.c dos denominadores..
Ex.:Ex.:
( )
x
x
x
x
x
x
x
x
x
b
x
m
x
mm
x
m
x
m
a
6
313
6
3310
6
1310
2
1
3
5
)
2
13
2
310
2
35
)
−
=
+−
=
−−
=
−
−
=
+
=+
O que são?
Frações com variável no denominador
Denominador deve ser diferente de zeroRegra
Operações
Simplificação
Soma e Subtração
Resumindo...Resumindo...
Denominadores iguais
Denominadores diferentes
Trabalhar os numeradores e
manter o denominador
Mmc dos denominadores
Dividir numerador e denominador pelo divisor comum
Tente fazer sozinhoTente fazer sozinho
2- Calcule e simplifique, se possível, os resultados:2- Calcule e simplifique, se possível, os resultados:
=+
+
−
−
=−
=+
xx
x
x
x
c
a
m
a
m
b
yx
a
10
1
5
53
6
4
)
3
2
6
5
)
11
)
Tente fazer sozinhoTente fazer sozinho
2- Calcule e simplifique, se possível, os resultados:2- Calcule e simplifique, se possível, os resultados:
( ) ( )
x
x
x
x
x
x
x
xx
xx
x
x
x
xx
x
x
x
c
a
m
a
mm
a
m
a
m
b
xy
xy
yx
a
6
75
.6.5
755
30
3525
30
33018205
30
3
30
3018
30
205
10
1
5
53
6
4
)
66
45
3
2
6
5
)
11
)
+−
=
+−
=
−−
=
+−−−
=
=+
+
−
−
=+
+
−
−
=
−
=−
+
=+
Tente fazer sozinhoTente fazer sozinho
2- Calcule e simplifique (continuação):2- Calcule e simplifique (continuação):
=
+
−
−
+
=
−
−
−
=+
+
2
4
4
17
)
3
2
25
)
4
3
1
)
2
2
2
xx
x
f
x
xx
x
x
e
x
x
d
Tente fazer sozinhoTente fazer sozinho
2- Calcule e simplifique (continuação):2- Calcule e simplifique (continuação):
( ) ( ) ( )
( ) ( )
( )
( )( )
( )
( )( ) 4
93
4
8417
22
2417
2
4
22
17
2
4
4
17
)
2
43
2
43
2
43
2
6225
2
32253
2
25
)
14
37
14
33
14
4
4
3
1
)
22
2
22
2
2
22
2
2
2
2
−
+
=
−
+−+
=
−+
−−+
=
+
−
−+
+
=
+
−
−
+
+
=
+
=
+
=
+−−
=
=
−−−
=
−
−
−
+
+
=
+
+
+
+
=+
+
x
x
x
xx
xx
xx
xxx
x
xx
x
f
x
x
x
xx
x
xx
x
xxxx
x
xxxx
x
xx
x
x
e
x
x
x
x
x
x
x
x
d
Multiplicação de fraçõesMultiplicação de frações
algébricasalgébricas
 Multiplicamos da mesma maneira queMultiplicamos da mesma maneira que
multiplicamos os números fracionários:multiplicamos os números fracionários:
Numerador x numeradorNumerador x numerador
Denominador x denominadorDenominador x denominador
Ex.:Ex.:
( ) ( )
x
m
a
m
x
a
c
am
yx
ma
yxyx
m
yx
a
yx
b
xy
a
y
a
x
a
a
2
3
1
3
.
2
1
)
7.7
.
.
7
)
10
3
2
.
5
3
)
22
2
=
+
+
−
=
−+
=
−+
=
Multiplicação de fraçõesMultiplicação de frações
algébricasalgébricas
 Multiplicamos da mesma maneira queMultiplicamos da mesma maneira que
multiplicamos os números fracionários:multiplicamos os números fracionários:
Numerador x numeradorNumerador x numerador
Denominador x denominadorDenominador x denominador
Ex.:Ex.:
( ) ( )
x
m
a
m
x
a
c
am
yx
ma
yxyx
m
yx
a
yx
b
xy
a
y
a
x
a
a
2
3
1
3
.
2
1
)
7.7
.
.
7
)
10
3
2
.
5
3
)
22
2
=
+
+
−
=
−+
=
−+
=
O que são?
Frações com variável no denominador
Denominador deve ser diferente de zeroRegra
Operações
Simplificação
Soma e Subtração
Multiplicação
Resumindo...Resumindo...
DB
CA
D
C
B
A
.
.
. =
Denominadores iguais
Denominadores diferentes
Trabalhar os numeradores e
manter o denominador
Mmc dos denominadores
Dividir numerador e denominador pelo divisor comum
Tente fazer sozinhoTente fazer sozinho
1- Efetue as multiplicações.1- Efetue as multiplicações.
=
−+
=





−
=
5
.
5
)
2
.
3
5
)
3
.
2
7
)
3
2
yxyx
c
b
yx
a
xy
b
c
x
a
x
a
Tente fazer sozinhoTente fazer sozinho
1- Efetue as multiplicações.1- Efetue as multiplicações.
255
.
5
)
3
102
.
3
5
)
6
7
3
.
2
7
)
22
3
23
3
2
2
yxyxyx
c
ab
yx
b
yx
a
xy
b
ac
x
c
x
a
x
a
−
=
−+
−=





−
=
Tente fazer sozinhoTente fazer sozinho
1- Efetue as multiplicações (continuação).1- Efetue as multiplicações (continuação).
=
+
−
=
−
+
+
=





−
x
ca
ca
x
f
x
x
x
x
e
xx
xd
3
.)
7
53
.
7
)
8
.
2
.7)
22
2
Tente fazer sozinhoTente fazer sozinho
1- Efetue as multiplicações (continuação).1- Efetue as multiplicações (continuação).
( )
( )
( )( ) ( )cacaca
ca
ca
ca
x
ca
ca
x
f
x
xx
x
x
x
x
e
xxx
xd
−
=
−+
+
=
−
+
=
+
−
−
+
=
−
+
+
−=





−
3
1
33.3
.)
49
53
7
53
.
7
)
16
7
8
.
2
.7)
2222
2
2
42
Divisão de fraçõesDivisão de frações
algébricasalgébricas
 Procedemos da mesma forma como dividimos asProcedemos da mesma forma como dividimos as
frações numéricas:frações numéricas:
Multiplicar a primeira fração pelo inverso da segundaMultiplicar a primeira fração pelo inverso da segunda
fração.fração.
Ex.:Ex.:
m
a
m
x
x
a
x
m
x
a
c
x
aa
x
a
ax
a
b
cn
am
n
m
c
a
m
n
c
a
a
=
+
+
=
++
==
==
1
.
11
:
1
)
10
21
2
7
.
5
3
7
2
:
5
3
)
.:)
2
Divisão de fraçõesDivisão de frações
algébricasalgébricas
 Procedemos da mesma forma como dividimos asProcedemos da mesma forma como dividimos as
frações numéricas:frações numéricas:
Multiplicar a primeira fração pelo inverso da segundaMultiplicar a primeira fração pelo inverso da segunda
fraçãofração..
Ex.:Ex.:
m
a
m
x
x
a
x
m
x
a
c
x
aa
x
a
ax
a
b
cn
am
n
m
c
a
m
n
c
a
a
=
+
+
=
++
==
==
1
.
11
:
1
)
10
21
2
7
.
5
3
7
2
:
5
3
)
.:)
2
O que são?
Frações com variável no denominador
Denominador deve ser diferente de zeroRegra
Operações
Simplificação
Soma e Subtração
Multiplicação
Divisão
Resumindo...Resumindo...
C
D
B
A
D
C
B
A
.: =
DB
CA
D
C
B
A
.
.
. =
Denominadores iguais
Denominadores diferentes
Trabalhar os numeradores e
manter o denominador
Mmc dos denominadores
Dividir numerador e denominador pelo divisor comum
Tente fazer sozinhoTente fazer sozinho
1- Efetue as divisões.1- Efetue as divisões.
=
=
=
3
2
2
32
6
:
2
3
)
3
:
3
5
)
4
:)
y
x
y
x
c
qppq
a
b
a
c
c
a
a
1- Efetue as divisões.1- Efetue as divisões.
46
.
2
36
:
2
3
)
9
5
3
.
3
53
:
3
5
)
44
.
4
:)
2
2
321
3
2
2
2
4
3
3
232
xy
x
y
y
x
y
x
y
x
c
apqp
pq
a
qppq
a
b
c
a
c
a
c
a
a
c
c
a
a
==
==
==
Tente fazer sozinhoTente fazer sozinho
Tente fazer sozinhoTente fazer sozinho
1- Efetue as divisões (continuação).1- Efetue as divisões (continuação).
=
−
+
=
=
1
:
7
1
)
7
4
:8)
3:
5
9
)
2
2
x
a
x
x
f
a
ae
x
x
d
1- Efetue as divisões (continuação).1- Efetue as divisões (continuação).
xa
x
a
x
x
x
x
a
x
x
f
aa
a
a
ae
x
x
x
x
x
d
7
11
.
7
1
1
:
7
1
)
14
4
7
.8
7
4
:8)
5
3
3
1
.
5
9
3:
5
9
)
2
21
2
2
1
232
−
=
−+
=
−
+
==
==
Tente fazer sozinhoTente fazer sozinho
Potenciação de fraçõesPotenciação de frações
algébricasalgébricas
 Faz-se da mesma forma como nas fraçõesFaz-se da mesma forma como nas frações
numéricas:numéricas:
Elevamos numerador e denominador à mesmaElevamos numerador e denominador à mesma
potência.potência.
Ex.:Ex.:
( )
( )
( )
( ) 2
2
2
22
9
3
33
33
3
16
49
4
7
4
7
)
8
27
2
3
2
3
)
m
a
m
a
m
a
b
a
x
a
x
a
x
a
=
−
=




 −
==





Potenciação de fraçõesPotenciação de frações
algébricasalgébricas
 Faz-se da mesma forma como nas fraçõesFaz-se da mesma forma como nas frações
numéricas:numéricas:
Elevamos numerador e denominador à mesmaElevamos numerador e denominador à mesma
potência.potência.
Ex.:Ex.:
( )
( )
( )
( ) 2
2
2
22
9
3
33
33
3
16
49
4
7
4
7
)
8
27
2
3
2
3
)
m
a
m
a
m
a
b
a
x
a
x
a
x
a
=
−
=




 −
==





O que são?
Frações com variável no denominador
Denominador deve ser diferente de zeroRegra
Operações
Simplificação
Soma e Subtração
Multiplicação
Divisão
Potenciação
Resumindo...Resumindo...
C
D
B
A
D
C
B
A
.: =
n
nn
B
A
B
A
=





DB
CA
D
C
B
A
.
.
. =
Denominadores iguais
Denominadores diferentes
Trabalhar os numeradores e
manter o denominador
Mmc dos denominadores
Dividir numerador e denominador pelo divisor comum
Expoente positivo
Tente fazer sozinhoTente fazer sozinho
1- Calcule as potências.1- Calcule as potências.
=





−
=





−
=





3
5
2
42
3
4
2
4
3
)
3
5
)
)
y
x
c
a
b
x
ba
a
Tente fazer sozinhoTente fazer sozinho
1- Calcule as potências.1- Calcule as potências.
( )
( )
( )
( )
( ) 15
6
35
323
5
2
8
4
4242
12
36
34
323
4
2
64
27
4
3
4
3
)
81
625
3
5
3
5
)
)
y
x
y
x
y
x
c
aaa
b
x
ba
x
ba
x
ba
a
−
=
−
=





−
=
−
=





−
==





Tente fazer sozinhoTente fazer sozinho
1- Calcule as potências (continuação).1- Calcule as potências (continuação).
=





−
=





−
+
=





−
02
2
2
13
5
)
3
1
)
5
3
)
x
x
f
x
m
e
n
n
d
Tente fazer sozinhoTente fazer sozinho
1- Calcule as potências (continuação).1- Calcule as potências (continuação).
( )
( )
( )
( )
1
13
5
)
96
12
96
21
33..2
.1.21
3
1
3
1
)
2510
9
55..2
9
5
3
5
3
)
02
2
2
2
2
22
22
2
22
2
2
22
2
2
22
=





−
+−
++
=
+−
++
=
+−
++
=
−
+
=





−
+
+−
=
+−
=
−
=





−
x
x
f
xx
mm
xx
mm
xx
mm
x
m
x
m
e
nn
n
nn
n
n
n
n
n
d
Potenciação de fraçõesPotenciação de frações
algébricasalgébricas
 Expoente negativoExpoente negativo
Invertemos a base e depois trocamos o sinal doInvertemos a base e depois trocamos o sinal do
expoente.expoente.
Ex.:Ex.:
4
62
2
32
3
2
11
)
)
a
c
a
c
c
a
b
x
y
x
y
y
x
a
=





=





=





=





−
−
Potenciação de fraçõesPotenciação de frações
algébricasalgébricas
 Expoente negativoExpoente negativo
Invertemos a base e depois trocamos o sinal doInvertemos a base e depois trocamos o sinal do
expoenteexpoente..
Ex.:Ex.:
4
62
2
32
3
2
11
)
)
a
c
a
c
c
a
b
x
y
x
y
y
x
a
=





=





=





=





−
−
O que são?
Frações com variável no denominador
Denominador deve ser diferente de zeroRegra
Operações
Simplificação
Soma e Subtração
Multiplicação
Divisão
Potenciação
Resumindo...Resumindo...
C
D
B
A
D
C
B
A
.: =
n
nn
B
A
B
A
=





DB
CA
D
C
B
A
.
.
. =
Denominadores iguais
Denominadores diferentes
Trabalhar os numeradores e
manter o denominador
Mmc dos denominadores
Dividir numerador e denominador pelo divisor comum
Expoente positivo
Expoente negativo n
nn
A
B
B
A
=





−
Tente fazer sozinhoTente fazer sozinho
2- Calcule as potências negativas.2- Calcule as potências negativas.
=





+
−
=





=





−
−
−
1
3
2
3
7
13
)
)
)
x
x
c
m
ac
b
b
a
a
Tente fazer sozinhoTente fazer sozinho
2- Calcule as potências negativas.2- Calcule as potências negativas.
13
7
7
13
)
)
)
1
33
333
2
6232
3
−
+
=





+
−
=





=





=





=





−
−
−
x
x
x
x
c
ca
m
ac
m
m
ac
b
a
b
a
b
b
a
a
Tente fazer sozinhoTente fazer sozinho
2- Calcule as potências negativas (continuação).2- Calcule as potências negativas (continuação).
=





−
−
=





=





+
−
−
−
−
2
3
2
2
3
)
2
)
3
1
)
a
ba
f
yx
e
x
x
d
Tente fazerTente fazer
sozinhosozinho
2- Calcule as potências negativas (continuação).2- Calcule as potências negativas (continuação).
22
222
36323
2
2
2
22
2222
2
93
3
)
82
2
)
12
96
11..2
33..2
1
3
3
1
)
baba
a
ba
a
a
ba
f
yxyx
yx
e
xx
xx
xx
xx
x
x
x
x
d
+−
=





−
−
=





−
−
=





=





+−
++
=
+−
++
=





−
+
=





+
−
−
−
−
O que são?
Frações com variável no denominador
Denominador deve ser diferente de zeroRegra
Operações
Simplificação
Soma e Subtração
Multiplicação
Divisão
Potenciação
FRAÇÕES ALGÉBRICASFRAÇÕES ALGÉBRICAS
C
D
B
A
D
C
B
A
.: =
n
nn
B
A
B
A
=





DB
CA
D
C
B
A
.
.
. =
Denominadores iguais
Denominadores diferentes
Trabalhar os numeradores e
manter o denominador
Mmc dos denominadores
Dividir numerador e denominador pelo divisor comum
Expoente positivo
Expoente negativo n
nn
B
A
B
A
=





BibliografiaBibliografia
 NAME, Miguel Assis.NAME, Miguel Assis. Tempo deTempo de
Matemática – 7ª sérieMatemática – 7ª série. 1ª edição. SP:. 1ª edição. SP:
Editora do Brasil, 1996.Editora do Brasil, 1996.
 Site Exatas, acessado em 29/03/2011:Site Exatas, acessado em 29/03/2011:
http://www.exatas.mat.br/fracaoalg.htmhttp://www.exatas.mat.br/fracaoalg.htm

Mais conteúdo relacionado

Mais procurados (20)

Funcoes trigonometricas.ppt
Funcoes trigonometricas.pptFuncoes trigonometricas.ppt
Funcoes trigonometricas.ppt
 
Determinantes 2º ano
Determinantes 2º anoDeterminantes 2º ano
Determinantes 2º ano
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
 
Equação exponencial
Equação exponencialEquação exponencial
Equação exponencial
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
 
Expressoes algebricas
Expressoes algebricasExpressoes algebricas
Expressoes algebricas
 
Equações do 1º grau ppt
Equações do 1º grau pptEquações do 1º grau ppt
Equações do 1º grau ppt
 
1 produtos notáveis
1 produtos notáveis1 produtos notáveis
1 produtos notáveis
 
1 ano função afim
1 ano   função afim1 ano   função afim
1 ano função afim
 
Função do 2°grau
Função do 2°grauFunção do 2°grau
Função do 2°grau
 
Aula fatorial
Aula fatorialAula fatorial
Aula fatorial
 
22ª aula função afim
22ª aula   função afim22ª aula   função afim
22ª aula função afim
 
Dízimas periódicas (fração geratriz)
Dízimas periódicas (fração geratriz)Dízimas periódicas (fração geratriz)
Dízimas periódicas (fração geratriz)
 
Funções
FunçõesFunções
Funções
 
16 aula conjuntos numericos
16 aula    conjuntos numericos16 aula    conjuntos numericos
16 aula conjuntos numericos
 
Números inteiros
Números inteirosNúmeros inteiros
Números inteiros
 
Regra de três simples e composta
Regra de três simples e compostaRegra de três simples e composta
Regra de três simples e composta
 
Porcentagem
PorcentagemPorcentagem
Porcentagem
 
Potenciacao
PotenciacaoPotenciacao
Potenciacao
 
6º ano 4º bim
6º ano 4º bim6º ano 4º bim
6º ano 4º bim
 

Semelhante a www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas

www.professoraparticularapoio.com.br - Matemática - Frações Algébricas
www.professoraparticularapoio.com.br - Matemática -  Frações Algébricaswww.professoraparticularapoio.com.br - Matemática -  Frações Algébricas
www.professoraparticularapoio.com.br - Matemática - Frações AlgébricasPatrícia Morais
 
Introdução ao Matlab
Introdução ao MatlabIntrodução ao Matlab
Introdução ao Matlabedusfernandes
 
Recuperação lista exercicios 9º ano 1º bimestre
Recuperação lista exercicios 9º ano 1º bimestreRecuperação lista exercicios 9º ano 1º bimestre
Recuperação lista exercicios 9º ano 1º bimestreRafael Marques
 
Apostila nivelamento cal
Apostila nivelamento calApostila nivelamento cal
Apostila nivelamento calAndré Piazza
 
Introdução ao MATLAB
Introdução ao MATLABIntrodução ao MATLAB
Introdução ao MATLABCaioTelefonica
 
Apostila matemática básica 2
Apostila matemática básica 2Apostila matemática básica 2
Apostila matemática básica 2waynemarques
 
Capitulo 1scilab
Capitulo 1scilabCapitulo 1scilab
Capitulo 1scilabwjunior
 
Matematica 1400 questoes-resolvidas-e-gabaritadas (1)
Matematica 1400 questoes-resolvidas-e-gabaritadas (1)Matematica 1400 questoes-resolvidas-e-gabaritadas (1)
Matematica 1400 questoes-resolvidas-e-gabaritadas (1)Luciano Pessanha
 
Matematica 1400 questoes-resolvidas-e-gabaritadas
Matematica 1400 questoes-resolvidas-e-gabaritadasMatematica 1400 questoes-resolvidas-e-gabaritadas
Matematica 1400 questoes-resolvidas-e-gabaritadasAlexandro C. Marins
 
Curso completo de matematica para concursos 1400 questoes resolvidas e gaba...
Curso completo de matematica para concursos   1400 questoes resolvidas e gaba...Curso completo de matematica para concursos   1400 questoes resolvidas e gaba...
Curso completo de matematica para concursos 1400 questoes resolvidas e gaba...Cleidvaldo Oliveira
 
Matematica 1400 questoes-resolvidas-e-gabaritadas
Matematica 1400 questoes-resolvidas-e-gabaritadasMatematica 1400 questoes-resolvidas-e-gabaritadas
Matematica 1400 questoes-resolvidas-e-gabaritadasAlexandro C. Marins
 
Polinomios e monomios.ppt
Polinomios e monomios.pptPolinomios e monomios.ppt
Polinomios e monomios.pptandrade333
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Polinômios
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Polinômios www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Polinômios
www.AulasDeMatematicanoRJ.Com.Br - Matemática - PolinômiosClarice Leclaire
 

Semelhante a www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas (20)

www.professoraparticularapoio.com.br - Matemática - Frações Algébricas
www.professoraparticularapoio.com.br - Matemática -  Frações Algébricaswww.professoraparticularapoio.com.br - Matemática -  Frações Algébricas
www.professoraparticularapoio.com.br - Matemática - Frações Algébricas
 
Introdução ao Matlab
Introdução ao MatlabIntrodução ao Matlab
Introdução ao Matlab
 
matematica basica.pdf
matematica basica.pdfmatematica basica.pdf
matematica basica.pdf
 
Fin a01
Fin a01Fin a01
Fin a01
 
Mat radiciacao
Mat radiciacaoMat radiciacao
Mat radiciacao
 
Recuperação lista exercicios 9º ano 1º bimestre
Recuperação lista exercicios 9º ano 1º bimestreRecuperação lista exercicios 9º ano 1º bimestre
Recuperação lista exercicios 9º ano 1º bimestre
 
Fin a01
Fin a01Fin a01
Fin a01
 
Apostila nivelamento cal
Apostila nivelamento calApostila nivelamento cal
Apostila nivelamento cal
 
Mat equações
Mat equaçõesMat equações
Mat equações
 
Introdução ao MATLAB
Introdução ao MATLABIntrodução ao MATLAB
Introdução ao MATLAB
 
Radiciação
RadiciaçãoRadiciação
Radiciação
 
Matematica Basica
Matematica BasicaMatematica Basica
Matematica Basica
 
Apostila matemática básica 2
Apostila matemática básica 2Apostila matemática básica 2
Apostila matemática básica 2
 
Capitulo 1scilab
Capitulo 1scilabCapitulo 1scilab
Capitulo 1scilab
 
Matematica 1400 questoes-resolvidas-e-gabaritadas (1)
Matematica 1400 questoes-resolvidas-e-gabaritadas (1)Matematica 1400 questoes-resolvidas-e-gabaritadas (1)
Matematica 1400 questoes-resolvidas-e-gabaritadas (1)
 
Matematica 1400 questoes-resolvidas-e-gabaritadas
Matematica 1400 questoes-resolvidas-e-gabaritadasMatematica 1400 questoes-resolvidas-e-gabaritadas
Matematica 1400 questoes-resolvidas-e-gabaritadas
 
Curso completo de matematica para concursos 1400 questoes resolvidas e gaba...
Curso completo de matematica para concursos   1400 questoes resolvidas e gaba...Curso completo de matematica para concursos   1400 questoes resolvidas e gaba...
Curso completo de matematica para concursos 1400 questoes resolvidas e gaba...
 
Matematica 1400 questoes-resolvidas-e-gabaritadas
Matematica 1400 questoes-resolvidas-e-gabaritadasMatematica 1400 questoes-resolvidas-e-gabaritadas
Matematica 1400 questoes-resolvidas-e-gabaritadas
 
Polinomios e monomios.ppt
Polinomios e monomios.pptPolinomios e monomios.ppt
Polinomios e monomios.ppt
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Polinômios
 www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Polinômios www.AulasDeMatematicanoRJ.Com.Br  - Matemática -  Polinômios
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Polinômios
 

Mais de Aulas De Matemática Apoio

www.AulasDeMatematicaApoio.com - Matemática - Exercícios Resolvidos de Fat...
 www.AulasDeMatematicaApoio.com  - Matemática -  Exercícios Resolvidos de Fat... www.AulasDeMatematicaApoio.com  - Matemática -  Exercícios Resolvidos de Fat...
www.AulasDeMatematicaApoio.com - Matemática - Exercícios Resolvidos de Fat...Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Problemas com Equações
 www.AulasDeMatematicaApoio.com  - Matemática -  Problemas com Equações www.AulasDeMatematicaApoio.com  - Matemática -  Problemas com Equações
www.AulasDeMatematicaApoio.com - Matemática - Problemas com EquaçõesAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Logaritmo
 www.AulasDeMatematicaApoio.com  - Matemática -  Logaritmo www.AulasDeMatematicaApoio.com  - Matemática -  Logaritmo
www.AulasDeMatematicaApoio.com - Matemática - LogaritmoAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Fatoração Conceitual
 www.AulasDeMatematicaApoio.com  - Matemática -  Fatoração Conceitual www.AulasDeMatematicaApoio.com  - Matemática -  Fatoração Conceitual
www.AulasDeMatematicaApoio.com - Matemática - Fatoração ConceitualAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Radiciação
www.AulasDeMatematicaApoio.com  - Matemática - Radiciaçãowww.AulasDeMatematicaApoio.com  - Matemática - Radiciação
www.AulasDeMatematicaApoio.com - Matemática - RadiciaçãoAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Probabilidade
 www.AulasDeMatematicaApoio.com  - Matemática - Probabilidade www.AulasDeMatematicaApoio.com  - Matemática - Probabilidade
www.AulasDeMatematicaApoio.com - Matemática - ProbabilidadeAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Potenciação
www.AulasDeMatematicaApoio.com  - Matemática - Potenciaçãowww.AulasDeMatematicaApoio.com  - Matemática - Potenciação
www.AulasDeMatematicaApoio.com - Matemática - PotenciaçãoAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com  - Matemática - Retas, Planos e Pontoswww.AulasDeMatematicaApoio.com  - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com - Matemática - Retas, Planos e PontosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com  - Matemática - Números Complexoswww.AulasDeMatematicaApoio.com  - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com - Matemática - Números ComplexosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Matrizes
www.AulasDeMatematicaApoio.com  - Matemática - Matrizeswww.AulasDeMatematicaApoio.com  - Matemática - Matrizes
www.AulasDeMatematicaApoio.com - Matemática - MatrizesAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
www.AulasDeMatematicaApoio.com  - Matemática - Função Afimwww.AulasDeMatematicaApoio.com  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com - Matemática - Função AfimAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Determinante
www.AulasDeMatematicaApoio.com  - Matemática - Determinantewww.AulasDeMatematicaApoio.com  - Matemática - Determinante
www.AulasDeMatematicaApoio.com - Matemática - DeterminanteAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Conjuntos Numéricos
www.AulasDeMatematicaApoio.com  - Matemática - Conjuntos Numéricoswww.AulasDeMatematicaApoio.com  - Matemática - Conjuntos Numéricos
www.AulasDeMatematicaApoio.com - Matemática - Conjuntos NuméricosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com  - Matemática - Prismas e Cilindroswww.AulasDeMatematicaApoio.com  - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com - Matemática - Prismas e CilindrosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Polinômios
www.AulasDeMatematicaApoio.com  - Matemática - Polinômioswww.AulasDeMatematicaApoio.com  - Matemática - Polinômios
www.AulasDeMatematicaApoio.com - Matemática - PolinômiosAulas De Matemática Apoio
 
Matemática - Exercício de Semelhança de Triângulo
Matemática -  Exercício de Semelhança de Triângulo Matemática -  Exercício de Semelhança de Triângulo
Matemática - Exercício de Semelhança de Triângulo Aulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Ciclo Trigonométrico
 www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico
www.AulasDeMatematicaApoio.com - Matemática - Ciclo TrigonométricoAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Ângulos
 www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos
www.AulasDeMatematicaApoio.com - Matemática - ÂngulosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiroswww.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números InteirosAulas De Matemática Apoio
 
www.AulasDeMatematicaApoio.com - Matemática - Equação Exponêncial
www.AulasDeMatematicaApoio.com  - Matemática -  Equação Exponêncialwww.AulasDeMatematicaApoio.com  - Matemática -  Equação Exponêncial
www.AulasDeMatematicaApoio.com - Matemática - Equação ExponêncialAulas De Matemática Apoio
 

Mais de Aulas De Matemática Apoio (20)

www.AulasDeMatematicaApoio.com - Matemática - Exercícios Resolvidos de Fat...
 www.AulasDeMatematicaApoio.com  - Matemática -  Exercícios Resolvidos de Fat... www.AulasDeMatematicaApoio.com  - Matemática -  Exercícios Resolvidos de Fat...
www.AulasDeMatematicaApoio.com - Matemática - Exercícios Resolvidos de Fat...
 
www.AulasDeMatematicaApoio.com - Matemática - Problemas com Equações
 www.AulasDeMatematicaApoio.com  - Matemática -  Problemas com Equações www.AulasDeMatematicaApoio.com  - Matemática -  Problemas com Equações
www.AulasDeMatematicaApoio.com - Matemática - Problemas com Equações
 
www.AulasDeMatematicaApoio.com - Matemática - Logaritmo
 www.AulasDeMatematicaApoio.com  - Matemática -  Logaritmo www.AulasDeMatematicaApoio.com  - Matemática -  Logaritmo
www.AulasDeMatematicaApoio.com - Matemática - Logaritmo
 
www.AulasDeMatematicaApoio.com - Matemática - Fatoração Conceitual
 www.AulasDeMatematicaApoio.com  - Matemática -  Fatoração Conceitual www.AulasDeMatematicaApoio.com  - Matemática -  Fatoração Conceitual
www.AulasDeMatematicaApoio.com - Matemática - Fatoração Conceitual
 
www.AulasDeMatematicaApoio.com - Matemática - Radiciação
www.AulasDeMatematicaApoio.com  - Matemática - Radiciaçãowww.AulasDeMatematicaApoio.com  - Matemática - Radiciação
www.AulasDeMatematicaApoio.com - Matemática - Radiciação
 
www.AulasDeMatematicaApoio.com - Matemática - Probabilidade
 www.AulasDeMatematicaApoio.com  - Matemática - Probabilidade www.AulasDeMatematicaApoio.com  - Matemática - Probabilidade
www.AulasDeMatematicaApoio.com - Matemática - Probabilidade
 
www.AulasDeMatematicaApoio.com - Matemática - Potenciação
www.AulasDeMatematicaApoio.com  - Matemática - Potenciaçãowww.AulasDeMatematicaApoio.com  - Matemática - Potenciação
www.AulasDeMatematicaApoio.com - Matemática - Potenciação
 
www.AulasDeMatematicaApoio.com - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com  - Matemática - Retas, Planos e Pontoswww.AulasDeMatematicaApoio.com  - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com - Matemática - Retas, Planos e Pontos
 
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com  - Matemática - Números Complexoswww.AulasDeMatematicaApoio.com  - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com - Matemática - Números Complexos
 
www.AulasDeMatematicaApoio.com - Matemática - Matrizes
www.AulasDeMatematicaApoio.com  - Matemática - Matrizeswww.AulasDeMatematicaApoio.com  - Matemática - Matrizes
www.AulasDeMatematicaApoio.com - Matemática - Matrizes
 
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
www.AulasDeMatematicaApoio.com  - Matemática - Função Afimwww.AulasDeMatematicaApoio.com  - Matemática - Função Afim
www.AulasDeMatematicaApoio.com - Matemática - Função Afim
 
www.AulasDeMatematicaApoio.com - Matemática - Determinante
www.AulasDeMatematicaApoio.com  - Matemática - Determinantewww.AulasDeMatematicaApoio.com  - Matemática - Determinante
www.AulasDeMatematicaApoio.com - Matemática - Determinante
 
www.AulasDeMatematicaApoio.com - Matemática - Conjuntos Numéricos
www.AulasDeMatematicaApoio.com  - Matemática - Conjuntos Numéricoswww.AulasDeMatematicaApoio.com  - Matemática - Conjuntos Numéricos
www.AulasDeMatematicaApoio.com - Matemática - Conjuntos Numéricos
 
www.AulasDeMatematicaApoio.com - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com  - Matemática - Prismas e Cilindroswww.AulasDeMatematicaApoio.com  - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com - Matemática - Prismas e Cilindros
 
www.AulasDeMatematicaApoio.com - Matemática - Polinômios
www.AulasDeMatematicaApoio.com  - Matemática - Polinômioswww.AulasDeMatematicaApoio.com  - Matemática - Polinômios
www.AulasDeMatematicaApoio.com - Matemática - Polinômios
 
Matemática - Exercício de Semelhança de Triângulo
Matemática -  Exercício de Semelhança de Triângulo Matemática -  Exercício de Semelhança de Triângulo
Matemática - Exercício de Semelhança de Triângulo
 
www.AulasDeMatematicaApoio.com - Matemática - Ciclo Trigonométrico
 www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico www.AulasDeMatematicaApoio.com  - Matemática - Ciclo Trigonométrico
www.AulasDeMatematicaApoio.com - Matemática - Ciclo Trigonométrico
 
www.AulasDeMatematicaApoio.com - Matemática - Ângulos
 www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos www.AulasDeMatematicaApoio.com  - Matemática -  Ângulos
www.AulasDeMatematicaApoio.com - Matemática - Ângulos
 
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiroswww.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros
 
www.AulasDeMatematicaApoio.com - Matemática - Equação Exponêncial
www.AulasDeMatematicaApoio.com  - Matemática -  Equação Exponêncialwww.AulasDeMatematicaApoio.com  - Matemática -  Equação Exponêncial
www.AulasDeMatematicaApoio.com - Matemática - Equação Exponêncial
 

Último

Abuso Sexual da Criança e do adolescente
Abuso Sexual da Criança e do adolescenteAbuso Sexual da Criança e do adolescente
Abuso Sexual da Criança e do adolescenteIpdaWellington
 
Aparatologia na estética - Cavitação, radiofrequência e lipolaser.pdf
Aparatologia na estética - Cavitação, radiofrequência e lipolaser.pdfAparatologia na estética - Cavitação, radiofrequência e lipolaser.pdf
Aparatologia na estética - Cavitação, radiofrequência e lipolaser.pdfAbdLuxemBourg
 
Livro infantil: A onda da raiva. pdf-crianças
Livro infantil: A onda da raiva. pdf-criançasLivro infantil: A onda da raiva. pdf-crianças
Livro infantil: A onda da raiva. pdf-criançasMonizeEvellin2
 
Nós Propomos! Canil/Gatil na Sertã - Amigos dos Animais
Nós Propomos! Canil/Gatil na Sertã - Amigos dos AnimaisNós Propomos! Canil/Gatil na Sertã - Amigos dos Animais
Nós Propomos! Canil/Gatil na Sertã - Amigos dos AnimaisIlda Bicacro
 
HISTORIA DA XILOGRAVURA A SUA IMPORTANCIA
HISTORIA DA XILOGRAVURA A SUA IMPORTANCIAHISTORIA DA XILOGRAVURA A SUA IMPORTANCIA
HISTORIA DA XILOGRAVURA A SUA IMPORTANCIAElianeAlves383563
 
livro para educação infantil conceitos sensorial
livro para educação infantil conceitos sensoriallivro para educação infantil conceitos sensorial
livro para educação infantil conceitos sensorialNeuroppIsnayaLciaMar
 
Slides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptx
Slides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptxSlides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptx
Slides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptxLuizHenriquedeAlmeid6
 
MARCHA HUMANA. UM ESTUDO SOBRE AS MARCHAS
MARCHA HUMANA. UM ESTUDO SOBRE AS MARCHASMARCHA HUMANA. UM ESTUDO SOBRE AS MARCHAS
MARCHA HUMANA. UM ESTUDO SOBRE AS MARCHASyan1305goncalves
 
Nós Propomos! Infraestruturas em Proença-a-Nova
Nós Propomos! Infraestruturas em Proença-a-NovaNós Propomos! Infraestruturas em Proença-a-Nova
Nós Propomos! Infraestruturas em Proença-a-NovaIlda Bicacro
 
Sistema de Acompanhamento - Diário Online 2021.pdf
Sistema de Acompanhamento - Diário Online 2021.pdfSistema de Acompanhamento - Diário Online 2021.pdf
Sistema de Acompanhamento - Diário Online 2021.pdfAntonio Barros
 
"Nós Propomos! Escola Secundária em Pedrógão Grande"
"Nós Propomos! Escola Secundária em Pedrógão Grande""Nós Propomos! Escola Secundária em Pedrógão Grande"
"Nós Propomos! Escola Secundária em Pedrógão Grande"Ilda Bicacro
 
Produção de poemas - Reciclar é preciso
Produção  de  poemas  -  Reciclar é precisoProdução  de  poemas  -  Reciclar é preciso
Produção de poemas - Reciclar é precisoMary Alvarenga
 
Conteúdo sobre a formação e expansão persa
Conteúdo sobre a formação e expansão persaConteúdo sobre a formação e expansão persa
Conteúdo sobre a formação e expansão persafelipescherner
 
Historia-em-cartaz-Lucas-o-menino-que-aprendeu-a-comer-saudavel- (1).pdf
Historia-em-cartaz-Lucas-o-menino-que-aprendeu-a-comer-saudavel- (1).pdfHistoria-em-cartaz-Lucas-o-menino-que-aprendeu-a-comer-saudavel- (1).pdf
Historia-em-cartaz-Lucas-o-menino-que-aprendeu-a-comer-saudavel- (1).pdfandreaLisboa7
 
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdfAs Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdfcarloseduardogonalve36
 
"Nós Propomos! Mobilidade sustentável na Sertã"
"Nós Propomos! Mobilidade sustentável na Sertã""Nós Propomos! Mobilidade sustentável na Sertã"
"Nós Propomos! Mobilidade sustentável na Sertã"Ilda Bicacro
 
Meu corpo - Ruth Rocha e Anna Flora livro
Meu corpo - Ruth Rocha e Anna Flora livroMeu corpo - Ruth Rocha e Anna Flora livro
Meu corpo - Ruth Rocha e Anna Flora livroBrenda Fritz
 
Sismologia_7ºano_causas e consequencias.pptx
Sismologia_7ºano_causas e consequencias.pptxSismologia_7ºano_causas e consequencias.pptx
Sismologia_7ºano_causas e consequencias.pptxpatriciapedroso82
 
Atividade do poema sobre mãe de mário quintana.pdf
Atividade do poema sobre mãe de mário quintana.pdfAtividade do poema sobre mãe de mário quintana.pdf
Atividade do poema sobre mãe de mário quintana.pdfmaria794949
 

Último (20)

Abuso Sexual da Criança e do adolescente
Abuso Sexual da Criança e do adolescenteAbuso Sexual da Criança e do adolescente
Abuso Sexual da Criança e do adolescente
 
Aparatologia na estética - Cavitação, radiofrequência e lipolaser.pdf
Aparatologia na estética - Cavitação, radiofrequência e lipolaser.pdfAparatologia na estética - Cavitação, radiofrequência e lipolaser.pdf
Aparatologia na estética - Cavitação, radiofrequência e lipolaser.pdf
 
Livro infantil: A onda da raiva. pdf-crianças
Livro infantil: A onda da raiva. pdf-criançasLivro infantil: A onda da raiva. pdf-crianças
Livro infantil: A onda da raiva. pdf-crianças
 
662938.pdf aula digital de educação básica
662938.pdf aula digital de educação básica662938.pdf aula digital de educação básica
662938.pdf aula digital de educação básica
 
Nós Propomos! Canil/Gatil na Sertã - Amigos dos Animais
Nós Propomos! Canil/Gatil na Sertã - Amigos dos AnimaisNós Propomos! Canil/Gatil na Sertã - Amigos dos Animais
Nós Propomos! Canil/Gatil na Sertã - Amigos dos Animais
 
HISTORIA DA XILOGRAVURA A SUA IMPORTANCIA
HISTORIA DA XILOGRAVURA A SUA IMPORTANCIAHISTORIA DA XILOGRAVURA A SUA IMPORTANCIA
HISTORIA DA XILOGRAVURA A SUA IMPORTANCIA
 
livro para educação infantil conceitos sensorial
livro para educação infantil conceitos sensoriallivro para educação infantil conceitos sensorial
livro para educação infantil conceitos sensorial
 
Slides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptx
Slides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptxSlides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptx
Slides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptx
 
MARCHA HUMANA. UM ESTUDO SOBRE AS MARCHAS
MARCHA HUMANA. UM ESTUDO SOBRE AS MARCHASMARCHA HUMANA. UM ESTUDO SOBRE AS MARCHAS
MARCHA HUMANA. UM ESTUDO SOBRE AS MARCHAS
 
Nós Propomos! Infraestruturas em Proença-a-Nova
Nós Propomos! Infraestruturas em Proença-a-NovaNós Propomos! Infraestruturas em Proença-a-Nova
Nós Propomos! Infraestruturas em Proença-a-Nova
 
Sistema de Acompanhamento - Diário Online 2021.pdf
Sistema de Acompanhamento - Diário Online 2021.pdfSistema de Acompanhamento - Diário Online 2021.pdf
Sistema de Acompanhamento - Diário Online 2021.pdf
 
"Nós Propomos! Escola Secundária em Pedrógão Grande"
"Nós Propomos! Escola Secundária em Pedrógão Grande""Nós Propomos! Escola Secundária em Pedrógão Grande"
"Nós Propomos! Escola Secundária em Pedrógão Grande"
 
Produção de poemas - Reciclar é preciso
Produção  de  poemas  -  Reciclar é precisoProdução  de  poemas  -  Reciclar é preciso
Produção de poemas - Reciclar é preciso
 
Conteúdo sobre a formação e expansão persa
Conteúdo sobre a formação e expansão persaConteúdo sobre a formação e expansão persa
Conteúdo sobre a formação e expansão persa
 
Historia-em-cartaz-Lucas-o-menino-que-aprendeu-a-comer-saudavel- (1).pdf
Historia-em-cartaz-Lucas-o-menino-que-aprendeu-a-comer-saudavel- (1).pdfHistoria-em-cartaz-Lucas-o-menino-que-aprendeu-a-comer-saudavel- (1).pdf
Historia-em-cartaz-Lucas-o-menino-que-aprendeu-a-comer-saudavel- (1).pdf
 
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdfAs Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
 
"Nós Propomos! Mobilidade sustentável na Sertã"
"Nós Propomos! Mobilidade sustentável na Sertã""Nós Propomos! Mobilidade sustentável na Sertã"
"Nós Propomos! Mobilidade sustentável na Sertã"
 
Meu corpo - Ruth Rocha e Anna Flora livro
Meu corpo - Ruth Rocha e Anna Flora livroMeu corpo - Ruth Rocha e Anna Flora livro
Meu corpo - Ruth Rocha e Anna Flora livro
 
Sismologia_7ºano_causas e consequencias.pptx
Sismologia_7ºano_causas e consequencias.pptxSismologia_7ºano_causas e consequencias.pptx
Sismologia_7ºano_causas e consequencias.pptx
 
Atividade do poema sobre mãe de mário quintana.pdf
Atividade do poema sobre mãe de mário quintana.pdfAtividade do poema sobre mãe de mário quintana.pdf
Atividade do poema sobre mãe de mário quintana.pdf
 

www.AulasDeMatematicaApoio.com - Matemática - Frações Algébricas

  • 2. O que são fraçõesO que são frações algébricas?algébricas?  São frações que tem variáveis no denominador.São frações que tem variáveis no denominador. Ex.:Ex.: xy a 2 7 ) 5 4 ) + − y yx b 12 5 ) 2 +− aa x c
  • 3. O que são fraçõesO que são frações algébricas?algébricas?  São frações que temSão frações que tem variáveis no denominadorvariáveis no denominador.. Ex.:Ex.: xy a 2 7 ) 5 4 ) + − y yx b 12 5 ) 2 +− aa x c
  • 4. O que são? Frações com variável no denominador Resumindo...Resumindo...
  • 5. Denominador sempreDenominador sempre diferente de 0diferente de 0  O denominador de uma fração nunca pode serO denominador de uma fração nunca pode ser zero.zero.  Assim, deve-se excluir os valores das variáveisAssim, deve-se excluir os valores das variáveis que anulam o denominador.que anulam o denominador. 0 5 ) ≠→ x x a a 3 62 8 ) ≠→ − + x x x d7 7 1 ) ≠→ − + y y x b 5 5 2 ) −≠→ + a a x c 7 07 ≠ ≠− y y 5 05 −≠ ≠+ a a 3 2 6 62 062 ≠ ≠ ≠ ≠− x x x x
  • 6. Denominador sempreDenominador sempre diferente de 0diferente de 0  OO denominadordenominador de uma fraçãode uma fração nunca pode sernunca pode ser zerozero..  Assim, deve-seAssim, deve-se excluir os valoresexcluir os valores das variáveisdas variáveis que anulam o denominadorque anulam o denominador.. 0 5 ) ≠→ x x a a 3 62 8 ) ≠→ − + x x x d7 7 1 ) ≠→ − + y y x b 5 5 2 ) −≠→ + a a x c 7 07 ≠ ≠− y y 5 05 −≠ ≠+ a a 3 2 6 62 062 ≠ ≠ ≠ ≠− x x x x
  • 7. O que são? Frações com variável no denominador Denominador deve ser diferente de zeroRegra Resumindo...Resumindo...
  • 8. Simplificação de fraçõesSimplificação de frações algébricasalgébricas  Para simplificar uma fração, fatoramos oPara simplificar uma fração, fatoramos o numerador e o denominador.numerador e o denominador. Ex.:Ex.: b a bbbba bbbaa ab ba a 3 2 .....3.2 .....2.2 6 4 ) 4 32 == ( )( ) ( ) 5 3 35 33 155 9 ) 2 − = + −+ = + − a a aa a a b
  • 9. Simplificação de fraçõesSimplificação de frações algébricasalgébricas  Para simplificar uma fração,Para simplificar uma fração, fatoramos ofatoramos o numerador e o denominadornumerador e o denominador.. Ex.:Ex.: b a bbbba bbbaa ab ba a 3 2 .....3.2 .....2.2 6 4 ) 4 32 == ( )( ) ( ) 5 3 35 33 155 9 ) 2 − = + −+ = + − a a aa a a b
  • 10. O que são? Frações com variável no denominador Denominador deve ser diferente de zeroRegra Operações Simplificação Resumindo...Resumindo... Dividir numerador e denominador pelo divisor comum
  • 11. Tente fazer sozinhTente fazer sozinh 1- Simplifique:1- Simplifique: = − = = x x c x x b yx xy a 15 3 ) 20 2 ) ) 2 2 2 = = − = 22 43 2 33 22 ) 16 4 ) 48 18 ) yzx yzx f ab ab e rs sr d
  • 12. Tente fazer sozinhoTente fazer sozinho 1- Simplifique:1- Simplifique: 5 1 .5.3 .3 15 3 ) 10 1 ..10.2 .2 20 2 ) .. .. ) 2 2 2 −=−= − == == x x x x c xxx x x x b x y yxx yyx yx xy a 3 2 .....11.3 ........11.2 33 22 ) 4 1 ..4.4 ..4 16 4 ) 8 3 ..8.6 ...6.3 48 18 ) 2 22 43 2 xz zzyxx zzzzyxxx yzx yzx f ba ba ab ab e r sr srr rs sr d == −=−= − ==
  • 13. Tente fazer sozinhoTente fazer sozinho 2- Simplifique:2- Simplifique: = + + = − = + bybx ayax c a b yx a ) 21 714 ) 6 33 ) = + + = − = + + 17 214 ) 23 ) 1 ) 2 23 2 x xx f xx x e cac a d
  • 14. Tente fazer sozinhoTente fazer sozinho 2- Simplifique:2- Simplifique: ( ) ( ) ( ) ( ) b a yxb yxa bybx ayax c aaa b yxyxyx a = + + = + + − = − = − + = + = + ) 3 2 7.3 27 21 714 ) 23.2 3 6 33 ) ( ) ( ) ( ) ( ) x x xx x xx f xxx x xx x e cac a cac a d 2 17 172 17 214 ) 23 1 2323 ) 1 1 11 ) 2 2 2 23 2 = + + = + + − = − = − = + + = + +
  • 15. Tente fazer sozinhoTente fazer sozinho 3- Simplifique:3- Simplifique: ( ) = + − = − − = +− − 33 1 ) 7 49 ) 44 25 ) 2 2 2 x x c x x b mm m a
  • 16. Tente fazer sozinhTente fazer sozinh 3- Simplifique:3- Simplifique: ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( ) 3 1 13 11 13 1 33 1 ) 7 7 77 7 7 7 49 ) 2 5 22 25 2 25 44 25 ) 222 222 22 − = + +− + − = + − += − +− = − − = − − − = −− − = − − = +− − x x xx x x x x c x x xx x x x x b mmm m m m mm m a
  • 17. Tente fazer sozinhTente fazer sozinh 3- Simplifique (continuação):3- Simplifique (continuação): = +− − = + − = − +− 96 62 ) 36 4 ) 14 144 ) 2 2 2 2 xx x f x x e x xx d
  • 18. Tente fazer sozinhTente fazer sozinh 3- Simplifique (continuação):3- Simplifique (continuação): ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( )3 2 3 32 96 62 ) 3 2 23 22 23 2 36 4 ) 12 1 1212 12 12 12 14 144 ) 22 222 222 2 − = − − = +− − − = + −+ = + − = + − + = −+ − = − − = − +− xx x xx x f x x xx x x x x e xxx x x x x xx d
  • 19. Adição e Subtração deAdição e Subtração de frações algébricasfrações algébricas Utilizamos as mesmas regras das fraçõesUtilizamos as mesmas regras das frações numéricas.numéricas.  Frações comFrações com denominadores iguaisdenominadores iguais:: Ex.:Ex.: ( ) xx mm x mm x m x m b a c a cc a c a c a 2 9 2 18 2 18 2 1 2 8 ) 3753125312 ) = +−+ = −−+ = − − + + = −+ = − +
  • 20. Adição e Subtração deAdição e Subtração de frações algébricasfrações algébricas Utilizamos asUtilizamos as mesmas regras das fraçõesmesmas regras das frações numéricasnuméricas..  Frações comFrações com denominadores iguaisdenominadores iguais:: Ex.:Ex.: ( ) xx mm x mm x m x m b a c a cc a c a c a 2 9 2 18 2 18 2 1 2 8 ) 3753125312 ) = +−+ = −−+ = − − + + = −+ = − +
  • 21. O que são? Frações com variável no denominador Denominador deve ser diferente de zeroRegra Operações Simplificação Soma e Subtração Resumindo...Resumindo... Denominadores iguais Trabalhar os numeradores e manter o denominador Dividir numerador e denominador pelo divisor comum
  • 22. Tente fazer sozinhoTente fazer sozinho 1- Calcule e simplifique, se possível, os resultados:1- Calcule e simplifique, se possível, os resultados: = + + + = − − − − − = + − + + + 1 1 1 ) 3 54 3 14 ) 1 9 1 9 ) aa a c x x x x b x a x a a
  • 23. Tente fazer sozinhTente fazer sozinh 1- Calcule e simplifique, se possível, os resultados:1- Calcule e simplifique, se possível, os resultados: 1 1 1 1 1 1 ) 3 4 3 5414 3 54 3 14 ) 1 2 1 99 1 9 1 9 ) = + + = + + + − = − +−− = − − − − − + = + −++ = + − + + + a a aa a c xx xx x x x x b x a x aa x a x a a
  • 24. Adição e SubtraçãoAdição e Subtração d frações algébricasfrações algébricas  Frações comFrações com denominadores diferentesdenominadores diferentes:: Devemos tirar o m.m.c dos denominadores.Devemos tirar o m.m.c dos denominadores. Ex.:Ex.: ( ) x x x x x x x x x b x m x mm x m x m a 6 313 6 3310 6 1310 2 1 3 5 ) 2 13 2 310 2 35 ) − = +− = −− = − − = + =+
  • 25. Adição e Subtração deAdição e Subtração de frações algébricasfrações algébricas  Frações comFrações com denominadores diferentesdenominadores diferentes:: Devemos tirar oDevemos tirar o m.m.c dos denominadoresm.m.c dos denominadores.. Ex.:Ex.: ( ) x x x x x x x x x b x m x mm x m x m a 6 313 6 3310 6 1310 2 1 3 5 ) 2 13 2 310 2 35 ) − = +− = −− = − − = + =+
  • 26. O que são? Frações com variável no denominador Denominador deve ser diferente de zeroRegra Operações Simplificação Soma e Subtração Resumindo...Resumindo... Denominadores iguais Denominadores diferentes Trabalhar os numeradores e manter o denominador Mmc dos denominadores Dividir numerador e denominador pelo divisor comum
  • 27. Tente fazer sozinhoTente fazer sozinho 2- Calcule e simplifique, se possível, os resultados:2- Calcule e simplifique, se possível, os resultados: =+ + − − =− =+ xx x x x c a m a m b yx a 10 1 5 53 6 4 ) 3 2 6 5 ) 11 )
  • 28. Tente fazer sozinhoTente fazer sozinho 2- Calcule e simplifique, se possível, os resultados:2- Calcule e simplifique, se possível, os resultados: ( ) ( ) x x x x x x x xx xx x x x xx x x x c a m a mm a m a m b xy xy yx a 6 75 .6.5 755 30 3525 30 33018205 30 3 30 3018 30 205 10 1 5 53 6 4 ) 66 45 3 2 6 5 ) 11 ) +− = +− = −− = +−−− = =+ + − − =+ + − − = − =− + =+
  • 29. Tente fazer sozinhoTente fazer sozinho 2- Calcule e simplifique (continuação):2- Calcule e simplifique (continuação): = + − − + = − − − =+ + 2 4 4 17 ) 3 2 25 ) 4 3 1 ) 2 2 2 xx x f x xx x x e x x d
  • 30. Tente fazer sozinhoTente fazer sozinho 2- Calcule e simplifique (continuação):2- Calcule e simplifique (continuação): ( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( )( ) 4 93 4 8417 22 2417 2 4 22 17 2 4 4 17 ) 2 43 2 43 2 43 2 6225 2 32253 2 25 ) 14 37 14 33 14 4 4 3 1 ) 22 2 22 2 2 22 2 2 2 2 − + = − +−+ = −+ −−+ = + − −+ + = + − − + + = + = + = +−− = = −−− = − − − + + = + + + + =+ + x x x xx xx xx xxx x xx x f x x x xx x xx x xxxx x xxxx x xx x x e x x x x x x x x d
  • 31. Multiplicação de fraçõesMultiplicação de frações algébricasalgébricas  Multiplicamos da mesma maneira queMultiplicamos da mesma maneira que multiplicamos os números fracionários:multiplicamos os números fracionários: Numerador x numeradorNumerador x numerador Denominador x denominadorDenominador x denominador Ex.:Ex.: ( ) ( ) x m a m x a c am yx ma yxyx m yx a yx b xy a y a x a a 2 3 1 3 . 2 1 ) 7.7 . . 7 ) 10 3 2 . 5 3 ) 22 2 = + + − = −+ = −+ =
  • 32. Multiplicação de fraçõesMultiplicação de frações algébricasalgébricas  Multiplicamos da mesma maneira queMultiplicamos da mesma maneira que multiplicamos os números fracionários:multiplicamos os números fracionários: Numerador x numeradorNumerador x numerador Denominador x denominadorDenominador x denominador Ex.:Ex.: ( ) ( ) x m a m x a c am yx ma yxyx m yx a yx b xy a y a x a a 2 3 1 3 . 2 1 ) 7.7 . . 7 ) 10 3 2 . 5 3 ) 22 2 = + + − = −+ = −+ =
  • 33. O que são? Frações com variável no denominador Denominador deve ser diferente de zeroRegra Operações Simplificação Soma e Subtração Multiplicação Resumindo...Resumindo... DB CA D C B A . . . = Denominadores iguais Denominadores diferentes Trabalhar os numeradores e manter o denominador Mmc dos denominadores Dividir numerador e denominador pelo divisor comum
  • 34. Tente fazer sozinhoTente fazer sozinho 1- Efetue as multiplicações.1- Efetue as multiplicações. = −+ =      − = 5 . 5 ) 2 . 3 5 ) 3 . 2 7 ) 3 2 yxyx c b yx a xy b c x a x a
  • 35. Tente fazer sozinhoTente fazer sozinho 1- Efetue as multiplicações.1- Efetue as multiplicações. 255 . 5 ) 3 102 . 3 5 ) 6 7 3 . 2 7 ) 22 3 23 3 2 2 yxyxyx c ab yx b yx a xy b ac x c x a x a − = −+ −=      − =
  • 36. Tente fazer sozinhoTente fazer sozinho 1- Efetue as multiplicações (continuação).1- Efetue as multiplicações (continuação). = + − = − + + =      − x ca ca x f x x x x e xx xd 3 .) 7 53 . 7 ) 8 . 2 .7) 22 2
  • 37. Tente fazer sozinhoTente fazer sozinho 1- Efetue as multiplicações (continuação).1- Efetue as multiplicações (continuação). ( ) ( ) ( )( ) ( )cacaca ca ca ca x ca ca x f x xx x x x x e xxx xd − = −+ + = − + = + − − + = − + + −=      − 3 1 33.3 .) 49 53 7 53 . 7 ) 16 7 8 . 2 .7) 2222 2 2 42
  • 38. Divisão de fraçõesDivisão de frações algébricasalgébricas  Procedemos da mesma forma como dividimos asProcedemos da mesma forma como dividimos as frações numéricas:frações numéricas: Multiplicar a primeira fração pelo inverso da segundaMultiplicar a primeira fração pelo inverso da segunda fração.fração. Ex.:Ex.: m a m x x a x m x a c x aa x a ax a b cn am n m c a m n c a a = + + = ++ == == 1 . 11 : 1 ) 10 21 2 7 . 5 3 7 2 : 5 3 ) .:) 2
  • 39. Divisão de fraçõesDivisão de frações algébricasalgébricas  Procedemos da mesma forma como dividimos asProcedemos da mesma forma como dividimos as frações numéricas:frações numéricas: Multiplicar a primeira fração pelo inverso da segundaMultiplicar a primeira fração pelo inverso da segunda fraçãofração.. Ex.:Ex.: m a m x x a x m x a c x aa x a ax a b cn am n m c a m n c a a = + + = ++ == == 1 . 11 : 1 ) 10 21 2 7 . 5 3 7 2 : 5 3 ) .:) 2
  • 40. O que são? Frações com variável no denominador Denominador deve ser diferente de zeroRegra Operações Simplificação Soma e Subtração Multiplicação Divisão Resumindo...Resumindo... C D B A D C B A .: = DB CA D C B A . . . = Denominadores iguais Denominadores diferentes Trabalhar os numeradores e manter o denominador Mmc dos denominadores Dividir numerador e denominador pelo divisor comum
  • 41. Tente fazer sozinhoTente fazer sozinho 1- Efetue as divisões.1- Efetue as divisões. = = = 3 2 2 32 6 : 2 3 ) 3 : 3 5 ) 4 :) y x y x c qppq a b a c c a a
  • 42. 1- Efetue as divisões.1- Efetue as divisões. 46 . 2 36 : 2 3 ) 9 5 3 . 3 53 : 3 5 ) 44 . 4 :) 2 2 321 3 2 2 2 4 3 3 232 xy x y y x y x y x c apqp pq a qppq a b c a c a c a a c c a a == == == Tente fazer sozinhoTente fazer sozinho
  • 43. Tente fazer sozinhoTente fazer sozinho 1- Efetue as divisões (continuação).1- Efetue as divisões (continuação). = − + = = 1 : 7 1 ) 7 4 :8) 3: 5 9 ) 2 2 x a x x f a ae x x d
  • 44. 1- Efetue as divisões (continuação).1- Efetue as divisões (continuação). xa x a x x x x a x x f aa a a ae x x x x x d 7 11 . 7 1 1 : 7 1 ) 14 4 7 .8 7 4 :8) 5 3 3 1 . 5 9 3: 5 9 ) 2 21 2 2 1 232 − = −+ = − + == == Tente fazer sozinhoTente fazer sozinho
  • 45. Potenciação de fraçõesPotenciação de frações algébricasalgébricas  Faz-se da mesma forma como nas fraçõesFaz-se da mesma forma como nas frações numéricas:numéricas: Elevamos numerador e denominador à mesmaElevamos numerador e denominador à mesma potência.potência. Ex.:Ex.: ( ) ( ) ( ) ( ) 2 2 2 22 9 3 33 33 3 16 49 4 7 4 7 ) 8 27 2 3 2 3 ) m a m a m a b a x a x a x a = − =      − ==     
  • 46. Potenciação de fraçõesPotenciação de frações algébricasalgébricas  Faz-se da mesma forma como nas fraçõesFaz-se da mesma forma como nas frações numéricas:numéricas: Elevamos numerador e denominador à mesmaElevamos numerador e denominador à mesma potência.potência. Ex.:Ex.: ( ) ( ) ( ) ( ) 2 2 2 22 9 3 33 33 3 16 49 4 7 4 7 ) 8 27 2 3 2 3 ) m a m a m a b a x a x a x a = − =      − ==     
  • 47. O que são? Frações com variável no denominador Denominador deve ser diferente de zeroRegra Operações Simplificação Soma e Subtração Multiplicação Divisão Potenciação Resumindo...Resumindo... C D B A D C B A .: = n nn B A B A =      DB CA D C B A . . . = Denominadores iguais Denominadores diferentes Trabalhar os numeradores e manter o denominador Mmc dos denominadores Dividir numerador e denominador pelo divisor comum Expoente positivo
  • 48. Tente fazer sozinhoTente fazer sozinho 1- Calcule as potências.1- Calcule as potências. =      − =      − =      3 5 2 42 3 4 2 4 3 ) 3 5 ) ) y x c a b x ba a
  • 49. Tente fazer sozinhoTente fazer sozinho 1- Calcule as potências.1- Calcule as potências. ( ) ( ) ( ) ( ) ( ) 15 6 35 323 5 2 8 4 4242 12 36 34 323 4 2 64 27 4 3 4 3 ) 81 625 3 5 3 5 ) ) y x y x y x c aaa b x ba x ba x ba a − = − =      − = − =      − ==     
  • 50. Tente fazer sozinhoTente fazer sozinho 1- Calcule as potências (continuação).1- Calcule as potências (continuação). =      − =      − + =      − 02 2 2 13 5 ) 3 1 ) 5 3 ) x x f x m e n n d
  • 51. Tente fazer sozinhoTente fazer sozinho 1- Calcule as potências (continuação).1- Calcule as potências (continuação). ( ) ( ) ( ) ( ) 1 13 5 ) 96 12 96 21 33..2 .1.21 3 1 3 1 ) 2510 9 55..2 9 5 3 5 3 ) 02 2 2 2 2 22 22 2 22 2 2 22 2 2 22 =      − +− ++ = +− ++ = +− ++ = − + =      − + +− = +− = − =      − x x f xx mm xx mm xx mm x m x m e nn n nn n n n n n d
  • 52. Potenciação de fraçõesPotenciação de frações algébricasalgébricas  Expoente negativoExpoente negativo Invertemos a base e depois trocamos o sinal doInvertemos a base e depois trocamos o sinal do expoente.expoente. Ex.:Ex.: 4 62 2 32 3 2 11 ) ) a c a c c a b x y x y y x a =      =      =      =      − −
  • 53. Potenciação de fraçõesPotenciação de frações algébricasalgébricas  Expoente negativoExpoente negativo Invertemos a base e depois trocamos o sinal doInvertemos a base e depois trocamos o sinal do expoenteexpoente.. Ex.:Ex.: 4 62 2 32 3 2 11 ) ) a c a c c a b x y x y y x a =      =      =      =      − −
  • 54. O que são? Frações com variável no denominador Denominador deve ser diferente de zeroRegra Operações Simplificação Soma e Subtração Multiplicação Divisão Potenciação Resumindo...Resumindo... C D B A D C B A .: = n nn B A B A =      DB CA D C B A . . . = Denominadores iguais Denominadores diferentes Trabalhar os numeradores e manter o denominador Mmc dos denominadores Dividir numerador e denominador pelo divisor comum Expoente positivo Expoente negativo n nn A B B A =      −
  • 55. Tente fazer sozinhoTente fazer sozinho 2- Calcule as potências negativas.2- Calcule as potências negativas. =      + − =      =      − − − 1 3 2 3 7 13 ) ) ) x x c m ac b b a a
  • 56. Tente fazer sozinhoTente fazer sozinho 2- Calcule as potências negativas.2- Calcule as potências negativas. 13 7 7 13 ) ) ) 1 33 333 2 6232 3 − + =      + − =      =      =      =      − − − x x x x c ca m ac m m ac b a b a b b a a
  • 57. Tente fazer sozinhoTente fazer sozinho 2- Calcule as potências negativas (continuação).2- Calcule as potências negativas (continuação). =      − − =      =      + − − − − 2 3 2 2 3 ) 2 ) 3 1 ) a ba f yx e x x d
  • 58. Tente fazerTente fazer sozinhosozinho 2- Calcule as potências negativas (continuação).2- Calcule as potências negativas (continuação). 22 222 36323 2 2 2 22 2222 2 93 3 ) 82 2 ) 12 96 11..2 33..2 1 3 3 1 ) baba a ba a a ba f yxyx yx e xx xx xx xx x x x x d +− =      − − =      − − =      =      +− ++ = +− ++ =      − + =      + − − − −
  • 59. O que são? Frações com variável no denominador Denominador deve ser diferente de zeroRegra Operações Simplificação Soma e Subtração Multiplicação Divisão Potenciação FRAÇÕES ALGÉBRICASFRAÇÕES ALGÉBRICAS C D B A D C B A .: = n nn B A B A =      DB CA D C B A . . . = Denominadores iguais Denominadores diferentes Trabalhar os numeradores e manter o denominador Mmc dos denominadores Dividir numerador e denominador pelo divisor comum Expoente positivo Expoente negativo n nn B A B A =     
  • 60. BibliografiaBibliografia  NAME, Miguel Assis.NAME, Miguel Assis. Tempo deTempo de Matemática – 7ª sérieMatemática – 7ª série. 1ª edição. SP:. 1ª edição. SP: Editora do Brasil, 1996.Editora do Brasil, 1996.  Site Exatas, acessado em 29/03/2011:Site Exatas, acessado em 29/03/2011: http://www.exatas.mat.br/fracaoalg.htmhttp://www.exatas.mat.br/fracaoalg.htm