Conjuntos Numéricos
Ao final dessa aula você saberá:
  O que é um conjunto e suas representações
 Subconjuntos notáveis dos conjuntos N, Z,
  Q e R.
 Tudo sobre o conjunto dos números reais

 Representações por intervalo e as operações
  de união, interseção e conjunto
  complementar.
O que é conjunto?
    Exemplos:
   { a,b,c,d,e}
   {1,2,3,4,5,6,7,8}
   {laranja, banana, maçã}

       É uma coleção de
        qualquer coisa.
Como representamos os
                 conjuntos?
a) Entre chaves (enumeração)

  A = {0,1,2,3,4,5}

b) Pelo diagrama   A
                        0.
                           1.
                       2.
                       4. 3.
                          5.
O que é conjunto
                vazio?
    É um conjunto sem elementos.

Como representamos o
   conjunto vazio?

∅       { }
O que é conjunto
                   unitário?
       É o conjunto que só apresenta um
    elemento.
                Atenção! O conjunto
Exemplos:       { ∅ } é um conjunto
   A = {3}           unitário.

   B
        . 19
O que é subconjunto?
 É um conjunto que está contido em outro.

Exemplo: A = {t,u,v,x,z} e B = {u,v,x} ,
 então B é um subconjunto de A

       O conjunto vazio é
    subconjunto de qualquer
           conjunto.
  Todo conjunto é subconjunto
          dele mesmo.
Como calculamos a
           quantidade de subconjuntos
                de um conjunto?

  Basta efetuar a conta o 2n, sendo n igual
a quantidade de elementos do conjunto.

Exemplo: Sendo A = {6,7,8,9}, então o
 número de subconjuntos de A é:

    2n = 24 = 16 subconjuntos.
Qual é a representação do
          conjunto dos números
                naturais?
       N = {0,1,2,3,4,5,...}

E a representação do conjunto
    dos números inteiros?
  Z = {...,-3,-2,-1,0,1,2,3,...}

 O conjunto N é um
 subconjunto de Z.
Quais são os subconjuntos
                             notáveis de Z?
Ζ   *
        é o conjunto dos números inteiros sem o zero.
                Ζ = {...,−3,−2,−1,1,2,3,...}
                 *


Ζ + é o conjunto dos números inteiros não-negativos.
                      Ζ + = { 0,1,2,3,...}
Ζ−       é o conjunto dos números inteiros não-positivos.
                     Ζ − = {...,−3,−2,−1,0}
Ζ   *
    + é o conjunto dos números inteiros positivos.
                        Ζ* = {1,2,3,...}
                         +

Ζ   *
    − é o conjunto dos números inteiros negativos.
                      Ζ = {...,−3,−2,−1}
                        *
                        _
E o conjunto dos números
                  racionais?
  É o conjunto dos números que podem
ser escritos sob forma de fração.
  É representado por Q e também inclui
as dízimas.          Os conjuntos N
 Q                     e Z são
              Z     subconjuntos
          N
                        de Q.
Você já percebeu que:
  Entre dois números inteiros existem infinitos
números racionais?

        3                        4
         ...;3,00001;...;3;...
                    ,999
                   inf initos


    O conjunto Q também
  apresenta os subconjuntos
          notáveis:
               *            *
     Q*, Q+ , Q , Q− e Q
               +            −
Quais os elementos do
              conjunto dos números
                   irracionais?
  São números decimais infinitos, que não
são periódicos. É representado por I.
                              O conjunto R
Exemplos:  0,1234...           também
           2 = 1,414213...   apresenta os
                              subconjuntos
           π = 3,1416...       notáveis!
 Q
                        I
              Z
          N
E o conjunto dos
                  números reais?
É a união do conjunto Q com o conjunto I.
    R
                     Q          I
                 Z
            N




    A reta numérica, agora, é
      chamada de reta real!
O que é intervalo?
 É a representação de alguns subconjuntos
de R, determinados por uma desigualdade.
Exemplos:
I) Números reais maiores que -1 e menores
  que 4, ou seja, {x ∈ R / − 1 ≤ x ≤ 4}

            -1            4

 Representação por intervalo:
                 [1,4]
II)   B = { x ∈ R / 1 < x ≤ 2} = ]1,2]
                            1   2

III) C x R2 x 0 [ , [
      { / ≤ }−
     = ∈− < = 2   0
            -2         0

IV) D   = { x ∈ R / − 3 < x < 3} = ] − 3,3[
       -3                            3

V)   E = { x ∈ R / x ≥ 1} = [1,+∞[
                            1

VI) F   = { x ∈ R / x ≤ 5} = ] − ∞,5]
                                          5
Tente fazer sozinho!
Analise a reta abaixo e faça o que se pede:

          -2,6            6


a) Escreva o subconjunto de   A formado
   pelos números inteiros.
b) Escreva o subconjunto de   A formado
   pelos números naturais.
c) Quantos elementos tem o
   conjunto A?
Solução
a) {-2,-1,0,1,2,3,4,5}

b) {0,1,2,3,4,5}

c) Infinitos.
Que símbolos usamos para
           relacionar um elemento
              com um conjunto?
     pertence ∈ ou não-pertence ∉

  Exemplos:
  Sendo o conjunto A = {a,b,c}, podemos
dizer que:
            a ∈A
            c ∈A
            d ∉A
Que símbolos usamos para
              relacionar um conjunto
               com outro conjunto?
   Contém   ⊃                   Se liga!
                            Contém começa
   Não contém     ⊃       com c, mas quem
                            fica com ele é o

                   ⊂
                              está contido.
   Está contido

   Não está contido   ⊄
Tente fazer sozinho!
Quais afirmativas são verdadeiras?
  a)0,25 ∈ Q
  b)0,2555... ∉ Q
  c) Z ⊄ Q             Respostas:
                        A, D e E.
  d )N ⊄ Q *
       2
  e) − ∉ Z
       3
O que é união de
                conjuntos?
  É a soma de conjuntos. É indicada pelo
símbolo U.

Exemplos:
I) Sendo A = {3,4,5} e B = {5,6,7}.

      A U B = {3,4,5,6,7}
II) Sendo A = ]-5,6[ e B = ]-6,4].

   A
              -5                      6

   B
         -6                  4

A U B
         -6                           6


       AUB = ] − 6,6[
       AUB = { x ∈ R / − 6 < x < 6}
O que é interseção de
                 conjuntos?
  É o subconjunto que representa todos os
elementos que pertencem a todos os
conjuntos dados.
Exemplos:
I) A = conjunto dos números naturais
   B = conjunto dos números inteiros

            A∩ B = A
II) Sendo A = ]-5,6[ e B = ]-6,4].

  A
             -5                         6

  B
        -6                   4

A∩ B
             -5              4



       A ∩ B = ] − 5,4]
       A ∩ B = { x ∈ R / − 5 < x ≤ 4}
Tente fazer sozinho!
(UFS-SE) Considere os conjuntos:
     A = { x ∈ R / 1 < x ≤ 3 ou 4 ≤ x ≤ 6}
      B = { x ∈ R / 1 ≤ x < 5 e x ≠ 3}
      C = { x ∈ R / 2 < x ≤ 4}
Para analisar as afirmações que se seguem:
         a )B ⊃ C
         b) A ∪ B = [1,6]
         c) A ∩ C = ] 2,3]
Solução
  A
        1            3   4       6
  B
        1            3       5
  C
              2          4
A U B
        1                        6
A∩C
              2     3    4

   a )B ⊃ C F
   b) A ∪ B = [1,6] V
   c) A ∩ C = ] 2,3] F
Como representamos a
            diferença entre conjuntos?
 Excluindo do primeiro todos os elementos
do segundo.
Exemplos:
I) Sendo A = {0,1,2,3,4,5,...} e
   B = {20,21,22}.
A – B={0,1,2,3,...,19} U {23,24,...}
       Ou A – B = N - B
II) Sendo A = ]-5,6[ e B = ]-6,4].

  A
              -5                     6

  B
         -6                 4

A -B
                             4       6


      A − B = ] 4,6[
      A − B = { x ∈ R / 4 < x < 6}
O que é conjunto
                 complementar?
  É a diferença entre um conjunto e um
subconjunto dele.
            Pode ser representado
           pelos seguintes símbolos:
                 C ou A − B
                  B
                  A




Exemplos:
I) Sendo A = {0,1,2} e B = {2}.
             CAB = {0,1}
II) Sendo A = [-1,4] e B = ]0,2[.

  A
                 -1                    4
  B
                      0         2
 C AB
                 -1   0         2       6

   C = [ − 1,0] ∪ [ 2,6]
        B
        A

   C = { x ∈ R / − 1 ≤ x ≤ 0 ou 2 ≤ x ≤ 6}
        B
        A

 O complemento de um conjunto A
   é a diferença entre o conjunto
     Universo e o conjunto A. É
indicado pelos seguintes símbolos:
            C , A' , U − A, A
             A
             U
Tente fazer sozinho!
1) (UFPI) Considerando os conjuntos A, B e C
  na figura abaixo, a região pintada
  representa:
 a )B − ( A − C )
 b) B ∩ ( A − C )
 c) B ∪ ( A ∩ C )
 d )B ∩ ( A ∪ C)
 e) B − ( A ∪ C )
Solução
a)          b)




c)          d)




     Resposta: E
2)(Cesgranrio − RJ )
Se A = { x ∈ R / x < 1} ,
   B = { x ∈ R / − 1 < x ≤ 3} e
    C = { x ∈ R / x ≥ 0} ,
então o conjunto que representa ( A ∩ B ) − C é :
a ){ x ∈ R / − 1 < x < 0}
b){ x ∈ R / − 1 < x ≤ 0}
c){ x ∈ R / − 1 < x < 1}
d ){ x ∈ R / x ≤ 3}
e){ x ∈ R / x > −1}
Solução
        A
                         1
        B
                -1             3
        C
                     0
     A∩ B
                -1       1
( A ∩ B) − C
               -1    0


               Resposta: A
3) Numa pesquisa de mercado, foram entrevistados
  consumidores sobre suas preferências em relação aos
  produtos A e B. Os resultados da pesquisa indicaram
  que:

•   310   pessoas   compraram o produto A
•   220   pessoas   compraram o produto B
•   110   pessoas   compraram os produtos A e B
•   510   pessoas   não compraram nenhum dos dois

  Indique o número de consumidores
entrevistados, dividido por 10.
Solução
    A                         B




        200    110      110       510




200 + 110 + 110 + 510 = 930
        930 : 10 = 93

www.AulasDeMatematicaApoio.com - Matemática - Conjuntos Numéricos

  • 1.
  • 2.
    Ao final dessaaula você saberá:  O que é um conjunto e suas representações  Subconjuntos notáveis dos conjuntos N, Z, Q e R.  Tudo sobre o conjunto dos números reais  Representações por intervalo e as operações de união, interseção e conjunto complementar.
  • 3.
    O que éconjunto? Exemplos:  { a,b,c,d,e}  {1,2,3,4,5,6,7,8}  {laranja, banana, maçã} É uma coleção de qualquer coisa.
  • 4.
    Como representamos os conjuntos? a) Entre chaves (enumeração) A = {0,1,2,3,4,5} b) Pelo diagrama A 0. 1. 2. 4. 3. 5.
  • 5.
    O que éconjunto vazio? É um conjunto sem elementos. Como representamos o conjunto vazio? ∅ { }
  • 6.
    O que éconjunto unitário? É o conjunto que só apresenta um elemento. Atenção! O conjunto Exemplos: { ∅ } é um conjunto  A = {3} unitário.  B . 19
  • 7.
    O que ésubconjunto? É um conjunto que está contido em outro. Exemplo: A = {t,u,v,x,z} e B = {u,v,x} , então B é um subconjunto de A O conjunto vazio é subconjunto de qualquer conjunto. Todo conjunto é subconjunto dele mesmo.
  • 8.
    Como calculamos a quantidade de subconjuntos de um conjunto? Basta efetuar a conta o 2n, sendo n igual a quantidade de elementos do conjunto. Exemplo: Sendo A = {6,7,8,9}, então o número de subconjuntos de A é: 2n = 24 = 16 subconjuntos.
  • 9.
    Qual é arepresentação do conjunto dos números naturais? N = {0,1,2,3,4,5,...} E a representação do conjunto dos números inteiros? Z = {...,-3,-2,-1,0,1,2,3,...} O conjunto N é um subconjunto de Z.
  • 10.
    Quais são ossubconjuntos notáveis de Z? Ζ * é o conjunto dos números inteiros sem o zero. Ζ = {...,−3,−2,−1,1,2,3,...} * Ζ + é o conjunto dos números inteiros não-negativos. Ζ + = { 0,1,2,3,...} Ζ− é o conjunto dos números inteiros não-positivos. Ζ − = {...,−3,−2,−1,0} Ζ * + é o conjunto dos números inteiros positivos. Ζ* = {1,2,3,...} + Ζ * − é o conjunto dos números inteiros negativos. Ζ = {...,−3,−2,−1} * _
  • 11.
    E o conjuntodos números racionais? É o conjunto dos números que podem ser escritos sob forma de fração. É representado por Q e também inclui as dízimas. Os conjuntos N Q e Z são Z subconjuntos N de Q.
  • 12.
    Você já percebeuque: Entre dois números inteiros existem infinitos números racionais? 3 4 ...;3,00001;...;3;...    ,999 inf initos O conjunto Q também apresenta os subconjuntos notáveis: * * Q*, Q+ , Q , Q− e Q + −
  • 13.
    Quais os elementosdo conjunto dos números irracionais? São números decimais infinitos, que não são periódicos. É representado por I. O conjunto R Exemplos:  0,1234... também  2 = 1,414213... apresenta os subconjuntos  π = 3,1416... notáveis! Q I Z N
  • 14.
    E o conjuntodos números reais? É a união do conjunto Q com o conjunto I. R Q I Z N A reta numérica, agora, é chamada de reta real!
  • 15.
    O que éintervalo? É a representação de alguns subconjuntos de R, determinados por uma desigualdade. Exemplos: I) Números reais maiores que -1 e menores que 4, ou seja, {x ∈ R / − 1 ≤ x ≤ 4} -1 4 Representação por intervalo: [1,4]
  • 16.
    II) B = { x ∈ R / 1 < x ≤ 2} = ]1,2] 1 2 III) C x R2 x 0 [ , [ { / ≤ }− = ∈− < = 2 0 -2 0 IV) D = { x ∈ R / − 3 < x < 3} = ] − 3,3[ -3 3 V) E = { x ∈ R / x ≥ 1} = [1,+∞[ 1 VI) F = { x ∈ R / x ≤ 5} = ] − ∞,5] 5
  • 17.
    Tente fazer sozinho! Analisea reta abaixo e faça o que se pede: -2,6 6 a) Escreva o subconjunto de A formado pelos números inteiros. b) Escreva o subconjunto de A formado pelos números naturais. c) Quantos elementos tem o conjunto A?
  • 18.
  • 19.
    Que símbolos usamospara relacionar um elemento com um conjunto? pertence ∈ ou não-pertence ∉ Exemplos: Sendo o conjunto A = {a,b,c}, podemos dizer que:  a ∈A  c ∈A  d ∉A
  • 20.
    Que símbolos usamospara relacionar um conjunto com outro conjunto?  Contém ⊃ Se liga! Contém começa  Não contém ⊃ com c, mas quem fica com ele é o ⊂ está contido.  Está contido  Não está contido ⊄
  • 21.
    Tente fazer sozinho! Quaisafirmativas são verdadeiras? a)0,25 ∈ Q b)0,2555... ∉ Q c) Z ⊄ Q Respostas: A, D e E. d )N ⊄ Q * 2 e) − ∉ Z 3
  • 22.
    O que éunião de conjuntos? É a soma de conjuntos. É indicada pelo símbolo U. Exemplos: I) Sendo A = {3,4,5} e B = {5,6,7}. A U B = {3,4,5,6,7}
  • 23.
    II) Sendo A= ]-5,6[ e B = ]-6,4]. A -5 6 B -6 4 A U B -6 6 AUB = ] − 6,6[ AUB = { x ∈ R / − 6 < x < 6}
  • 24.
    O que éinterseção de conjuntos? É o subconjunto que representa todos os elementos que pertencem a todos os conjuntos dados. Exemplos: I) A = conjunto dos números naturais B = conjunto dos números inteiros A∩ B = A
  • 25.
    II) Sendo A= ]-5,6[ e B = ]-6,4]. A -5 6 B -6 4 A∩ B -5 4 A ∩ B = ] − 5,4] A ∩ B = { x ∈ R / − 5 < x ≤ 4}
  • 26.
    Tente fazer sozinho! (UFS-SE)Considere os conjuntos: A = { x ∈ R / 1 < x ≤ 3 ou 4 ≤ x ≤ 6} B = { x ∈ R / 1 ≤ x < 5 e x ≠ 3} C = { x ∈ R / 2 < x ≤ 4} Para analisar as afirmações que se seguem: a )B ⊃ C b) A ∪ B = [1,6] c) A ∩ C = ] 2,3]
  • 27.
    Solução A 1 3 4 6 B 1 3 5 C 2 4 A U B 1 6 A∩C 2 3 4 a )B ⊃ C F b) A ∪ B = [1,6] V c) A ∩ C = ] 2,3] F
  • 28.
    Como representamos a diferença entre conjuntos? Excluindo do primeiro todos os elementos do segundo. Exemplos: I) Sendo A = {0,1,2,3,4,5,...} e B = {20,21,22}. A – B={0,1,2,3,...,19} U {23,24,...} Ou A – B = N - B
  • 29.
    II) Sendo A= ]-5,6[ e B = ]-6,4]. A -5 6 B -6 4 A -B 4 6 A − B = ] 4,6[ A − B = { x ∈ R / 4 < x < 6}
  • 30.
    O que éconjunto complementar? É a diferença entre um conjunto e um subconjunto dele. Pode ser representado pelos seguintes símbolos: C ou A − B B A Exemplos: I) Sendo A = {0,1,2} e B = {2}. CAB = {0,1}
  • 31.
    II) Sendo A= [-1,4] e B = ]0,2[. A -1 4 B 0 2 C AB -1 0 2 6 C = [ − 1,0] ∪ [ 2,6] B A C = { x ∈ R / − 1 ≤ x ≤ 0 ou 2 ≤ x ≤ 6} B A O complemento de um conjunto A é a diferença entre o conjunto Universo e o conjunto A. É indicado pelos seguintes símbolos: C , A' , U − A, A A U
  • 32.
    Tente fazer sozinho! 1)(UFPI) Considerando os conjuntos A, B e C na figura abaixo, a região pintada representa: a )B − ( A − C ) b) B ∩ ( A − C ) c) B ∪ ( A ∩ C ) d )B ∩ ( A ∪ C) e) B − ( A ∪ C )
  • 33.
    Solução a) b) c) d) Resposta: E
  • 34.
    2)(Cesgranrio − RJ) Se A = { x ∈ R / x < 1} , B = { x ∈ R / − 1 < x ≤ 3} e C = { x ∈ R / x ≥ 0} , então o conjunto que representa ( A ∩ B ) − C é : a ){ x ∈ R / − 1 < x < 0} b){ x ∈ R / − 1 < x ≤ 0} c){ x ∈ R / − 1 < x < 1} d ){ x ∈ R / x ≤ 3} e){ x ∈ R / x > −1}
  • 35.
    Solução A 1 B -1 3 C 0 A∩ B -1 1 ( A ∩ B) − C -1 0 Resposta: A
  • 36.
    3) Numa pesquisade mercado, foram entrevistados consumidores sobre suas preferências em relação aos produtos A e B. Os resultados da pesquisa indicaram que: • 310 pessoas compraram o produto A • 220 pessoas compraram o produto B • 110 pessoas compraram os produtos A e B • 510 pessoas não compraram nenhum dos dois Indique o número de consumidores entrevistados, dividido por 10.
  • 37.
    Solução A B 200 110 110 510 200 + 110 + 110 + 510 = 930 930 : 10 = 93