1. ENTALPIA (H):  É a energia total de um sistema medida à pressão constante. Não é possível medir a entalpia, mede-se  a variação de entalpia ou calor de reação (∆H). 2. REAÇÃO EXOTÈRMICA:   Libera calor.  ∆H<O.   ∆ H= Hprodutos - Hreagentes  Hprodutos < Hreagentes. TERMOQUÍMICA
 
C 2 H 5 OH(ℓ)  + 3 O 2 (g)  2 CO 2 (g)  + 3 H 2 O(ℓ)  + 1368kJ C 2 H 5 OH(ℓ) + 3O 2 (g)  2 CO 2 (g)+3 H 2 O(ℓ)  ∆H=  -1368kJ Na reação exotérmica, o calor aparece com sinal positivo do lado dos produtos ou o  ∆ H<O é citado após a equação.
3. REAÇÃO ENDOTÉRMICA:   Absorve calor.  ∆H>O.   ∆ H= Hprodutos - Hreagentes  Hprodutos  > Hreagentes. C(s)  +  H 2 O(g)  + 31,4   kcal   CO(g) + H 2 (g)  C(s)  +  H 2 O(g)  CO(g) + H 2 (g)  ∆H= +31,4kcal Na Reação Endotérmica o calor aparece com sinal positivo do lado dos reagentes  ou o ∆H>O é citado após a equação.
REAGENTES PRODUTOS C(s)  +  H 2 O(g) CO(g) + H 2 (g)
H 2 (g) + 1/2 O 2 (g)  H 2 O (ℓ ) +  285,8 kJ II. 1/2 H 2 (g) + 1/2 Cℓ 2 (g)  HCℓ(g) ∆H = -92,5 kJ III. 1/2 H 2 (g) + 1/2 F 2 (g)  HF (g)  + 268,6 kJ   IV. H 2 (g) + 2 C (s)  +  226,8 kJ  C 2 H 2  (g)   V.   2 H 2 (g)+2C(s)  C 2 H 4  (g)  ∆H = +52,3 kJ/mol
1. LEI DE HESS:  A entalpia de uma reação química que ocorre em várias etapas é a soma das entalpias de todas as etapas da reação.  Resumindo:  A soma dos ∆Hs de todas as etapas da reação química, é o ∆H da reação química total  .
A B C ∆ H 1 ∆ H 2 ∆ H 3 ∆ H 3  =  ∆H 1  +  ∆H 2 LEI DE HESS
EXEMPLOS DE CÁLCULOS ENVOLVENDO A LEI DE HESS. 2.1 (CESGRANRIO) Observe o gráfico: O valor da entalpia de combustão de 1mol de SO 2 (g), em kcal, a 25°C e 1atm, é:
Resolução: 1. A combustão de 1 mol de SO2(g) é: SO 2 (g)  +  ½  O 2 (g)  SO 3 (g)  2. Considerar os valores do gráfico como sendo positivos e determinar o valor do espaço  (x) que tem  SO 2 (g)+ ½  O 2 (g) como reagente e SO 3 (g) como produto:  x = 94 – 71 = 23. 3. Como a entalpia dos reagentes é maior que a dos produtos ( estamos “descendo” no gráfico) o valor do ∆H é negativo, pois a reação é exotérmica. Então:  ∆H = -23 kcal.
2.2 (UNESP) A entalpia da reação (I) não pode ser medida diretamente em um calorímetro porque a reação de carbono com excesso de oxigênio produz uma mistura de monóxido de carbono e dióxido de carbono gasosos. As entalpias das reações (II) e (III), a 20°C e 1 atmosfera, estão indicadas nas equações termoquímicas a seguir: 2C(s) + O2(g)  2CO (g) C(s) + O2(g)  CO2 (g) ∆H= -394 kJ.mol-1 (III) 2CO(g) + O2(g)  2CO2 (g)  ∆H= -283 kJ.mol-1 Calcular a entalpia da reação ( I ) nas mesmas condições.
(I)  2C(s)  + O 2 (g)  2CO (g)   ∆H= X C(s)  + O 2 (g)  CO 2  (g) ∆H= -394kJ.mol -1 (III)  2CO(g)  + O 2 (g)  2CO 2  (g)  ∆H= -283kJ.mol -1 RESOLUÇÃO:  2C(s)  + 2O 2 (g)  2CO 2  (g)  ∆H= -788kJ. 2CO 2  (g)  2CO(g)  + O2(g)   ∆H= +283 kJ 2C(s)  + O 2 (g)  2CO (g)   ∆H= -505 kJ
Calor de Formação É O CALOR ENVOLVIDO NA FORMAÇÃO DE UM MOL DA SUBSTÂNCIA A PARTIR DE SEUS ELEMENTOS NO ESTADO PADRÃO. ESTADO PADRÃO: 1 atm, 25°C  E ESTADO ALOTRÓPICO MAIS COMUM DA SUBSTÂNCIA C (grafite)  +  O 2 (gasoso)  CO 2 (gasoso) ∆ H f  =   -94,1 kcal.mol -1
SUBSTÂNCIA SIMPLES NO ESTADO PADRÃO E ESTADO ALOTRÓPICO MAIS COMUM TEM ENTALPIA ZERO. C (grafite)  H = 0   C (diamante)  H  ≠ 0 O 2  (gasoso)  H = 0  O 3  (gasoso)  H  ≠ 0 S (rômbico)  H = 0  S (monoclínico)   H  ≠ 0 P n  (vermelho)  H = 0   P 4  (branco)   H  ≠ 0
CÁLCULO DO  ∆ H A PARTIR DOS CALORES DE FORMAÇÃO ( ∆ H f ). ∆ H =  ∆ H produtos -  ∆ H reagentes
Calcule o calor de combustão do etanol: C 2 H 5 OH( ℓ )  +  3O 2 (g)  2CO 2 (g)  +  3H 2 O( ℓ ) ∆ H de formação de C 2 H 5 OH( ℓ ) = -278 kJ/mol ∆ H de formação de CO 2 (g) = -394 kJ/mol ∆ H de formação de  = H 2 O( ℓ ) = -286 kJ/mol RESOLUÇÃO:  ∆ H = ∆H produtos - ∆H reagentes   C 2 H 5 OH( ℓ )  +  3O 2 (g)   2CO 2 (g)  +  3H 2 O( ℓ ) -278kJ  +  zero  2.(-394)  + 3. (-286) Hreagentes = -278kJ  -688kJ  +  -858kJ Hprodutos = -1546kJ ∆ H = ∆H produtos - ∆H reagentes = -1546kJ – (-278) kJ ∆ H = -1268 kJ
ENERGIA DE LIGAÇÃO É A ENERGIA ABSORVIDA PARA ROMPER UM MOL DE LIGAÇÕES QUÍMICAS NO ESTADO GASOSO. H – H (gasoso) H (gasoso) + H (gasoso)   ∆ H = + 436 kJ
EM UMA REAÇÃO QUÍMICA, AS LIGAÇÕES DOS REAGENTES SÃO ROMPIDAS ( ∆ H>0) E AS LIGAÇÕES DOS PRODUTOS SÃO FORMADAS (( ∆ H<0), O SALDO É O  ∆ H DA REAÇÃO. Dadas as energias de ligação em kcal/mol : C = C  147  C ℓ  - C ℓ  58 C - C ℓ   79  C - H  99 C - C  83 Calcular a energia envolvida na reação:  H 2 C = CH 2  (g)  +  C ℓ 2  (g)  H 2 CC ℓ   - CH 2 C ℓ  (g)
H 2 C = CH 2  (g)  +  C ℓ 2  (g)   H 2 CC ℓ   - CH 2 C ℓ  (g) REAGENTES:  LIGAÇÕES ROMPIDAS:  ∆ H > 0. H 2 C = CH 2  (g)  +  C ℓ 2  (g)   4 C –H = 4. 99  =  +396  1 C = C = 1. 147 = +147  Hreagentes= 396+147+58 = 1 Cℓ- Cℓ =1. 58=  + 58  +701kcal. PRODUTOS: LIGAÇÕES FORMADAS ∆H<0. H 2 CC ℓ   - CH 2 C ℓ  (g) 4 C-H = 4.-99 =  -396 2 C-Cℓ = 2. -79 =  -158  Hprodutos = -396 + -158 + -83 1 C-C = 1.-83 =  -83  -637 kcal ∆ H =  + 701  – 637  = +64 kcal.

Slide de termoquímica

  • 1.
    1. ENTALPIA (H): É a energia total de um sistema medida à pressão constante. Não é possível medir a entalpia, mede-se a variação de entalpia ou calor de reação (∆H). 2. REAÇÃO EXOTÈRMICA: Libera calor. ∆H<O. ∆ H= Hprodutos - Hreagentes Hprodutos < Hreagentes. TERMOQUÍMICA
  • 2.
  • 3.
    C 2 H5 OH(ℓ) + 3 O 2 (g) 2 CO 2 (g) + 3 H 2 O(ℓ) + 1368kJ C 2 H 5 OH(ℓ) + 3O 2 (g) 2 CO 2 (g)+3 H 2 O(ℓ) ∆H= -1368kJ Na reação exotérmica, o calor aparece com sinal positivo do lado dos produtos ou o ∆ H<O é citado após a equação.
  • 4.
    3. REAÇÃO ENDOTÉRMICA: Absorve calor. ∆H>O. ∆ H= Hprodutos - Hreagentes Hprodutos > Hreagentes. C(s) + H 2 O(g) + 31,4 kcal CO(g) + H 2 (g) C(s) + H 2 O(g) CO(g) + H 2 (g) ∆H= +31,4kcal Na Reação Endotérmica o calor aparece com sinal positivo do lado dos reagentes ou o ∆H>O é citado após a equação.
  • 5.
    REAGENTES PRODUTOS C(s) + H 2 O(g) CO(g) + H 2 (g)
  • 6.
    H 2 (g)+ 1/2 O 2 (g) H 2 O (ℓ ) + 285,8 kJ II. 1/2 H 2 (g) + 1/2 Cℓ 2 (g) HCℓ(g) ∆H = -92,5 kJ III. 1/2 H 2 (g) + 1/2 F 2 (g) HF (g) + 268,6 kJ IV. H 2 (g) + 2 C (s) + 226,8 kJ C 2 H 2 (g) V. 2 H 2 (g)+2C(s) C 2 H 4 (g) ∆H = +52,3 kJ/mol
  • 7.
    1. LEI DEHESS: A entalpia de uma reação química que ocorre em várias etapas é a soma das entalpias de todas as etapas da reação. Resumindo: A soma dos ∆Hs de todas as etapas da reação química, é o ∆H da reação química total .
  • 8.
    A B C∆ H 1 ∆ H 2 ∆ H 3 ∆ H 3 = ∆H 1 + ∆H 2 LEI DE HESS
  • 9.
    EXEMPLOS DE CÁLCULOSENVOLVENDO A LEI DE HESS. 2.1 (CESGRANRIO) Observe o gráfico: O valor da entalpia de combustão de 1mol de SO 2 (g), em kcal, a 25°C e 1atm, é:
  • 10.
    Resolução: 1. Acombustão de 1 mol de SO2(g) é: SO 2 (g) + ½ O 2 (g) SO 3 (g) 2. Considerar os valores do gráfico como sendo positivos e determinar o valor do espaço (x) que tem SO 2 (g)+ ½ O 2 (g) como reagente e SO 3 (g) como produto: x = 94 – 71 = 23. 3. Como a entalpia dos reagentes é maior que a dos produtos ( estamos “descendo” no gráfico) o valor do ∆H é negativo, pois a reação é exotérmica. Então: ∆H = -23 kcal.
  • 11.
    2.2 (UNESP) Aentalpia da reação (I) não pode ser medida diretamente em um calorímetro porque a reação de carbono com excesso de oxigênio produz uma mistura de monóxido de carbono e dióxido de carbono gasosos. As entalpias das reações (II) e (III), a 20°C e 1 atmosfera, estão indicadas nas equações termoquímicas a seguir: 2C(s) + O2(g) 2CO (g) C(s) + O2(g) CO2 (g) ∆H= -394 kJ.mol-1 (III) 2CO(g) + O2(g) 2CO2 (g) ∆H= -283 kJ.mol-1 Calcular a entalpia da reação ( I ) nas mesmas condições.
  • 12.
    (I) 2C(s) + O 2 (g) 2CO (g) ∆H= X C(s) + O 2 (g) CO 2 (g) ∆H= -394kJ.mol -1 (III) 2CO(g) + O 2 (g) 2CO 2 (g) ∆H= -283kJ.mol -1 RESOLUÇÃO: 2C(s) + 2O 2 (g) 2CO 2 (g) ∆H= -788kJ. 2CO 2 (g) 2CO(g) + O2(g) ∆H= +283 kJ 2C(s) + O 2 (g) 2CO (g) ∆H= -505 kJ
  • 13.
    Calor de FormaçãoÉ O CALOR ENVOLVIDO NA FORMAÇÃO DE UM MOL DA SUBSTÂNCIA A PARTIR DE SEUS ELEMENTOS NO ESTADO PADRÃO. ESTADO PADRÃO: 1 atm, 25°C E ESTADO ALOTRÓPICO MAIS COMUM DA SUBSTÂNCIA C (grafite) + O 2 (gasoso) CO 2 (gasoso) ∆ H f = -94,1 kcal.mol -1
  • 14.
    SUBSTÂNCIA SIMPLES NOESTADO PADRÃO E ESTADO ALOTRÓPICO MAIS COMUM TEM ENTALPIA ZERO. C (grafite) H = 0 C (diamante) H ≠ 0 O 2 (gasoso) H = 0 O 3 (gasoso) H ≠ 0 S (rômbico) H = 0 S (monoclínico) H ≠ 0 P n (vermelho) H = 0 P 4 (branco) H ≠ 0
  • 15.
    CÁLCULO DO ∆ H A PARTIR DOS CALORES DE FORMAÇÃO ( ∆ H f ). ∆ H = ∆ H produtos - ∆ H reagentes
  • 16.
    Calcule o calorde combustão do etanol: C 2 H 5 OH( ℓ ) + 3O 2 (g) 2CO 2 (g) + 3H 2 O( ℓ ) ∆ H de formação de C 2 H 5 OH( ℓ ) = -278 kJ/mol ∆ H de formação de CO 2 (g) = -394 kJ/mol ∆ H de formação de = H 2 O( ℓ ) = -286 kJ/mol RESOLUÇÃO: ∆ H = ∆H produtos - ∆H reagentes C 2 H 5 OH( ℓ ) + 3O 2 (g) 2CO 2 (g) + 3H 2 O( ℓ ) -278kJ + zero 2.(-394) + 3. (-286) Hreagentes = -278kJ -688kJ + -858kJ Hprodutos = -1546kJ ∆ H = ∆H produtos - ∆H reagentes = -1546kJ – (-278) kJ ∆ H = -1268 kJ
  • 17.
    ENERGIA DE LIGAÇÃOÉ A ENERGIA ABSORVIDA PARA ROMPER UM MOL DE LIGAÇÕES QUÍMICAS NO ESTADO GASOSO. H – H (gasoso) H (gasoso) + H (gasoso) ∆ H = + 436 kJ
  • 18.
    EM UMA REAÇÃOQUÍMICA, AS LIGAÇÕES DOS REAGENTES SÃO ROMPIDAS ( ∆ H>0) E AS LIGAÇÕES DOS PRODUTOS SÃO FORMADAS (( ∆ H<0), O SALDO É O ∆ H DA REAÇÃO. Dadas as energias de ligação em kcal/mol : C = C 147 C ℓ - C ℓ 58 C - C ℓ 79 C - H 99 C - C 83 Calcular a energia envolvida na reação: H 2 C = CH 2 (g) + C ℓ 2 (g) H 2 CC ℓ - CH 2 C ℓ (g)
  • 19.
    H 2 C= CH 2 (g) + C ℓ 2 (g) H 2 CC ℓ - CH 2 C ℓ (g) REAGENTES: LIGAÇÕES ROMPIDAS: ∆ H > 0. H 2 C = CH 2 (g) + C ℓ 2 (g) 4 C –H = 4. 99 = +396 1 C = C = 1. 147 = +147 Hreagentes= 396+147+58 = 1 Cℓ- Cℓ =1. 58= + 58 +701kcal. PRODUTOS: LIGAÇÕES FORMADAS ∆H<0. H 2 CC ℓ - CH 2 C ℓ (g) 4 C-H = 4.-99 = -396 2 C-Cℓ = 2. -79 = -158 Hprodutos = -396 + -158 + -83 1 C-C = 1.-83 = -83 -637 kcal ∆ H = + 701 – 637 = +64 kcal.