SlideShare uma empresa Scribd logo
1 de 30
Função Afim
Ao final dessa aula
                  você saberá:
  O que é uma função afim e todas as formas
 de representá-la.
 Como identificar e construir gráficos da
 função afim.
 O que é coeficiente angular, coeficiente
 linear e zero da função
 Identificar se uma função é crescente ou
 decrescente.
 Resolver sistemas através de
   gráficos
 Resolver inequações do 1º grau.
O que é função afim?
       É a função definida por uma expresão do
    1º grau.

Exemplos:            É apresentada na
                          forma:
 f(x) = x +1
                      f(x) = ax + b

   y=    m
         m 5
Como reconhecemos o
                     gráfico de uma função
                             afim?
  O gráfico de uma função afim é sempre
uma reta.               Os valores de x são
 6
     y                              as abscissas e os
                                   valores de y são as
                                       ordenadas.
 5

 4

 3

 2

 1

 0
                               x
         1   2   3     4   5
Como construímos o
            gráfico de uma função
                    afim?
Basta achar dois pontos que pertençam à
reta da função dada.

Exemplo: Sendo a função f(x) = 2x + 1.

1º passo: escolher dois valores para x.
              x = 0 e x = 1
2º passo: calcular o valor de
             y para cada valor de x
             escolhido.
            f(0) = 2.0 + 1 = 1
            f(1) = 2.1 + 1 = 3

Logo, temos que os pontos são (0,1) e (1,3)
              Dessa forma
          garantimos que esses
           pontos pertencem à
                  reta.
3º passo: marcar os pontos no gráfico.
         y


         3

         2

         1
                       x
             1



4º passo: ligar os pontos.
Tente fazer sozinho!


Construa o gráfico da função:
             x 1
        y
              2
Solução
1º passo: x = 3 e x = 5
2º passo: f(3) = 1 e f(5) = 2

3º e 4º passos:
   y




   2

   1
                                 x
       1   2   3   4    5
O que é coeficiente
                  angular?
  É o valor numérico que multiplica a
variável x. Indica a inclinação da reta
em relação ao eixo x.
              Ou seja, é o valor de
              a na expressão: y =
                    ax + b.
Exemplo:
 y = 2x + 1  a = 2

   y = x – 5  a = 1
O que é coeficiente
                      linear?
  É o valor de b em y = ax + b. Indica
o valor de y, onde a reta do gráfico
corta o eixo das ordenadas.

Exemplo:
 y = 2x + 1  b = 1

   y = x – 5  b = -5
O que é Zero da
                      função?
  É o valor de x onde a reta do gráfico
corta o eixo das abscissas.
      Ou seja, o valor de x para y = 0.



Exemplos:
   y = 2x + 1  0 = 2x + 1  x = -1/2

   y = x – 5  0 = x – 5  x = 5
Coeficiente angular

f(x) = 2x – 1         Coeficiente linear
f(0) = 2.0 -1 = -1
                         y
f(1) = 2.1 – 1 = 1
f(2) = 2.2 – 1 = 3
                         3

                         2
                         1
                                                   x
                      -1      1    2   3   4   5
                        -1


   Coeficiente                    Zero da função
     linear                          0 = 2x-1
                                     x = 1/2
Tente fazer sozinho!
I) Encontre y = f(x) sendo f uma função
  polinomial do 1º grau, sabendo que f(-6) = 8
  e f(6) = 12.

II) Seja f uma função real definida pela lei
  f(x) = ax – 3. Se 3 é raiz da função, qual é
  o valor de f(10)?
III) (UF-AM) A função f definida por
     f(x) = -3x +m está representada abaixo:
                y




                               x
                        1

                 f (2) f (1)
Então o valor de              é:
                     f ( 0)
                     7        5
a) -1 b) 0 c) 1 d)         e)
                      5       7
Soluções
I) f(-6) = 8 e f(6) = 12

               8     6a b
 y = ax + b
               12 6a b
   20 = 2b       8 = -6a + 10
    b = 10      -2 = -6a
                  a = 1/3

 Logo, f(x) = 1/3 x + 10
II) f(x) = ax - 3
    f(3) = 3a - 3 = 0
               3a = 3
                a = 1

    f(x) = x – 3
    f(10) = 10 – 3
    f(10) = 7
III) f(x) = -3x + m
     f(1) = -3.1 + m = 0
            -3 + m = 0  m = 3
f(x)   =   -3x + 3
f(0)   =   -3.0 + 3 = 3
f(1)   =   -3.1 + 3 = 0
f(2)   =   -3.2 + 3 = -3

 f (2) f (1)       3 0
                           1
     f (0)          3
Como identificamos se uma função
  é crescente ou decrescente?
  Verificando o sinal do a em y=ax+b. Se a
for negativo, então a função é decrescente.
Se a for positivo, então a função é crescente.

Exemplos:
 y = -x + 2  a = -1  função decrescente


   Y = ½ + 4  a = ½  função crescente
Também podemos fazer a
y
    análise gráfica:

              Função
            decrescente
        x



y


             Função
            crescente
        x
Como resolvemos sistemas
              através de gráficos?
  Basta traçar os gráficos das duas
equações, no mesmo plano cartesiano. O
resultado é o ponto de interseção.
Exemplo:   x y 5
            x 2y     4
Pontos da 1ª equação: (1,4) e (3,2)
Pontos da 2ª equação: (0,2) e (-2,1)
y

       4
       3            I = (2,3)
       2

       1
                                    x
-2   -1     1   2    3   4      5
       -1
      -2




Logo, S = (2,3)
Como é feito o estudo
             do sinal de uma função?
Seguindo os passos:
1º passo: Localizar o zero da função na
 reta real.
2º passo: traçar a reta do gráfico.
3º passo: analisamos os intervalos onde a
 função é positiva ou negativa.
Exemplo: y = x - 2
 1º passo: x – 2 = 0  x = 2
 2º passo: função crescente

                          x
              2



 3º passo: y < 0, para x < 2
           y = 0, para x = 2
           y > 0, para x > 2
Como resolvemos uma
            inequação do 1º grau?
        Fazendo o estudo do sinal.

Exemplo: 2x – 7 > 0
 zero da função: 2x – 7 = 0  x = 7/2
 a > 0  função crescente

                           x
                  7/2



Resposta: 7 2 ,
E se for uma inequação
                produto ou uma
             inequação quociente?
  Se for uma inequação produto devemos
fazer o estudo do sinal de cada fator. Se
for inequação quociente, devemos fazer o
estudo do sinal do dividendo e do divisor,
separadamente.
Exemplos:
I) (x-2) (1-2x) ≥ 0
x – 2 = 0  x = 2 e 1 – 2x = 0  x = ½

      +++        --------------------------
                                              x
              1/2
       -----------------------       +++++
                                              x
                                 2
         -             +               -      x
             1/2                 2



            S = [1/2 , 2]
II)   x 3
                0, x 1
      x 1
x + 3 = 0  x = -3 e x – 1 = 0  x = 1

        --------        +++++++++++++
                                             x
                   -3
         --------------------       ++++++
                                             x
                                1

            +           -             +      x
                   -3           1


      S=]-∞,-3[ U ]1,+ ∞[
Tente fazer sozinho!
(UFC-CE) O conjunto solução, nos números
                    1 x
reais, da inequação     1 é igual a:
                  1 x

  a ) x R; x  1
  b) x R; x 0
  c) x R; x 1
  d ) x R; x 2
  e) x R; x 3
Solução
1 x           1 x                1 x 1 x        2
      1           1 0                      0         0
1 x           1 x                  1 x         1 x

            1+x=0                x = -1

          ---------     ++++++++++++
                                       x
                  -1


                S=]-1,+ ∞[
                       letra A

Mais conteúdo relacionado

Mais procurados

Gráficos de funções de 1° e 2° graus
Gráficos de funções de 1° e 2° grausGráficos de funções de 1° e 2° graus
Gráficos de funções de 1° e 2° grausAgapito Ribeiro Junior
 
Aula funcoes 1° e 2° graus
Aula   funcoes 1° e 2° grausAula   funcoes 1° e 2° graus
Aula funcoes 1° e 2° grausDaniel Muniz
 
FunçõEs Do 1º Grau
FunçõEs Do 1º GrauFunçõEs Do 1º Grau
FunçõEs Do 1º Grau84820
 
Funções de 1º e 2º grau
Funções de 1º e 2º grauFunções de 1º e 2º grau
Funções de 1º e 2º grauGustavo Mercado
 
Funções do 1º e 2º grau
Funções do 1º e 2º grauFunções do 1º e 2º grau
Funções do 1º e 2º grauZaqueu Oliveira
 
22ª aula função afim
22ª aula   função afim22ª aula   função afim
22ª aula função afimjatobaesem
 
Função do 2º Grau
Função do 2º GrauFunção do 2º Grau
Função do 2º Grauprofmribeiro
 
Função de 1º Grau.
Função de 1º Grau.Função de 1º Grau.
Função de 1º Grau.carolgouvea
 
Matematica função.ppt [salvo automaticamente]
Matematica   função.ppt [salvo automaticamente]Matematica   função.ppt [salvo automaticamente]
Matematica função.ppt [salvo automaticamente]pso2510
 
Aula 5 - Função do 2º grau
Aula 5 - Função do 2º grauAula 5 - Função do 2º grau
Aula 5 - Função do 2º grauTurma1NC
 
Função do 2°grau
Função do 2°grauFunção do 2°grau
Função do 2°grauLSKY
 

Mais procurados (20)

Função polinomial do 1º grau
Função polinomial do 1º grauFunção polinomial do 1º grau
Função polinomial do 1º grau
 
Gráficos de funções de 1° e 2° graus
Gráficos de funções de 1° e 2° grausGráficos de funções de 1° e 2° graus
Gráficos de funções de 1° e 2° graus
 
Aula funcoes 1° e 2° graus
Aula   funcoes 1° e 2° grausAula   funcoes 1° e 2° graus
Aula funcoes 1° e 2° graus
 
FunçõEs Do 1º Grau
FunçõEs Do 1º GrauFunçõEs Do 1º Grau
FunçõEs Do 1º Grau
 
Funções de 1º e 2º grau
Funções de 1º e 2º grauFunções de 1º e 2º grau
Funções de 1º e 2º grau
 
Funções do 1º e 2º grau
Funções do 1º e 2º grauFunções do 1º e 2º grau
Funções do 1º e 2º grau
 
22ª aula função afim
22ª aula   função afim22ª aula   função afim
22ª aula função afim
 
Funções.saa
Funções.saaFunções.saa
Funções.saa
 
Função afim
Função afimFunção afim
Função afim
 
Função do 2º Grau
Função do 2º GrauFunção do 2º Grau
Função do 2º Grau
 
Função de 1º Grau.
Função de 1º Grau.Função de 1º Grau.
Função de 1º Grau.
 
Função do 1º grau em ppt
Função do 1º grau em pptFunção do 1º grau em ppt
Função do 1º grau em ppt
 
Funções Do 1ºGrau
Funções Do 1ºGrauFunções Do 1ºGrau
Funções Do 1ºGrau
 
Matematica função.ppt [salvo automaticamente]
Matematica   função.ppt [salvo automaticamente]Matematica   função.ppt [salvo automaticamente]
Matematica função.ppt [salvo automaticamente]
 
Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
 
FunçõEs
FunçõEsFunçõEs
FunçõEs
 
Aula 5 - Função do 2º grau
Aula 5 - Função do 2º grauAula 5 - Função do 2º grau
Aula 5 - Função do 2º grau
 
Resumo função afim pdf
Resumo função afim pdfResumo função afim pdf
Resumo função afim pdf
 
Função afim
Função afimFunção afim
Função afim
 
Função do 2°grau
Função do 2°grauFunção do 2°grau
Função do 2°grau
 

Semelhante a www.AulasDeMatematicaApoio.com.br - Matemática - Função Afim

www.aulaparticularonline.net.br - Matemática - Função Afim
www.aulaparticularonline.net.br - Matemática -  Função Afimwww.aulaparticularonline.net.br - Matemática -  Função Afim
www.aulaparticularonline.net.br - Matemática - Função AfimLucia Silveira
 
Função afimwww.AulasEnsinoMedio.com.br - Matemática - Função Afim
Função afimwww.AulasEnsinoMedio.com.br - Matemática -  Função AfimFunção afimwww.AulasEnsinoMedio.com.br - Matemática -  Função Afim
Função afimwww.AulasEnsinoMedio.com.br - Matemática - Função AfimAulasEnsinoMedio
 
Funcoes primeiro ano
Funcoes  primeiro anoFuncoes  primeiro ano
Funcoes primeiro anoISJ
 
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro BarrosoFunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro BarrosoAntonio Carneiro
 
Funcao do-primeiro-grau
Funcao do-primeiro-grauFuncao do-primeiro-grau
Funcao do-primeiro-graucon_seguir
 
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...Zaqueu Oliveira
 
Apostila 001 trigonometria funcoes
Apostila  001 trigonometria funcoesApostila  001 trigonometria funcoes
Apostila 001 trigonometria funcoescon_seguir
 
Livro texto - unidade ii
Livro  texto - unidade iiLivro  texto - unidade ii
Livro texto - unidade iiWelison Lopes
 
1º TRABALHO de CÁLCULO I
1º TRABALHO de CÁLCULO I1º TRABALHO de CÁLCULO I
1º TRABALHO de CÁLCULO Imarcelotorraca
 
Função de 2º grau 17122016
Função de 2º grau 17122016Função de 2º grau 17122016
Função de 2º grau 17122016Antonio Carneiro
 
Aula1 funcaoquadrática
Aula1 funcaoquadráticaAula1 funcaoquadrática
Aula1 funcaoquadráticaJosenildo Lima
 
Função quadrática
Função quadráticaFunção quadrática
Função quadráticarosilemes
 
resumo Função do 2 grau
 resumo Função do 2 grau resumo Função do 2 grau
resumo Função do 2 grauCelia Lana
 
matematica e midias
matematica e midiasmatematica e midias
matematica e midiasiraciva
 

Semelhante a www.AulasDeMatematicaApoio.com.br - Matemática - Função Afim (20)

www.aulaparticularonline.net.br - Matemática - Função Afim
www.aulaparticularonline.net.br - Matemática -  Função Afimwww.aulaparticularonline.net.br - Matemática -  Função Afim
www.aulaparticularonline.net.br - Matemática - Função Afim
 
Função afimwww.AulasEnsinoMedio.com.br - Matemática - Função Afim
Função afimwww.AulasEnsinoMedio.com.br - Matemática -  Função AfimFunção afimwww.AulasEnsinoMedio.com.br - Matemática -  Função Afim
Função afimwww.AulasEnsinoMedio.com.br - Matemática - Função Afim
 
Funcoes primeiro ano
Funcoes  primeiro anoFuncoes  primeiro ano
Funcoes primeiro ano
 
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro BarrosoFunçãO Do 1º  E 2º Grau Autor Antonio Carlos Carneiro Barroso
FunçãO Do 1º E 2º Grau Autor Antonio Carlos Carneiro Barroso
 
Funcao do-primeiro-grau
Funcao do-primeiro-grauFuncao do-primeiro-grau
Funcao do-primeiro-grau
 
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
 
Apostila 001 trigonometria funcoes
Apostila  001 trigonometria funcoesApostila  001 trigonometria funcoes
Apostila 001 trigonometria funcoes
 
Livro texto - unidade ii
Livro  texto - unidade iiLivro  texto - unidade ii
Livro texto - unidade ii
 
Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
 
1º TRABALHO de CÁLCULO I
1º TRABALHO de CÁLCULO I1º TRABALHO de CÁLCULO I
1º TRABALHO de CÁLCULO I
 
Resumo MatemÔÇática.pdf
Resumo MatemÔÇática.pdfResumo MatemÔÇática.pdf
Resumo MatemÔÇática.pdf
 
Funções
Funções Funções
Funções
 
Apostila pré cálculo
Apostila pré cálculoApostila pré cálculo
Apostila pré cálculo
 
Função de 2º grau 17122016
Função de 2º grau 17122016Função de 2º grau 17122016
Função de 2º grau 17122016
 
Função do 2º Grau.
Função do 2º Grau.Função do 2º Grau.
Função do 2º Grau.
 
Aula1 funcaoquadrática
Aula1 funcaoquadráticaAula1 funcaoquadrática
Aula1 funcaoquadrática
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
 
resumo Função do 2 grau
 resumo Função do 2 grau resumo Função do 2 grau
resumo Função do 2 grau
 
Mat logaritmos 005
Mat logaritmos  005Mat logaritmos  005
Mat logaritmos 005
 
matematica e midias
matematica e midiasmatematica e midias
matematica e midias
 

Mais de Beatriz Góes

www.AulasDeMatematicaApoio.com.br - Matemática - Polinômios
 www.AulasDeMatematicaApoio.com.br  - Matemática -  Polinômios www.AulasDeMatematicaApoio.com.br  - Matemática -  Polinômios
www.AulasDeMatematicaApoio.com.br - Matemática - PolinômiosBeatriz Góes
 
www.AulasDeMatematicaApoio.com.br - Matemática - Frações Algébricas
 www.AulasDeMatematicaApoio.com.br - Matemática -  Frações Algébricas www.AulasDeMatematicaApoio.com.br - Matemática -  Frações Algébricas
www.AulasDeMatematicaApoio.com.br - Matemática - Frações AlgébricasBeatriz Góes
 
www.AulasDeMatematicaApoio.com.br - Matemática - Fatoração Conceitual
 www.AulasDeMatematicaApoio.com.br  - Matemática -  Fatoração Conceitual www.AulasDeMatematicaApoio.com.br  - Matemática -  Fatoração Conceitual
www.AulasDeMatematicaApoio.com.br - Matemática - Fatoração ConceitualBeatriz Góes
 
www.AulasDeMatematicaApoio.com.br - Matemática - Polinômios para Ensino Fun...
 www.AulasDeMatematicaApoio.com.br - Matemática -  Polinômios para Ensino Fun... www.AulasDeMatematicaApoio.com.br - Matemática -  Polinômios para Ensino Fun...
www.AulasDeMatematicaApoio.com.br - Matemática - Polinômios para Ensino Fun...Beatriz Góes
 
www.AulasDeMatematicaApoio.com.br - Matemática - Conjuntos Numéricos
 www.AulasDeMatematicaApoio.com.br  - Matemática -  Conjuntos Numéricos www.AulasDeMatematicaApoio.com.br  - Matemática -  Conjuntos Numéricos
www.AulasDeMatematicaApoio.com.br - Matemática - Conjuntos NuméricosBeatriz Góes
 
www.AulasDeMatematicaApoio.com.br - Matemática - Semelhança de Triângulos
 www.AulasDeMatematicaApoio.com.br  - Matemática -  Semelhança de Triângulos www.AulasDeMatematicaApoio.com.br  - Matemática -  Semelhança de Triângulos
www.AulasDeMatematicaApoio.com.br - Matemática - Semelhança de TriângulosBeatriz Góes
 
www.AulasDeMatematicaApoio.com.br - Matemática - Ciclo Trigonométrico
 www.AulasDeMatematicaApoio.com.br  - Matemática -  Ciclo Trigonométrico www.AulasDeMatematicaApoio.com.br  - Matemática -  Ciclo Trigonométrico
www.AulasDeMatematicaApoio.com.br - Matemática - Ciclo TrigonométricoBeatriz Góes
 
www.AulasDeMatematicaApoio.com.br - Matemática - Exercício de Trigonometria
 www.AulasDeMatematicaApoio.com.br - Matemática -  Exercício de Trigonometria www.AulasDeMatematicaApoio.com.br - Matemática -  Exercício de Trigonometria
www.AulasDeMatematicaApoio.com.br - Matemática - Exercício de TrigonometriaBeatriz Góes
 
www.AulasDeMatematicaApoio.com.br - Matemática - Exercícios Resolvidos de Fa...
 www.AulasDeMatematicaApoio.com.br - Matemática - Exercícios Resolvidos de Fa... www.AulasDeMatematicaApoio.com.br - Matemática - Exercícios Resolvidos de Fa...
www.AulasDeMatematicaApoio.com.br - Matemática - Exercícios Resolvidos de Fa...Beatriz Góes
 
www.AulasDeMatematicaApoio.com.br - Matemática - Exercícios Semelhança de T...
 www.AulasDeMatematicaApoio.com.br -  Matemática - Exercícios Semelhança de T... www.AulasDeMatematicaApoio.com.br -  Matemática - Exercícios Semelhança de T...
www.AulasDeMatematicaApoio.com.br - Matemática - Exercícios Semelhança de T...Beatriz Góes
 
www.AulasDeMatematicaApoio.com.br - Matemática - Exercícios Semelhança de T...
 www.AulasDeMatematicaApoio.com.br - Matemática -  Exercícios Semelhança de T... www.AulasDeMatematicaApoio.com.br - Matemática -  Exercícios Semelhança de T...
www.AulasDeMatematicaApoio.com.br - Matemática - Exercícios Semelhança de T...Beatriz Góes
 
www.AulasDeMatematicaApoio.com.br - Matemática - Radiciação
 www.AulasDeMatematicaApoio.com.br  - Matemática - Radiciação www.AulasDeMatematicaApoio.com.br  - Matemática - Radiciação
www.AulasDeMatematicaApoio.com.br - Matemática - RadiciaçãoBeatriz Góes
 
www.AulasDeMatematicaApoio.com.br - Matemática - Produto Notável
 www.AulasDeMatematicaApoio.com.br  - Matemática - Produto Notável www.AulasDeMatematicaApoio.com.br  - Matemática - Produto Notável
www.AulasDeMatematicaApoio.com.br - Matemática - Produto NotávelBeatriz Góes
 
www.AulasDeMatematicaApoio.com.br - Matemática - Problemas com Equações
 www.AulasDeMatematicaApoio.com.br  - Matemática - Problemas com Equações www.AulasDeMatematicaApoio.com.br  - Matemática - Problemas com Equações
www.AulasDeMatematicaApoio.com.br - Matemática - Problemas com EquaçõesBeatriz Góes
 
www.AulasDeMatematicaApoio.com.br - Matemática - Probabilidade
 www.AulasDeMatematicaApoio.com.br  - Matemática - Probabilidade www.AulasDeMatematicaApoio.com.br  - Matemática - Probabilidade
www.AulasDeMatematicaApoio.com.br - Matemática - ProbabilidadeBeatriz Góes
 
www.AulasDeMatematicaApoio.com.br - Matemática - Prismas e Cilindros
 www.AulasDeMatematicaApoio.com.br  - Matemática - Prismas e Cilindros www.AulasDeMatematicaApoio.com.br  - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com.br - Matemática - Prismas e CilindrosBeatriz Góes
 
www.AulasDeMatematicaApoio.com.br - Matemática - Potenciação
 www.AulasDeMatematicaApoio.com.br  - Matemática - Potenciação www.AulasDeMatematicaApoio.com.br  - Matemática - Potenciação
www.AulasDeMatematicaApoio.com.br - Matemática - PotenciaçãoBeatriz Góes
 
www.AulasDeMatematicaApoio.com.br - Matemática - Retas, Planos e Pontos
 www.AulasDeMatematicaApoio.com.br  - Matemática - Retas, Planos e Pontos www.AulasDeMatematicaApoio.com.br  - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com.br - Matemática - Retas, Planos e PontosBeatriz Góes
 
www.AulasDeMatematicaApoio.com.br - Matemática - Progressão Aritimética
 www.AulasDeMatematicaApoio.com.br  - Matemática - Progressão Aritimética www.AulasDeMatematicaApoio.com.br  - Matemática - Progressão Aritimética
www.AulasDeMatematicaApoio.com.br - Matemática - Progressão AritiméticaBeatriz Góes
 
www.AulasDeMatematicaApoio.com.br - Matemática - Números Complexos
 www.AulasDeMatematicaApoio.com.br  - Matemática - Números Complexos www.AulasDeMatematicaApoio.com.br  - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com.br - Matemática - Números ComplexosBeatriz Góes
 

Mais de Beatriz Góes (20)

www.AulasDeMatematicaApoio.com.br - Matemática - Polinômios
 www.AulasDeMatematicaApoio.com.br  - Matemática -  Polinômios www.AulasDeMatematicaApoio.com.br  - Matemática -  Polinômios
www.AulasDeMatematicaApoio.com.br - Matemática - Polinômios
 
www.AulasDeMatematicaApoio.com.br - Matemática - Frações Algébricas
 www.AulasDeMatematicaApoio.com.br - Matemática -  Frações Algébricas www.AulasDeMatematicaApoio.com.br - Matemática -  Frações Algébricas
www.AulasDeMatematicaApoio.com.br - Matemática - Frações Algébricas
 
www.AulasDeMatematicaApoio.com.br - Matemática - Fatoração Conceitual
 www.AulasDeMatematicaApoio.com.br  - Matemática -  Fatoração Conceitual www.AulasDeMatematicaApoio.com.br  - Matemática -  Fatoração Conceitual
www.AulasDeMatematicaApoio.com.br - Matemática - Fatoração Conceitual
 
www.AulasDeMatematicaApoio.com.br - Matemática - Polinômios para Ensino Fun...
 www.AulasDeMatematicaApoio.com.br - Matemática -  Polinômios para Ensino Fun... www.AulasDeMatematicaApoio.com.br - Matemática -  Polinômios para Ensino Fun...
www.AulasDeMatematicaApoio.com.br - Matemática - Polinômios para Ensino Fun...
 
www.AulasDeMatematicaApoio.com.br - Matemática - Conjuntos Numéricos
 www.AulasDeMatematicaApoio.com.br  - Matemática -  Conjuntos Numéricos www.AulasDeMatematicaApoio.com.br  - Matemática -  Conjuntos Numéricos
www.AulasDeMatematicaApoio.com.br - Matemática - Conjuntos Numéricos
 
www.AulasDeMatematicaApoio.com.br - Matemática - Semelhança de Triângulos
 www.AulasDeMatematicaApoio.com.br  - Matemática -  Semelhança de Triângulos www.AulasDeMatematicaApoio.com.br  - Matemática -  Semelhança de Triângulos
www.AulasDeMatematicaApoio.com.br - Matemática - Semelhança de Triângulos
 
www.AulasDeMatematicaApoio.com.br - Matemática - Ciclo Trigonométrico
 www.AulasDeMatematicaApoio.com.br  - Matemática -  Ciclo Trigonométrico www.AulasDeMatematicaApoio.com.br  - Matemática -  Ciclo Trigonométrico
www.AulasDeMatematicaApoio.com.br - Matemática - Ciclo Trigonométrico
 
www.AulasDeMatematicaApoio.com.br - Matemática - Exercício de Trigonometria
 www.AulasDeMatematicaApoio.com.br - Matemática -  Exercício de Trigonometria www.AulasDeMatematicaApoio.com.br - Matemática -  Exercício de Trigonometria
www.AulasDeMatematicaApoio.com.br - Matemática - Exercício de Trigonometria
 
www.AulasDeMatematicaApoio.com.br - Matemática - Exercícios Resolvidos de Fa...
 www.AulasDeMatematicaApoio.com.br - Matemática - Exercícios Resolvidos de Fa... www.AulasDeMatematicaApoio.com.br - Matemática - Exercícios Resolvidos de Fa...
www.AulasDeMatematicaApoio.com.br - Matemática - Exercícios Resolvidos de Fa...
 
www.AulasDeMatematicaApoio.com.br - Matemática - Exercícios Semelhança de T...
 www.AulasDeMatematicaApoio.com.br -  Matemática - Exercícios Semelhança de T... www.AulasDeMatematicaApoio.com.br -  Matemática - Exercícios Semelhança de T...
www.AulasDeMatematicaApoio.com.br - Matemática - Exercícios Semelhança de T...
 
www.AulasDeMatematicaApoio.com.br - Matemática - Exercícios Semelhança de T...
 www.AulasDeMatematicaApoio.com.br - Matemática -  Exercícios Semelhança de T... www.AulasDeMatematicaApoio.com.br - Matemática -  Exercícios Semelhança de T...
www.AulasDeMatematicaApoio.com.br - Matemática - Exercícios Semelhança de T...
 
www.AulasDeMatematicaApoio.com.br - Matemática - Radiciação
 www.AulasDeMatematicaApoio.com.br  - Matemática - Radiciação www.AulasDeMatematicaApoio.com.br  - Matemática - Radiciação
www.AulasDeMatematicaApoio.com.br - Matemática - Radiciação
 
www.AulasDeMatematicaApoio.com.br - Matemática - Produto Notável
 www.AulasDeMatematicaApoio.com.br  - Matemática - Produto Notável www.AulasDeMatematicaApoio.com.br  - Matemática - Produto Notável
www.AulasDeMatematicaApoio.com.br - Matemática - Produto Notável
 
www.AulasDeMatematicaApoio.com.br - Matemática - Problemas com Equações
 www.AulasDeMatematicaApoio.com.br  - Matemática - Problemas com Equações www.AulasDeMatematicaApoio.com.br  - Matemática - Problemas com Equações
www.AulasDeMatematicaApoio.com.br - Matemática - Problemas com Equações
 
www.AulasDeMatematicaApoio.com.br - Matemática - Probabilidade
 www.AulasDeMatematicaApoio.com.br  - Matemática - Probabilidade www.AulasDeMatematicaApoio.com.br  - Matemática - Probabilidade
www.AulasDeMatematicaApoio.com.br - Matemática - Probabilidade
 
www.AulasDeMatematicaApoio.com.br - Matemática - Prismas e Cilindros
 www.AulasDeMatematicaApoio.com.br  - Matemática - Prismas e Cilindros www.AulasDeMatematicaApoio.com.br  - Matemática - Prismas e Cilindros
www.AulasDeMatematicaApoio.com.br - Matemática - Prismas e Cilindros
 
www.AulasDeMatematicaApoio.com.br - Matemática - Potenciação
 www.AulasDeMatematicaApoio.com.br  - Matemática - Potenciação www.AulasDeMatematicaApoio.com.br  - Matemática - Potenciação
www.AulasDeMatematicaApoio.com.br - Matemática - Potenciação
 
www.AulasDeMatematicaApoio.com.br - Matemática - Retas, Planos e Pontos
 www.AulasDeMatematicaApoio.com.br  - Matemática - Retas, Planos e Pontos www.AulasDeMatematicaApoio.com.br  - Matemática - Retas, Planos e Pontos
www.AulasDeMatematicaApoio.com.br - Matemática - Retas, Planos e Pontos
 
www.AulasDeMatematicaApoio.com.br - Matemática - Progressão Aritimética
 www.AulasDeMatematicaApoio.com.br  - Matemática - Progressão Aritimética www.AulasDeMatematicaApoio.com.br  - Matemática - Progressão Aritimética
www.AulasDeMatematicaApoio.com.br - Matemática - Progressão Aritimética
 
www.AulasDeMatematicaApoio.com.br - Matemática - Números Complexos
 www.AulasDeMatematicaApoio.com.br  - Matemática - Números Complexos www.AulasDeMatematicaApoio.com.br  - Matemática - Números Complexos
www.AulasDeMatematicaApoio.com.br - Matemática - Números Complexos
 

Último

c) O crime ocorreu na forma simples ou qualificada? Justifique.
c) O crime ocorreu na forma simples ou qualificada? Justifique.c) O crime ocorreu na forma simples ou qualificada? Justifique.
c) O crime ocorreu na forma simples ou qualificada? Justifique.azulassessoria9
 
PROPUESTA DE LOGO PARA EL DISTRITO DE MOCHUMI, LLENO DE HISTORIA 200 AÑOS DE ...
PROPUESTA DE LOGO PARA EL DISTRITO DE MOCHUMI, LLENO DE HISTORIA 200 AÑOS DE ...PROPUESTA DE LOGO PARA EL DISTRITO DE MOCHUMI, LLENO DE HISTORIA 200 AÑOS DE ...
PROPUESTA DE LOGO PARA EL DISTRITO DE MOCHUMI, LLENO DE HISTORIA 200 AÑOS DE ...MANUELJESUSVENTURASA
 
Gametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e femininoGametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e femininoCelianeOliveira8
 
Sistema de Bibliotecas UCS - A descoberta da terra
Sistema de Bibliotecas UCS  - A descoberta da terraSistema de Bibliotecas UCS  - A descoberta da terra
Sistema de Bibliotecas UCS - A descoberta da terraBiblioteca UCS
 
Modernidade perspectiva sobre a África e América
Modernidade perspectiva sobre a África e AméricaModernidade perspectiva sobre a África e América
Modernidade perspectiva sobre a África e Américawilson778875
 
Mini livro sanfona - Diga não ao bullying
Mini livro sanfona - Diga não ao  bullyingMini livro sanfona - Diga não ao  bullying
Mini livro sanfona - Diga não ao bullyingMary Alvarenga
 
Estudo Dirigido de Literatura / Primeira Série do E.M.
Estudo Dirigido de Literatura / Primeira Série do E.M.Estudo Dirigido de Literatura / Primeira Série do E.M.
Estudo Dirigido de Literatura / Primeira Série do E.M.Paula Meyer Piagentini
 
Aula - 1º Ano - Ciência, Pesquisa e Sociologia.pdf
Aula - 1º Ano - Ciência, Pesquisa e Sociologia.pdfAula - 1º Ano - Ciência, Pesquisa e Sociologia.pdf
Aula - 1º Ano - Ciência, Pesquisa e Sociologia.pdfaulasgege
 
Slides Lição 2, Betel, Ordenança para participar da Ceia do Senhor, 2Tr24.pptx
Slides Lição 2, Betel, Ordenança para participar da Ceia do Senhor, 2Tr24.pptxSlides Lição 2, Betel, Ordenança para participar da Ceia do Senhor, 2Tr24.pptx
Slides Lição 2, Betel, Ordenança para participar da Ceia do Senhor, 2Tr24.pptxLuizHenriquedeAlmeid6
 
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbv19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbyasminlarissa371
 
Modelos Evolutivos em História das Religiões
Modelos Evolutivos em História das ReligiõesModelos Evolutivos em História das Religiões
Modelos Evolutivos em História das ReligiõesGilbraz Aragão
 
NOVA ORDEM MUNDIAL - Conceitos básicos na NOM
NOVA ORDEM MUNDIAL - Conceitos básicos na NOMNOVA ORDEM MUNDIAL - Conceitos básicos na NOM
NOVA ORDEM MUNDIAL - Conceitos básicos na NOMHenrique Pontes
 
Pizza_literaria.pdf projeto de literatura
Pizza_literaria.pdf projeto de literaturaPizza_literaria.pdf projeto de literatura
Pizza_literaria.pdf projeto de literaturagomescostamma
 
Estudo Dirigido de Literatura / Terceira Série do E.M.
Estudo Dirigido de Literatura / Terceira Série do E.M.Estudo Dirigido de Literatura / Terceira Série do E.M.
Estudo Dirigido de Literatura / Terceira Série do E.M.Paula Meyer Piagentini
 
Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.
Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.
Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.Mary Alvarenga
 
Ler e compreender 7º ano - Aula 7 - 1º Bimestre
Ler e compreender 7º ano -  Aula 7 - 1º BimestreLer e compreender 7º ano -  Aula 7 - 1º Bimestre
Ler e compreender 7º ano - Aula 7 - 1º BimestreProfaCintiaDosSantos
 
HORA DO CONTO_BECRE D. CARLOS I_2023_2024
HORA DO CONTO_BECRE D. CARLOS I_2023_2024HORA DO CONTO_BECRE D. CARLOS I_2023_2024
HORA DO CONTO_BECRE D. CARLOS I_2023_2024Sandra Pratas
 
Jogo de Revisão Terceira Série (Primeiro Trimestre)
Jogo de Revisão Terceira Série (Primeiro Trimestre)Jogo de Revisão Terceira Série (Primeiro Trimestre)
Jogo de Revisão Terceira Série (Primeiro Trimestre)Paula Meyer Piagentini
 
O Espetaculo das Racas - Cienti - Lilia Moritz Schwarcz capítulo 2.pdf
O Espetaculo das Racas - Cienti - Lilia Moritz Schwarcz capítulo 2.pdfO Espetaculo das Racas - Cienti - Lilia Moritz Schwarcz capítulo 2.pdf
O Espetaculo das Racas - Cienti - Lilia Moritz Schwarcz capítulo 2.pdfQueleLiberato
 

Último (20)

c) O crime ocorreu na forma simples ou qualificada? Justifique.
c) O crime ocorreu na forma simples ou qualificada? Justifique.c) O crime ocorreu na forma simples ou qualificada? Justifique.
c) O crime ocorreu na forma simples ou qualificada? Justifique.
 
PROPUESTA DE LOGO PARA EL DISTRITO DE MOCHUMI, LLENO DE HISTORIA 200 AÑOS DE ...
PROPUESTA DE LOGO PARA EL DISTRITO DE MOCHUMI, LLENO DE HISTORIA 200 AÑOS DE ...PROPUESTA DE LOGO PARA EL DISTRITO DE MOCHUMI, LLENO DE HISTORIA 200 AÑOS DE ...
PROPUESTA DE LOGO PARA EL DISTRITO DE MOCHUMI, LLENO DE HISTORIA 200 AÑOS DE ...
 
Gametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e femininoGametogênese, formação dos gametas masculino e feminino
Gametogênese, formação dos gametas masculino e feminino
 
Sistema de Bibliotecas UCS - A descoberta da terra
Sistema de Bibliotecas UCS  - A descoberta da terraSistema de Bibliotecas UCS  - A descoberta da terra
Sistema de Bibliotecas UCS - A descoberta da terra
 
Modernidade perspectiva sobre a África e América
Modernidade perspectiva sobre a África e AméricaModernidade perspectiva sobre a África e América
Modernidade perspectiva sobre a África e América
 
Mini livro sanfona - Diga não ao bullying
Mini livro sanfona - Diga não ao  bullyingMini livro sanfona - Diga não ao  bullying
Mini livro sanfona - Diga não ao bullying
 
Estudo Dirigido de Literatura / Primeira Série do E.M.
Estudo Dirigido de Literatura / Primeira Série do E.M.Estudo Dirigido de Literatura / Primeira Série do E.M.
Estudo Dirigido de Literatura / Primeira Série do E.M.
 
Aula - 1º Ano - Ciência, Pesquisa e Sociologia.pdf
Aula - 1º Ano - Ciência, Pesquisa e Sociologia.pdfAula - 1º Ano - Ciência, Pesquisa e Sociologia.pdf
Aula - 1º Ano - Ciência, Pesquisa e Sociologia.pdf
 
Slides Lição 2, Betel, Ordenança para participar da Ceia do Senhor, 2Tr24.pptx
Slides Lição 2, Betel, Ordenança para participar da Ceia do Senhor, 2Tr24.pptxSlides Lição 2, Betel, Ordenança para participar da Ceia do Senhor, 2Tr24.pptx
Slides Lição 2, Betel, Ordenança para participar da Ceia do Senhor, 2Tr24.pptx
 
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbv19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
 
“O AMANHÃ EXIGE O MELHOR DE HOJE” _
“O AMANHÃ EXIGE O MELHOR DE HOJE”       _“O AMANHÃ EXIGE O MELHOR DE HOJE”       _
“O AMANHÃ EXIGE O MELHOR DE HOJE” _
 
Modelos Evolutivos em História das Religiões
Modelos Evolutivos em História das ReligiõesModelos Evolutivos em História das Religiões
Modelos Evolutivos em História das Religiões
 
NOVA ORDEM MUNDIAL - Conceitos básicos na NOM
NOVA ORDEM MUNDIAL - Conceitos básicos na NOMNOVA ORDEM MUNDIAL - Conceitos básicos na NOM
NOVA ORDEM MUNDIAL - Conceitos básicos na NOM
 
Pizza_literaria.pdf projeto de literatura
Pizza_literaria.pdf projeto de literaturaPizza_literaria.pdf projeto de literatura
Pizza_literaria.pdf projeto de literatura
 
Estudo Dirigido de Literatura / Terceira Série do E.M.
Estudo Dirigido de Literatura / Terceira Série do E.M.Estudo Dirigido de Literatura / Terceira Série do E.M.
Estudo Dirigido de Literatura / Terceira Série do E.M.
 
Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.
Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.
Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.
 
Ler e compreender 7º ano - Aula 7 - 1º Bimestre
Ler e compreender 7º ano -  Aula 7 - 1º BimestreLer e compreender 7º ano -  Aula 7 - 1º Bimestre
Ler e compreender 7º ano - Aula 7 - 1º Bimestre
 
HORA DO CONTO_BECRE D. CARLOS I_2023_2024
HORA DO CONTO_BECRE D. CARLOS I_2023_2024HORA DO CONTO_BECRE D. CARLOS I_2023_2024
HORA DO CONTO_BECRE D. CARLOS I_2023_2024
 
Jogo de Revisão Terceira Série (Primeiro Trimestre)
Jogo de Revisão Terceira Série (Primeiro Trimestre)Jogo de Revisão Terceira Série (Primeiro Trimestre)
Jogo de Revisão Terceira Série (Primeiro Trimestre)
 
O Espetaculo das Racas - Cienti - Lilia Moritz Schwarcz capítulo 2.pdf
O Espetaculo das Racas - Cienti - Lilia Moritz Schwarcz capítulo 2.pdfO Espetaculo das Racas - Cienti - Lilia Moritz Schwarcz capítulo 2.pdf
O Espetaculo das Racas - Cienti - Lilia Moritz Schwarcz capítulo 2.pdf
 

www.AulasDeMatematicaApoio.com.br - Matemática - Função Afim

  • 2. Ao final dessa aula você saberá:  O que é uma função afim e todas as formas de representá-la.  Como identificar e construir gráficos da função afim.  O que é coeficiente angular, coeficiente linear e zero da função  Identificar se uma função é crescente ou decrescente.  Resolver sistemas através de gráficos  Resolver inequações do 1º grau.
  • 3. O que é função afim? É a função definida por uma expresão do 1º grau. Exemplos: É apresentada na forma:  f(x) = x +1 f(x) = ax + b  y= m m 5
  • 4. Como reconhecemos o gráfico de uma função afim? O gráfico de uma função afim é sempre uma reta. Os valores de x são 6 y as abscissas e os valores de y são as ordenadas. 5 4 3 2 1 0 x 1 2 3 4 5
  • 5. Como construímos o gráfico de uma função afim? Basta achar dois pontos que pertençam à reta da função dada. Exemplo: Sendo a função f(x) = 2x + 1. 1º passo: escolher dois valores para x. x = 0 e x = 1
  • 6. 2º passo: calcular o valor de y para cada valor de x escolhido. f(0) = 2.0 + 1 = 1 f(1) = 2.1 + 1 = 3 Logo, temos que os pontos são (0,1) e (1,3) Dessa forma garantimos que esses pontos pertencem à reta.
  • 7. 3º passo: marcar os pontos no gráfico. y 3 2 1 x 1 4º passo: ligar os pontos.
  • 8. Tente fazer sozinho! Construa o gráfico da função: x 1 y 2
  • 9. Solução 1º passo: x = 3 e x = 5 2º passo: f(3) = 1 e f(5) = 2 3º e 4º passos: y 2 1 x 1 2 3 4 5
  • 10. O que é coeficiente angular? É o valor numérico que multiplica a variável x. Indica a inclinação da reta em relação ao eixo x. Ou seja, é o valor de a na expressão: y = ax + b. Exemplo:  y = 2x + 1  a = 2  y = x – 5  a = 1
  • 11. O que é coeficiente linear? É o valor de b em y = ax + b. Indica o valor de y, onde a reta do gráfico corta o eixo das ordenadas. Exemplo:  y = 2x + 1  b = 1  y = x – 5  b = -5
  • 12. O que é Zero da função? É o valor de x onde a reta do gráfico corta o eixo das abscissas. Ou seja, o valor de x para y = 0. Exemplos:  y = 2x + 1  0 = 2x + 1  x = -1/2  y = x – 5  0 = x – 5  x = 5
  • 13. Coeficiente angular f(x) = 2x – 1 Coeficiente linear f(0) = 2.0 -1 = -1 y f(1) = 2.1 – 1 = 1 f(2) = 2.2 – 1 = 3 3 2 1 x -1 1 2 3 4 5 -1 Coeficiente Zero da função linear 0 = 2x-1 x = 1/2
  • 14. Tente fazer sozinho! I) Encontre y = f(x) sendo f uma função polinomial do 1º grau, sabendo que f(-6) = 8 e f(6) = 12. II) Seja f uma função real definida pela lei f(x) = ax – 3. Se 3 é raiz da função, qual é o valor de f(10)?
  • 15. III) (UF-AM) A função f definida por f(x) = -3x +m está representada abaixo: y x 1 f (2) f (1) Então o valor de é: f ( 0) 7 5 a) -1 b) 0 c) 1 d) e) 5 7
  • 16. Soluções I) f(-6) = 8 e f(6) = 12 8 6a b y = ax + b 12 6a b 20 = 2b 8 = -6a + 10 b = 10 -2 = -6a a = 1/3 Logo, f(x) = 1/3 x + 10
  • 17. II) f(x) = ax - 3 f(3) = 3a - 3 = 0 3a = 3 a = 1 f(x) = x – 3 f(10) = 10 – 3 f(10) = 7
  • 18. III) f(x) = -3x + m f(1) = -3.1 + m = 0 -3 + m = 0  m = 3 f(x) = -3x + 3 f(0) = -3.0 + 3 = 3 f(1) = -3.1 + 3 = 0 f(2) = -3.2 + 3 = -3 f (2) f (1) 3 0 1 f (0) 3
  • 19. Como identificamos se uma função é crescente ou decrescente? Verificando o sinal do a em y=ax+b. Se a for negativo, então a função é decrescente. Se a for positivo, então a função é crescente. Exemplos:  y = -x + 2  a = -1  função decrescente  Y = ½ + 4  a = ½  função crescente
  • 20. Também podemos fazer a y análise gráfica: Função decrescente x y Função crescente x
  • 21. Como resolvemos sistemas através de gráficos? Basta traçar os gráficos das duas equações, no mesmo plano cartesiano. O resultado é o ponto de interseção. Exemplo: x y 5 x 2y 4 Pontos da 1ª equação: (1,4) e (3,2) Pontos da 2ª equação: (0,2) e (-2,1)
  • 22. y 4 3 I = (2,3) 2 1 x -2 -1 1 2 3 4 5 -1 -2 Logo, S = (2,3)
  • 23. Como é feito o estudo do sinal de uma função? Seguindo os passos: 1º passo: Localizar o zero da função na reta real. 2º passo: traçar a reta do gráfico. 3º passo: analisamos os intervalos onde a função é positiva ou negativa.
  • 24. Exemplo: y = x - 2 1º passo: x – 2 = 0  x = 2 2º passo: função crescente x 2 3º passo: y < 0, para x < 2 y = 0, para x = 2 y > 0, para x > 2
  • 25. Como resolvemos uma inequação do 1º grau? Fazendo o estudo do sinal. Exemplo: 2x – 7 > 0  zero da função: 2x – 7 = 0  x = 7/2  a > 0  função crescente x 7/2 Resposta: 7 2 ,
  • 26. E se for uma inequação produto ou uma inequação quociente? Se for uma inequação produto devemos fazer o estudo do sinal de cada fator. Se for inequação quociente, devemos fazer o estudo do sinal do dividendo e do divisor, separadamente.
  • 27. Exemplos: I) (x-2) (1-2x) ≥ 0 x – 2 = 0  x = 2 e 1 – 2x = 0  x = ½ +++ -------------------------- x 1/2 ----------------------- +++++ x 2 - + - x 1/2 2 S = [1/2 , 2]
  • 28. II) x 3 0, x 1 x 1 x + 3 = 0  x = -3 e x – 1 = 0  x = 1 -------- +++++++++++++ x -3 -------------------- ++++++ x 1 + - + x -3 1 S=]-∞,-3[ U ]1,+ ∞[
  • 29. Tente fazer sozinho! (UFC-CE) O conjunto solução, nos números 1 x reais, da inequação 1 é igual a: 1 x a ) x R; x 1 b) x R; x 0 c) x R; x 1 d ) x R; x 2 e) x R; x 3
  • 30. Solução 1 x 1 x 1 x 1 x 2 1 1 0 0 0 1 x 1 x 1 x 1 x 1+x=0 x = -1 --------- ++++++++++++ x -1 S=]-1,+ ∞[ letra A