SlideShare uma empresa Scribd logo
1 de 18
Baixar para ler offline
GEOMETRIA ANALÍTICA – DISTÂNCIAS
O que você deve saber sobre
O estudo da geometria analítica tem início na determinação das
distâncias entre entidades geométricas (pontos, retas, curvas)
colocadas sobre o plano cartesiano. A partir daí, diversas situações
podem surgir, como a definição de curvas complexas por meio de
equações em que se relacionam os valores das coordenadas de
seus pontos.
GEOMETRIA ANALÍTICA – PROF VANKS
Dados dois pontos quaisquer,
A e B, de coordenadas (xA, yA)
e (xB, yB), respectivamente,
a distância entre os pontos
A e B pode ser obtida
pela aplicação do teorema
de Pitágoras.
II. Distância de ponto a ponto
GEOMETRIA ANALÍTICA – DISTÂNCIASGEOMETRIA ANALÍTICA – PROF VANKS
As coordenadas xM e yM do ponto
médio do segmento são,
respectivamente, as médias
aritméticas das coordenadas
dos pontos A e B.
As coordenadas do ponto médio
M do segmento são:
GEOMETRIA ANALÍTICA – DISTÂNCIAS
II. Distância de ponto a ponto
AB
AB
Coordenadas do ponto médio de um segmento
GEOMETRIA ANALÍTICA – PROF VANKS
Coordenadas do baricentro G do triângulo ABC:
GEOMETRIA ANALÍTICA – DISTÂNCIAS
II. Distância de ponto a ponto
Baricentro de um triângulo ABC
GEOMETRIA ANALÍTICA – PROF VANKS
Área do triângulo
Dado um triângulo de vértices A, B e C, localizado no plano
cartesiano, sabe-se que a área do triângulo ABC é numericamente
igual à metade do módulo do determinante formado pelas
coordenadas dos pontos A, B e C:
• A 1a coluna é formada pelas abscissas dos pontos A, B e C.
 A 2a coluna, pelos valores das ordenadas y desses pontos.
• Os elementos das entradas da 3a coluna são iguais a 1.
GEOMETRIA ANALÍTICA – DISTÂNCIAS
II. Distância de ponto a ponto
GEOMETRIA ANALÍTICA – PROF VANKS
Da expressão obtida para a área de um triângulo, podemos
concluir que a condição de alinhamento para que três pontos
distintos, A, B e C, estejam alinhados é:
GEOMETRIA ANALÍTICA – DISTÂNCIAS
II. Distância de ponto a ponto
Condição de alinhamento de três pontos
GEOMETRIA ANALÍTICA – PROF VANKS
III. A equação da reta y = mx + n
GEOMETRIA ANALÍTICA – DISTÂNCIASGEOMETRIA ANALÍTICA – PROF VANKS
Coeficiente ângular (m)
Está relacionado ao ângulo que a reta forma com o eixo das abscissas.
Se as escalas dos eixos x e y no gráfico são iguais, identificamos o
coeficiente angular da reta com a tangente do ângulo  entre a reta e o
eixo horizontal:
III. A equação da reta y = mx + n
GEOMETRIA ANALÍTICA – DISTÂNCIASGEOMETRIA ANALÍTICA – PROF VANKS
Coeficiente linear (n)
Corresponde ao valor da ordenada do ponto em que a reta cruza
o eixo y.
Para obtê-lo, refazemos o cálculo da declividade.
Usando a expressão obtida para m e substituindo os pontos
por P e A:
III. A equação da reta y = mx + n
GEOMETRIA ANALÍTICA – DISTÂNCIASGEOMETRIA ANALÍTICA – PROF VANKS
Coeficiente linear da reta
Isolando y, teremos: y = mx - mxA + yA
III. A equação da reta y = mx + n
Chamando o termo constante de n = – mxA + yA,
a equação da reta, agora equação
reduzida da reta, passa a ser escrita assim:
Outro formato em que a equação da reta aparece
(chamada equação segmentária da reta):
Nela, os coeficientes a e b são o valor de x no ponto em que y = 0 e
o valor de y no ponto em que x = 0. Ou seja, a e b são os chamados
cortes nos eixos x e y, respectivamente.
GEOMETRIA ANALÍTICA – DISTÂNCIASGEOMETRIA ANALÍTICA – PROF VANKS
Duas retas r e s inclinadas (i.e., não verticais e não horizontais) e com
coeficientes angulares mr e ms respectivamente, quando consideradas
ao mesmo tempo sobre o plano cartesiano, podem ser, uma em relação
à outra:
Paralelas coincidentes: as duas retas possuem os coeficientes
m e n iguais e todos os pontos em comum:
Paralelas não coincidentes: os coeficientes angulares das duas retas
são iguais, mas os lineares são distintos, e elas não apresentam pontos
em comum:
IV. Posições relativas entre retas no plano
GEOMETRIA ANALÍTICA – DISTÂNCIASGEOMETRIA ANALÍTICA – PROF VANKS
Caso particular de concorrência de retas: elas são
perpendiculares. Além de seus coeficientes serem diferentes, o
produto entre eles é igual a 1, i.e., o coeficiente angular de uma
das retas é o inverso do oposto do coeficiente angular da outra.
Concorrentes: têm coeficientes angulares diferentes. Como
consequência, as retas terão um único ponto em comum:
IV. Posições relativas entre retas no plano
GEOMETRIA ANALÍTICA – DISTÂNCIASGEOMETRIA ANALÍTICA – PROF VANKS
(Unesp)
Dados dois pontos, A e B, com coordenadas cartesianas (-2, 1) e (1, -2),
respectivamente, conforme a figura:
a) calcule a distância entre A e B.
b) sabendo-se que as coordenadas
cartesianas do baricentro do triângulo
ABC são (xG, yG) = (2, 1), calcule as
3
1
GEOMETRIA ANALÍTICA – DISTÂNCIAS  NO VESTIBULAR
EXERCÍCIOSESSENCIAIS
coordenadas (xC, yC) do vértice C do triângulo.
RESPOSTA:
GEOMETRIA ANALÍTICA – PROF VANKS
(Uerj)
No sistema de coordenadas cartesianas a seguir, está representado o triângulo ABC.
Em relação a esse triângulo:
a) demonstre que ele é retângulo;
b) calcule a sua área.
5EXERCÍCIOSESSENCIAIS
RESPOSTA:
GEOMETRIA ANALÍTICA – DISTÂNCIAS  NO VESTIBULARGEOMETRIA ANALÍTICA – PROF VANKS
(UFC-CE)
ABC é o triângulo, no plano cartesiano, com vértices A(0, 0), B(2, 1) e C(1, 5).
Determine as coordenadas do ponto P do plano, tal que a soma dos
quadrados das distâncias de P aos vértices de ABC seja a menor
possível, e calcule o valor mínimo correspondente da soma.
8EXERCÍCIOSESSENCIAIS
RESPOSTA:
GEOMETRIA ANALÍTICA – DISTÂNCIAS  NO VESTIBULARGEOMETRIA ANALÍTICA – PROF VANKS
RESPOSTA:
(Unifesp)
A figura representa, em um sistema ortogonal de coordenadas, duas
retas, r e s, simétricas em relação ao eixo Oy, uma circunferência
com centro na origem do sistema, e os pontos
A = (1, 2), B, C, D, E e F correspondentes às intersecções das retas
e do eixo Ox com a circunferência.
Nestas condições, determine:
a) as coordenadas dos vértices
B, C, D, E e F e a área
do hexágono ABCDEF.
b) o valor do cosseno do ângulo AÔB.
1EXERCÍCIOSESSENCIAIS 11
GEOMETRIA ANALÍTICA – DISTÂNCIAS  NO VESTIBULARGEOMETRIA ANALÍTICA – PROF VANKS
(PUC-RJ)
Dadas a parábola y = x2 + x + 1 e a reta y = 2x + m:
a) Determine os valores de m
para os quais a reta intercepta
a parábola.
b) Determine para qual valor
de m a reta tangencia a
parábola. Determine também
o ponto de tangência.
1EXERCÍCIOSESSENCIAIS 12
RESPOSTA:
GEOMETRIA ANALÍTICA – DISTÂNCIAS  NO VESTIBULARGEOMETRIA ANALÍTICA – PROF VANKS
(IBMEC-SP)
Considere, no plano cartesiano da figura, o triângulo de vértices A, B e C.
Se r é a reta suporte da bissetriz do
ângulo ABC, então o coeficiente angular
de r é igual a:
1EXERCÍCIOSESSENCIAIS 13
RESPOSTA: B
GEOMETRIA ANALÍTICA – DISTÂNCIAS  NO VESTIBULAR
^
a)
b)  1.
c)
d)
e)
.
3
3

.
3
4

.
2
3

.3
GEOMETRIA ANALÍTICA – PROF VANKS

Mais conteúdo relacionado

Mais procurados

Relações Métricas no Triângulo Retângulo
Relações Métricas no Triângulo Retângulo Relações Métricas no Triângulo Retângulo
Relações Métricas no Triângulo Retângulo Gabriela Maretti
 
Teorema de pitágoras apresentação de slide
Teorema de pitágoras   apresentação de slideTeorema de pitágoras   apresentação de slide
Teorema de pitágoras apresentação de slideRaquel1966
 
Inscricaoecircunscricaodesolidosgeometricos
InscricaoecircunscricaodesolidosgeometricosInscricaoecircunscricaodesolidosgeometricos
Inscricaoecircunscricaodesolidosgeometricosdidicadoida
 
Lista de exercícios 9º ano (relações métricas no triângulo retângulo - teor...
Lista de exercícios   9º ano (relações métricas no triângulo retângulo - teor...Lista de exercícios   9º ano (relações métricas no triângulo retângulo - teor...
Lista de exercícios 9º ano (relações métricas no triângulo retângulo - teor...Ilton Bruno
 
Matemática exercícios resolvidos - 01 m1 geometria métrica plana
Matemática   exercícios resolvidos - 01 m1 geometria métrica planaMatemática   exercícios resolvidos - 01 m1 geometria métrica plana
Matemática exercícios resolvidos - 01 m1 geometria métrica planaevandrovv
 
Operações com frações algébricas
Operações com frações algébricasOperações com frações algébricas
Operações com frações algébricasazuljunior
 

Mais procurados (20)

Relações Métricas no Triângulo Retângulo
Relações Métricas no Triângulo Retângulo Relações Métricas no Triângulo Retângulo
Relações Métricas no Triângulo Retângulo
 
Teorema de pitágoras apresentação de slide
Teorema de pitágoras   apresentação de slideTeorema de pitágoras   apresentação de slide
Teorema de pitágoras apresentação de slide
 
Inscricaoecircunscricaodesolidosgeometricos
InscricaoecircunscricaodesolidosgeometricosInscricaoecircunscricaodesolidosgeometricos
Inscricaoecircunscricaodesolidosgeometricos
 
Exercicios de trigonometria
Exercicios de trigonometriaExercicios de trigonometria
Exercicios de trigonometria
 
Geometria
Geometria Geometria
Geometria
 
Prismas
PrismasPrismas
Prismas
 
Determinantes 2º ano
Determinantes 2º anoDeterminantes 2º ano
Determinantes 2º ano
 
Funções
FunçõesFunções
Funções
 
Ponto, reta e plano
Ponto, reta e planoPonto, reta e plano
Ponto, reta e plano
 
Matrizes
MatrizesMatrizes
Matrizes
 
Lista de exercícios 9º ano (relações métricas no triângulo retângulo - teor...
Lista de exercícios   9º ano (relações métricas no triângulo retângulo - teor...Lista de exercícios   9º ano (relações métricas no triângulo retângulo - teor...
Lista de exercícios 9º ano (relações métricas no triângulo retângulo - teor...
 
Teorema de Tales
Teorema de TalesTeorema de Tales
Teorema de Tales
 
Matemática exercícios resolvidos - 01 m1 geometria métrica plana
Matemática   exercícios resolvidos - 01 m1 geometria métrica planaMatemática   exercícios resolvidos - 01 m1 geometria métrica plana
Matemática exercícios resolvidos - 01 m1 geometria métrica plana
 
Geometria de posicao
Geometria de posicaoGeometria de posicao
Geometria de posicao
 
Numeros complexos
Numeros complexosNumeros complexos
Numeros complexos
 
Operações com frações algébricas
Operações com frações algébricasOperações com frações algébricas
Operações com frações algébricas
 
Função afim
Função afimFunção afim
Função afim
 
Geometria plana
Geometria planaGeometria plana
Geometria plana
 
Inequação exponencial
Inequação exponencialInequação exponencial
Inequação exponencial
 
Ativ avaliativa 9 ano
Ativ avaliativa 9 anoAtiv avaliativa 9 ano
Ativ avaliativa 9 ano
 

Semelhante a Ppt geometria analitica

Slide de matemática Geometria analítica
Slide de matemática Geometria analítica Slide de matemática Geometria analítica
Slide de matemática Geometria analítica DAIANEMARQUESDASILVA1
 
Geometria analitica exercicios resolvidos
Geometria analitica exercicios resolvidosGeometria analitica exercicios resolvidos
Geometria analitica exercicios resolvidoscon_seguir
 
Geometria Analítica Introdução
Geometria Analítica IntroduçãoGeometria Analítica Introdução
Geometria Analítica Introduçãossuser5efd9a
 
Caderno de atividades terceirão ftd 04
Caderno de atividades terceirão ftd   04Caderno de atividades terceirão ftd   04
Caderno de atividades terceirão ftd 04Oswaldo Stanziola
 
Geometria analitica1 aula_1_volume_01
Geometria analitica1 aula_1_volume_01Geometria analitica1 aula_1_volume_01
Geometria analitica1 aula_1_volume_01Flavio Sousa
 
Determinação de uma reta
Determinação de uma retaDeterminação de uma reta
Determinação de uma retacolers
 
Geometria Analítica - Distância entre dois pontos
Geometria Analítica - Distância entre dois pontosGeometria Analítica - Distância entre dois pontos
Geometria Analítica - Distância entre dois pontosMario Jorge
 
Semelhança e Distancia
Semelhança e DistanciaSemelhança e Distancia
Semelhança e DistanciaKelly Lima
 
11 geometria i
11 geometria i11 geometria i
11 geometria iNetCultus
 
Mat geometria analitica 004
Mat geometria analitica   004Mat geometria analitica   004
Mat geometria analitica 004trigono_metrico
 
Geometria Analítica - Exercícios
Geometria Analítica - ExercíciosGeometria Analítica - Exercícios
Geometria Analítica - ExercíciosEverton Moraes
 
Função trigonometrica
Função trigonometricaFunção trigonometrica
Função trigonometricamyri2000
 
55457049 geometria-analitica
55457049 geometria-analitica55457049 geometria-analitica
55457049 geometria-analiticaopa
 
55457049 geometria-analitica
55457049 geometria-analitica55457049 geometria-analitica
55457049 geometria-analiticaopa
 

Semelhante a Ppt geometria analitica (20)

Slide de matemática Geometria analítica
Slide de matemática Geometria analítica Slide de matemática Geometria analítica
Slide de matemática Geometria analítica
 
Geometria analítica
Geometria analíticaGeometria analítica
Geometria analítica
 
Geometria analítica
Geometria analíticaGeometria analítica
Geometria analítica
 
Geometria analitica exercicios resolvidos
Geometria analitica exercicios resolvidosGeometria analitica exercicios resolvidos
Geometria analitica exercicios resolvidos
 
Geometria Analítica Introdução
Geometria Analítica IntroduçãoGeometria Analítica Introdução
Geometria Analítica Introdução
 
Caderno de atividades terceirão ftd 04
Caderno de atividades terceirão ftd   04Caderno de atividades terceirão ftd   04
Caderno de atividades terceirão ftd 04
 
Geometria Analítica I (AP 01)
Geometria Analítica I (AP 01)Geometria Analítica I (AP 01)
Geometria Analítica I (AP 01)
 
Geoanalitica atualização1
Geoanalitica atualização1Geoanalitica atualização1
Geoanalitica atualização1
 
Geometria Analítica
Geometria AnalíticaGeometria Analítica
Geometria Analítica
 
Geometria analitica1 aula_1_volume_01
Geometria analitica1 aula_1_volume_01Geometria analitica1 aula_1_volume_01
Geometria analitica1 aula_1_volume_01
 
Determinação de uma reta
Determinação de uma retaDeterminação de uma reta
Determinação de uma reta
 
Geometria Analítica - Distância entre dois pontos
Geometria Analítica - Distância entre dois pontosGeometria Analítica - Distância entre dois pontos
Geometria Analítica - Distância entre dois pontos
 
Semelhança e Distancia
Semelhança e DistanciaSemelhança e Distancia
Semelhança e Distancia
 
11 geometria i
11 geometria i11 geometria i
11 geometria i
 
Mat geometria analitica 004
Mat geometria analitica   004Mat geometria analitica   004
Mat geometria analitica 004
 
Geometria Analítica - Exercícios
Geometria Analítica - ExercíciosGeometria Analítica - Exercícios
Geometria Analítica - Exercícios
 
Função trigonometrica
Função trigonometricaFunção trigonometrica
Função trigonometrica
 
Lista retas prossiga
Lista retas prossigaLista retas prossiga
Lista retas prossiga
 
55457049 geometria-analitica
55457049 geometria-analitica55457049 geometria-analitica
55457049 geometria-analitica
 
55457049 geometria-analitica
55457049 geometria-analitica55457049 geometria-analitica
55457049 geometria-analitica
 

Último

HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024Sandra Pratas
 
Geometria 5to Educacion Primaria EDU Ccesa007.pdf
Geometria  5to Educacion Primaria EDU  Ccesa007.pdfGeometria  5to Educacion Primaria EDU  Ccesa007.pdf
Geometria 5to Educacion Primaria EDU Ccesa007.pdfDemetrio Ccesa Rayme
 
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do  3ANO fundamental 1 MG.pdfPLANEJAMENTO anual do  3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdfProfGleide
 
AULA 7 - REFORMA PROTESTANTE SIMPLES E BASICA.pptx
AULA 7 - REFORMA PROTESTANTE SIMPLES E BASICA.pptxAULA 7 - REFORMA PROTESTANTE SIMPLES E BASICA.pptx
AULA 7 - REFORMA PROTESTANTE SIMPLES E BASICA.pptxrenatacolbeich1
 
Linguagem verbal , não verbal e mista.pdf
Linguagem verbal , não verbal e mista.pdfLinguagem verbal , não verbal e mista.pdf
Linguagem verbal , não verbal e mista.pdfLaseVasconcelos1
 
Slides criatividade 01042024 finalpdf Portugues.pdf
Slides criatividade 01042024 finalpdf Portugues.pdfSlides criatividade 01042024 finalpdf Portugues.pdf
Slides criatividade 01042024 finalpdf Portugues.pdfpaulafernandes540558
 
Aula 1, 2 Bacterias Características e Morfologia.pptx
Aula 1, 2  Bacterias Características e Morfologia.pptxAula 1, 2  Bacterias Características e Morfologia.pptx
Aula 1, 2 Bacterias Características e Morfologia.pptxpamelacastro71
 
Apresentação sobre o Combate a Dengue 2024
Apresentação sobre o Combate a Dengue 2024Apresentação sobre o Combate a Dengue 2024
Apresentação sobre o Combate a Dengue 2024GleyceMoreiraXWeslle
 
PLANO ANUAL 1ª SÉRIE - Língua portuguesa 2024
PLANO ANUAL 1ª SÉRIE - Língua portuguesa 2024PLANO ANUAL 1ª SÉRIE - Língua portuguesa 2024
PLANO ANUAL 1ª SÉRIE - Língua portuguesa 2024SamiraMiresVieiradeM
 
HABILIDADES ESSENCIAIS - MATEMÁTICA 4º ANO.pdf
HABILIDADES ESSENCIAIS  - MATEMÁTICA 4º ANO.pdfHABILIDADES ESSENCIAIS  - MATEMÁTICA 4º ANO.pdf
HABILIDADES ESSENCIAIS - MATEMÁTICA 4º ANO.pdfdio7ff
 
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.pptTREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.pptAlineSilvaPotuk
 
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024Sandra Pratas
 
Free-Netflix-PowerPoint-Template-pptheme-1.pptx
Free-Netflix-PowerPoint-Template-pptheme-1.pptxFree-Netflix-PowerPoint-Template-pptheme-1.pptx
Free-Netflix-PowerPoint-Template-pptheme-1.pptxkarinasantiago54
 
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptxÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptxDeyvidBriel
 
Prática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGISPrática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGISVitor Vieira Vasconcelos
 
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chaveAula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chaveaulasgege
 
Empreendedorismo: O que é ser empreendedor?
Empreendedorismo: O que é ser empreendedor?Empreendedorismo: O que é ser empreendedor?
Empreendedorismo: O que é ser empreendedor?MrciaRocha48
 
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptxSlides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptxLuizHenriquedeAlmeid6
 
6°ano Uso de pontuação e acentuação.pptx
6°ano Uso de pontuação e acentuação.pptx6°ano Uso de pontuação e acentuação.pptx
6°ano Uso de pontuação e acentuação.pptxErivaldoLima15
 

Último (20)

HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
HORA DO CONTO5_BECRE D. CARLOS I_2023_2024
 
Geometria 5to Educacion Primaria EDU Ccesa007.pdf
Geometria  5to Educacion Primaria EDU  Ccesa007.pdfGeometria  5to Educacion Primaria EDU  Ccesa007.pdf
Geometria 5to Educacion Primaria EDU Ccesa007.pdf
 
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do  3ANO fundamental 1 MG.pdfPLANEJAMENTO anual do  3ANO fundamental 1 MG.pdf
PLANEJAMENTO anual do 3ANO fundamental 1 MG.pdf
 
AULA 7 - REFORMA PROTESTANTE SIMPLES E BASICA.pptx
AULA 7 - REFORMA PROTESTANTE SIMPLES E BASICA.pptxAULA 7 - REFORMA PROTESTANTE SIMPLES E BASICA.pptx
AULA 7 - REFORMA PROTESTANTE SIMPLES E BASICA.pptx
 
Linguagem verbal , não verbal e mista.pdf
Linguagem verbal , não verbal e mista.pdfLinguagem verbal , não verbal e mista.pdf
Linguagem verbal , não verbal e mista.pdf
 
Slides criatividade 01042024 finalpdf Portugues.pdf
Slides criatividade 01042024 finalpdf Portugues.pdfSlides criatividade 01042024 finalpdf Portugues.pdf
Slides criatividade 01042024 finalpdf Portugues.pdf
 
Aula 1, 2 Bacterias Características e Morfologia.pptx
Aula 1, 2  Bacterias Características e Morfologia.pptxAula 1, 2  Bacterias Características e Morfologia.pptx
Aula 1, 2 Bacterias Características e Morfologia.pptx
 
Apresentação sobre o Combate a Dengue 2024
Apresentação sobre o Combate a Dengue 2024Apresentação sobre o Combate a Dengue 2024
Apresentação sobre o Combate a Dengue 2024
 
PLANO ANUAL 1ª SÉRIE - Língua portuguesa 2024
PLANO ANUAL 1ª SÉRIE - Língua portuguesa 2024PLANO ANUAL 1ª SÉRIE - Língua portuguesa 2024
PLANO ANUAL 1ª SÉRIE - Língua portuguesa 2024
 
HABILIDADES ESSENCIAIS - MATEMÁTICA 4º ANO.pdf
HABILIDADES ESSENCIAIS  - MATEMÁTICA 4º ANO.pdfHABILIDADES ESSENCIAIS  - MATEMÁTICA 4º ANO.pdf
HABILIDADES ESSENCIAIS - MATEMÁTICA 4º ANO.pdf
 
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.pptTREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
TREINAMENTO - BOAS PRATICAS DE HIGIENE NA COZINHA.ppt
 
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
 
Free-Netflix-PowerPoint-Template-pptheme-1.pptx
Free-Netflix-PowerPoint-Template-pptheme-1.pptxFree-Netflix-PowerPoint-Template-pptheme-1.pptx
Free-Netflix-PowerPoint-Template-pptheme-1.pptx
 
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptxÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
 
Prática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGISPrática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGIS
 
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chaveAula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chave
 
Empreendedorismo: O que é ser empreendedor?
Empreendedorismo: O que é ser empreendedor?Empreendedorismo: O que é ser empreendedor?
Empreendedorismo: O que é ser empreendedor?
 
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptxSlides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
 
treinamento brigada incendio 2024 no.ppt
treinamento brigada incendio 2024 no.ppttreinamento brigada incendio 2024 no.ppt
treinamento brigada incendio 2024 no.ppt
 
6°ano Uso de pontuação e acentuação.pptx
6°ano Uso de pontuação e acentuação.pptx6°ano Uso de pontuação e acentuação.pptx
6°ano Uso de pontuação e acentuação.pptx
 

Ppt geometria analitica

  • 1. GEOMETRIA ANALÍTICA – DISTÂNCIAS O que você deve saber sobre O estudo da geometria analítica tem início na determinação das distâncias entre entidades geométricas (pontos, retas, curvas) colocadas sobre o plano cartesiano. A partir daí, diversas situações podem surgir, como a definição de curvas complexas por meio de equações em que se relacionam os valores das coordenadas de seus pontos. GEOMETRIA ANALÍTICA – PROF VANKS
  • 2. Dados dois pontos quaisquer, A e B, de coordenadas (xA, yA) e (xB, yB), respectivamente, a distância entre os pontos A e B pode ser obtida pela aplicação do teorema de Pitágoras. II. Distância de ponto a ponto GEOMETRIA ANALÍTICA – DISTÂNCIASGEOMETRIA ANALÍTICA – PROF VANKS
  • 3. As coordenadas xM e yM do ponto médio do segmento são, respectivamente, as médias aritméticas das coordenadas dos pontos A e B. As coordenadas do ponto médio M do segmento são: GEOMETRIA ANALÍTICA – DISTÂNCIAS II. Distância de ponto a ponto AB AB Coordenadas do ponto médio de um segmento GEOMETRIA ANALÍTICA – PROF VANKS
  • 4. Coordenadas do baricentro G do triângulo ABC: GEOMETRIA ANALÍTICA – DISTÂNCIAS II. Distância de ponto a ponto Baricentro de um triângulo ABC GEOMETRIA ANALÍTICA – PROF VANKS
  • 5. Área do triângulo Dado um triângulo de vértices A, B e C, localizado no plano cartesiano, sabe-se que a área do triângulo ABC é numericamente igual à metade do módulo do determinante formado pelas coordenadas dos pontos A, B e C: • A 1a coluna é formada pelas abscissas dos pontos A, B e C.  A 2a coluna, pelos valores das ordenadas y desses pontos. • Os elementos das entradas da 3a coluna são iguais a 1. GEOMETRIA ANALÍTICA – DISTÂNCIAS II. Distância de ponto a ponto GEOMETRIA ANALÍTICA – PROF VANKS
  • 6. Da expressão obtida para a área de um triângulo, podemos concluir que a condição de alinhamento para que três pontos distintos, A, B e C, estejam alinhados é: GEOMETRIA ANALÍTICA – DISTÂNCIAS II. Distância de ponto a ponto Condição de alinhamento de três pontos GEOMETRIA ANALÍTICA – PROF VANKS
  • 7. III. A equação da reta y = mx + n GEOMETRIA ANALÍTICA – DISTÂNCIASGEOMETRIA ANALÍTICA – PROF VANKS
  • 8. Coeficiente ângular (m) Está relacionado ao ângulo que a reta forma com o eixo das abscissas. Se as escalas dos eixos x e y no gráfico são iguais, identificamos o coeficiente angular da reta com a tangente do ângulo  entre a reta e o eixo horizontal: III. A equação da reta y = mx + n GEOMETRIA ANALÍTICA – DISTÂNCIASGEOMETRIA ANALÍTICA – PROF VANKS
  • 9. Coeficiente linear (n) Corresponde ao valor da ordenada do ponto em que a reta cruza o eixo y. Para obtê-lo, refazemos o cálculo da declividade. Usando a expressão obtida para m e substituindo os pontos por P e A: III. A equação da reta y = mx + n GEOMETRIA ANALÍTICA – DISTÂNCIASGEOMETRIA ANALÍTICA – PROF VANKS
  • 10. Coeficiente linear da reta Isolando y, teremos: y = mx - mxA + yA III. A equação da reta y = mx + n Chamando o termo constante de n = – mxA + yA, a equação da reta, agora equação reduzida da reta, passa a ser escrita assim: Outro formato em que a equação da reta aparece (chamada equação segmentária da reta): Nela, os coeficientes a e b são o valor de x no ponto em que y = 0 e o valor de y no ponto em que x = 0. Ou seja, a e b são os chamados cortes nos eixos x e y, respectivamente. GEOMETRIA ANALÍTICA – DISTÂNCIASGEOMETRIA ANALÍTICA – PROF VANKS
  • 11. Duas retas r e s inclinadas (i.e., não verticais e não horizontais) e com coeficientes angulares mr e ms respectivamente, quando consideradas ao mesmo tempo sobre o plano cartesiano, podem ser, uma em relação à outra: Paralelas coincidentes: as duas retas possuem os coeficientes m e n iguais e todos os pontos em comum: Paralelas não coincidentes: os coeficientes angulares das duas retas são iguais, mas os lineares são distintos, e elas não apresentam pontos em comum: IV. Posições relativas entre retas no plano GEOMETRIA ANALÍTICA – DISTÂNCIASGEOMETRIA ANALÍTICA – PROF VANKS
  • 12. Caso particular de concorrência de retas: elas são perpendiculares. Além de seus coeficientes serem diferentes, o produto entre eles é igual a 1, i.e., o coeficiente angular de uma das retas é o inverso do oposto do coeficiente angular da outra. Concorrentes: têm coeficientes angulares diferentes. Como consequência, as retas terão um único ponto em comum: IV. Posições relativas entre retas no plano GEOMETRIA ANALÍTICA – DISTÂNCIASGEOMETRIA ANALÍTICA – PROF VANKS
  • 13. (Unesp) Dados dois pontos, A e B, com coordenadas cartesianas (-2, 1) e (1, -2), respectivamente, conforme a figura: a) calcule a distância entre A e B. b) sabendo-se que as coordenadas cartesianas do baricentro do triângulo ABC são (xG, yG) = (2, 1), calcule as 3 1 GEOMETRIA ANALÍTICA – DISTÂNCIAS  NO VESTIBULAR EXERCÍCIOSESSENCIAIS coordenadas (xC, yC) do vértice C do triângulo. RESPOSTA: GEOMETRIA ANALÍTICA – PROF VANKS
  • 14. (Uerj) No sistema de coordenadas cartesianas a seguir, está representado o triângulo ABC. Em relação a esse triângulo: a) demonstre que ele é retângulo; b) calcule a sua área. 5EXERCÍCIOSESSENCIAIS RESPOSTA: GEOMETRIA ANALÍTICA – DISTÂNCIAS  NO VESTIBULARGEOMETRIA ANALÍTICA – PROF VANKS
  • 15. (UFC-CE) ABC é o triângulo, no plano cartesiano, com vértices A(0, 0), B(2, 1) e C(1, 5). Determine as coordenadas do ponto P do plano, tal que a soma dos quadrados das distâncias de P aos vértices de ABC seja a menor possível, e calcule o valor mínimo correspondente da soma. 8EXERCÍCIOSESSENCIAIS RESPOSTA: GEOMETRIA ANALÍTICA – DISTÂNCIAS  NO VESTIBULARGEOMETRIA ANALÍTICA – PROF VANKS
  • 16. RESPOSTA: (Unifesp) A figura representa, em um sistema ortogonal de coordenadas, duas retas, r e s, simétricas em relação ao eixo Oy, uma circunferência com centro na origem do sistema, e os pontos A = (1, 2), B, C, D, E e F correspondentes às intersecções das retas e do eixo Ox com a circunferência. Nestas condições, determine: a) as coordenadas dos vértices B, C, D, E e F e a área do hexágono ABCDEF. b) o valor do cosseno do ângulo AÔB. 1EXERCÍCIOSESSENCIAIS 11 GEOMETRIA ANALÍTICA – DISTÂNCIAS  NO VESTIBULARGEOMETRIA ANALÍTICA – PROF VANKS
  • 17. (PUC-RJ) Dadas a parábola y = x2 + x + 1 e a reta y = 2x + m: a) Determine os valores de m para os quais a reta intercepta a parábola. b) Determine para qual valor de m a reta tangencia a parábola. Determine também o ponto de tangência. 1EXERCÍCIOSESSENCIAIS 12 RESPOSTA: GEOMETRIA ANALÍTICA – DISTÂNCIAS  NO VESTIBULARGEOMETRIA ANALÍTICA – PROF VANKS
  • 18. (IBMEC-SP) Considere, no plano cartesiano da figura, o triângulo de vértices A, B e C. Se r é a reta suporte da bissetriz do ângulo ABC, então o coeficiente angular de r é igual a: 1EXERCÍCIOSESSENCIAIS 13 RESPOSTA: B GEOMETRIA ANALÍTICA – DISTÂNCIAS  NO VESTIBULAR ^ a) b)  1. c) d) e) . 3 3  . 3 4  . 2 3  .3 GEOMETRIA ANALÍTICA – PROF VANKS