Definição de Matrizes
Matriz: Tabela de elementos dispostos em linhas e colunas.
Amxn
=
a a a
a a a
a a a
n
n
m m mn
11 12...
TIPOS DE MATRIZES
1 2 2
1 1 3
4 1 2
−










 Matriz quadrada
m = n (x linhas = x colunas)
Esta é uma matriz...
2 1 1
0 1 2
0 0 4
−









 Matriz triangular superior
Matrizes
Triangulares
2 0 0 0
1 1 0 0
2 3 4 0
4 5 7 2
...
Casos especiais
de Matrizes
Triangulares.  Matriz identidade
2 0 0
0 4 0
0 0 7










1 0 0
0 1 0
0 0 1


...
0 0 0 0
0 0 0 0
0 0 0 0










 Matriz nula
Todos os elementos são nulos.
Chamamos a matriz nula de Omxn
Ent...
Transposta  troca de linha por coluna (m x n => n x m )
23
41
30
12
x
A










−
= .
431
102
=A
32
t
x


...
OPERAÇÕES COM MATRIZES
Adição










−+









 −
01
52
40
52
04
11










=
53
52
3...
Multiplicação por escalar
Multiplicação por escalar ( número real qualquer)  multiplicamos todos os
elementos da matriz p...
Multiplicação de matriz por matriz
CONDIÇÃO: Só podemos efetuar o produto de duas matrizes Amxn e Blxp se o
número de colu...
22
23
40
11
.
35
24
12
x
x





 −




















=
75
44
222.1 + 1.0 2.(-1) + 1.4
4.1 + 2....
EXEMPLO 1
1) Seja A = e seja B =
.
Calcule A + B.
11
EXEMPLO 2
2) Seja A = e seja B = .
Calcule A – B.
12
EXEMPLO 3
3) Calcule o produto das matrizes:
13
EXEMPLO 4
4) A mátriz A de ordem 2 x 3 definida por
dada por:
a) b) c)
d) e)
14
EXEMPLO 5
5) Dadas as matrizes
calcule a matriz A – Bt
é:
15
Professor Antonio Carlos Carneiro
Barroso
 Colégio estadual Dinah Gonçalves
Graduado em Ciências naturais pela UFBA
Pós gr...
Próximos SlideShares
Carregando em…5
×

Matrizes

887 visualizações

Publicada em

Publicada em: Educação
0 comentários
1 gostou
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
887
No SlideShare
0
A partir de incorporações
0
Número de incorporações
3
Ações
Compartilhamentos
0
Downloads
30
Comentários
0
Gostaram
1
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Matrizes

  1. 1. Definição de Matrizes Matriz: Tabela de elementos dispostos em linhas e colunas. Amxn = a a a a a a a a a n n m m mn 11 12 1 21 22 2 1 2                     = [aij ]mxn matriz A de m linhas e n colunas Elemento da linha i e coluna j Elemento da 2 ª linha e 1ª coluna
  2. 2. TIPOS DE MATRIZES 1 2 2 1 1 3 4 1 2 −            Matriz quadrada m = n (x linhas = x colunas) Esta é uma matriz quadrada de ordem 3 (3 x 3)  Diagonais Só tem sentido falar de diagonais em matrizes quadradas. Diagonal principal (i = j) Diagonal secundária = (n + 1 = i + j) Elementos da diagonal principal: 1, 1 e 2 Elementos da diagonal secundária: 2, 1 e 4
  3. 3. 2 1 1 0 1 2 0 0 4 −           Matriz triangular superior Matrizes Triangulares 2 0 0 0 1 1 0 0 2 3 4 0 4 5 7 2                Matriz triangular inferior           500 020 004 Elementos acima ou abaixo da diagonal principal são todos nulos. Lembre-se o ou da matemática não é exclusivo, ou seja, vale também quando ambos são verdade! Esta também é uma matriz triangular! Falou em diagonal, falou em matriz quadrada! Todas as triangulares são quadradas.
  4. 4. Casos especiais de Matrizes Triangulares.  Matriz identidade 2 0 0 0 4 0 0 0 7           1 0 0 0 1 0 0 0 1            Matriz diagonal Apenas os elementos da diagonal principal são diferentes de zero A identidade é uma matriz diagonal cujo elementos da diagonal principal são todos iguais a um. Falou em diagonal, falou em matriz quadrada! Todas as triangulares são quadradas. Chatice hein! Todas as Triangulares são quadradas, logo, a diagonal e a identidade são quadradas. Chamamos a matriz acima de I3 (identidade de ordem 3) No geral, In onde n é a ordem da matriz.
  5. 5. 0 0 0 0 0 0 0 0 0 0 0 0            Matriz nula Todos os elementos são nulos. Chamamos a matriz nula de Omxn Então essa é O3x4 A Matriz nula não precisa ser quadrada!  Igualdade de Matrizes. Duas matrizes são ditas idênticas quando seus elementos correspondentes são iguais.           − 421 213 112           − 421 213 112 Caso ao olhar essas duas matrizes e não ver que elas são iguais, favor procurar o oculista.
  6. 6. Transposta  troca de linha por coluna (m x n => n x m ) 23 41 30 12 x A           − = . 431 102 =A 32 t x       − Matriz A transposta Simétrica  Matriz quadrada tal que At = A 22 23 31 x A       = . 23 31 =A 22 t x       Matriz A transposta Anti-Simétrica  Matriz quadrada tal que At = -A 33 013 102 320 x A           −− − = . 013 102 320 =A 33 t x           −− − = Os elementos da transposta são os opostos da original.
  7. 7. OPERAÇÕES COM MATRIZES Adição           −+           − 01 52 40 52 04 11           = 53 52 31 Dadas duas matrizes A e B, somaremos os elementos de A com seus correspondentes em B, ou seja, se tomarmos um elemento na primeira linha e primeira coluna de A devemos somá-los com o elemento na primeira linha e primeira coluna de B. É sempre possível somar matrizes? Não! Somente quando estas forem de mesma ordem. + = Se liguem, o mesmo vale pra subtração.
  8. 8. Multiplicação por escalar Multiplicação por escalar ( número real qualquer)  multiplicamos todos os elementos da matriz por este número.       − − 31 102 .2       − −− = 3.21.2 10.22.2       − −− = 62 204 Matriz A Matriz -2A
  9. 9. Multiplicação de matriz por matriz CONDIÇÃO: Só podemos efetuar o produto de duas matrizes Amxn e Blxp se o número de colunas da primeira for igual ao número de linhas da segunda (n = l). A matriz C = AB será de ordem m x p. 22 23 40 11 . 35 24 12 x x       −           23 4.3)1(50.31.5 4.2)1(40.21.4 4.1)1(20.11.2 x           +−+ +−+ +−+ =           = 75 44 22 Em geral AB ≠ BA, ou seja, o produto de matrizes não comutativo 2 1 2 1 4 2 4 2 5 3 5 3 Pode ser possível efetuar AB e não ser possível efetuar BA. O produto da primeira linha pela primeira coluna, gera o elemento C11. O produto da primeira linha pela segunda coluna, gera o elemento C12. Ihhh... Aqui fu...!
  10. 10. 22 23 40 11 . 35 24 12 x x       −                     = 75 44 222.1 + 1.0 2.(-1) + 1.4 4.1 + 2.0 4.(-1) + 2.4 5.1 + 3.0 5.(-1) + 3.4 Observe, multiplicamos ordenadamente os termos, ou seja, multiplicamos o primeiro elemento da elemento com o primeiro da coluna e por aí vai...
  11. 11. EXEMPLO 1 1) Seja A = e seja B = . Calcule A + B. 11
  12. 12. EXEMPLO 2 2) Seja A = e seja B = . Calcule A – B. 12
  13. 13. EXEMPLO 3 3) Calcule o produto das matrizes: 13
  14. 14. EXEMPLO 4 4) A mátriz A de ordem 2 x 3 definida por dada por: a) b) c) d) e) 14
  15. 15. EXEMPLO 5 5) Dadas as matrizes calcule a matriz A – Bt é: 15
  16. 16. Professor Antonio Carlos Carneiro Barroso  Colégio estadual Dinah Gonçalves Graduado em Ciências naturais pela UFBA Pós graduado em Metodologia e Didática de ensino Superior Lecionando Matemática e Biologia http://ensinodematemtica.blogspot.com Salvador-Ba

×