Anúncio
Anúncio

Mais conteúdo relacionado

Anúncio
Anúncio

Último(20)

Polinomios

  1. Polinômios ( ) n nnn axaxaxaxP ++++= −− ...2 2 1 10 DefiniçãoDefinição Soma de monômiosSoma de monômios naaaa ,...,,, 210 Números ComplexosNúmeros Complexos CoeficientesCoeficientes ...,2,1, −− nnn ExpoentesExpoentes Números NaturaisNúmeros Naturais
  2. ( ) n nnn axaxaxaxP ++++= −− ...2 2 1 10 Variável Pode assumir valoresPode assumir valores ComplexosComplexos na Termo independente de xTermo independente de x x Polinômios DefiniçãoDefinição Soma de monômiosSoma de monômios
  3. ( ) 78 510 xxxP −= ( ) 5 2 3 53 78 −+−−= x xxxP ( ) 2 2 3 54 23 −+−−= x ixxxP Polinômios São PolinômiosSão Polinômios
  4. ( ) 25 2 −+−= xxxxF ( ) 12 15 23 −+− − = xxx xF ( ) 5 4321 234 +−+−= xxxx xF Polinômios Não são PolinômiosNão são Polinômios
  5. ( ) 254 23 −+−= xxxxP Valor NuméricoValor Numérico ( ) ?2 =−P ( ) ( ) ( ) ( ) 2225242 23 −−+−−−=−P ( ) ( ) ( ) 2245842 −−−−=−P ( ) 2220322 −−−−=−P ( ) 562 −=−P Polinômios
  6. ( )1P Fornece o valor da soma dosFornece o valor da soma dos coeficientes do polinômio P(x).coeficientes do polinômio P(x). ( )0P Fornece o valor do termoFornece o valor do termo independente de x.independente de x. Polinômios Valor NuméricoValor Numérico
  7. ( ) 234 16164 xxxxP ++= 16164 ++=Soma 36=Soma ( ) ( )22 42 xxxP += Qual a soma dosQual a soma dos coeficientes docoeficientes do polinômio P(x).polinômio P(x). Polinômios Valor NuméricoValor Numérico
  8. ( ) ( ) ( )[ ]22 14121 +=P ( ) ( )2 421 +=P ( ) ( ) 3661 2 ==P Soma dosSoma dos coeficientecoeficiente ss ( ) ( )22 42 xxxP += Polinômios Valor NuméricoValor Numérico Qual a soma dosQual a soma dos coeficientes docoeficientes do polinômio P(x).polinômio P(x).
  9. ( ) ( )3 52 −= xxP 125− ( ) 125150608 23 −+−= xxxxP Qual o valor doQual o valor do termotermo independente deindependente de x.x. Termo independenteTermo independente de xde x Polinômios Valor NuméricoValor Numérico
  10. ( ) ( )[ ]3 5020 −=P ( ) ( )3 500 −=P ( ) ( )3 50 −=P ( ) 1250 −=P TermoTermo independente deindependente de xx Polinômios Valor NuméricoValor Numérico ( ) ( )3 52 −= xxP Qual o valor doQual o valor do termotermo independente deindependente de x.x.
  11. ( ) 0=αP ( ) 654 −−= xxxP ( ) ( ) ( ) 62522 4 −−=P ( ) 610162 −−=P ( ) 02 =P Raiz de um polinômioRaiz de um polinômio αα é raiz do polinômioé raiz do polinômio P(x).P(x). 2 é raiz do2 é raiz do polinômiopolinômio P(x)P(x) Polinômios
  12. ( ) ( ) 422 2 += iiP ( ) 442 2 += iiP ( ) 02 =iP ( ) ( ) 4142 +−=iP ( ) 0=αP αα é raiz do polinômioé raiz do polinômio P(x).P(x). ( ) 42 += xxP 2i é raiz do2i é raiz do polinômiopolinômio P(x)P(x) Raiz de um polinômioRaiz de um polinômio Polinômios
  13. ( ) 0...000 21 ++++= −− nnn xxxxP Não se define grauNão se define grau para um polinômiopara um polinômio nulonulo Polinômio NuloPolinômio Nulo Polinômios
  14. ( ) n nnn axaxaxaxP ++++= −− ...2 2 1 10 00 ≠a ( ) nPgr = Grau de um PolinômioGrau de um Polinômio Polinômios
  15. ( ) 1536 234 +−++= xxxxxP ( ) 124 −= xxP ( ) 12−=xP ( ) 4=Pgr ( ) 1=Pgr ( ) 0=Pgr Grau de um PolinômioGrau de um Polinômio Polinômios
  16. yx2 6 23 yx x7 ( ) 5=Pgr Observação:Observação: Monômio de grau 3: (2Monômio de grau 3: (2 + 1)+ 1) Monômio de grau 5: (3Monômio de grau 5: (3 + 2)+ 2) Monômio de grau 1Monômio de grau 1 ( ) xyxyxxP 76 232 ++= Grau de um PolinômioGrau de um Polinômio Polinômios
  17. ( )xA ( ) ( )xBxA ≡ IdênticosIdênticos ( )xB ( ) ( ),αα BA = C∈∀α Identidade polinomialIdentidade polinomial Polinômios
  18. ( ) ( ) ( ) 115204 323452 +−+−++−= xnxxxxmxP ( ) ( ) 1752512 2345 ++−+−+= xxxxqxxB 1) Se e1) Se e( ) ( ) ( ) 11524 32352 +−+−+−= xnxxxmxP qenm, ( ) ( ) 1752512 2345 ++−+−+= xxxxqxxB são polinômiossão polinômios idênticos, então a soma dos valoresidênticos, então a soma dos valores positivos de é:positivos de é: Polinômios
  19.      =− =− =− 05 71 124 3 2 q n m 1242 =−m 162 =m 4±=m 4=m 713 =−n 83 =n 2=n 05 =−q 5=q 524 ++=++ qnm 11=++ qnm Polinômios
  20. Operações com Monômios e Polinômios
  21. Adição de MonômiosAdição de Monômios Devemos efetuar a soma ou subtração dos coeficientes numéricos entre os monômios semelhantes. Ex: = 12x2 – 2ay3 5x2 – 3ay3 + 7x2 + ay3 5x2 + 7x2 – 3ay3 + ay3 Monômios semelhantes Monômios semelhantes
  22. Multiplicação de Monômios O produto de monômios é obtido da seguinte forma: • em seguida, multiplicam-se as partes literais. Ex: (4ax2 ) . (–13a3 x5 ) = (4) . (–13) . (a1 . a3 ) . (x2 . x5 ) = – 52a4 x7 • primeiro, multiplicam-se os coeficientes numéricos;
  23. Lembrando... Um produto de potências de mesma base pode ser escrito na forma de uma única potência: conservamos a base e adicionamos os expoentes. am .an = am+n Ex: x4 .x9 = x4+9 = x13
  24. Divisão de Monômios A divisão de monômios é obtida da seguinte forma: • primeiro, dividem-se os coeficientes numéricos; • em seguida, dividem-se as partes literais.
  25. Lembrando... Um quociente de potências de mesma base pode ser escrito na forma de uma única potência: conservamos a base e subtraímos os expoentes. am :an = am–n Ex: x12 : x8 = x12–8 = x4 *com a ≠ 0
  26. Adição de Polinômios Efetue a soma algébrica dos monômios semelhantes. Ex: (4x2 – 7x + 2) + (3x2 + 2x + 3) – (2x2 – x + 6) = = 4x2 – 7x + 2 + 3x2 + 2x + 3 – 2x2 + x – 6 = → eliminando os parênteses = 4x2 + 3x2 – 2x2 – 7x + 2x + x + 2 + 3 – 6 = → agrupando os termos semelhantes = 5x2 – 4x – 1 → forma reduzida * Não esqueça da regra de sinais!
  27. Multiplicação de Monômio por Polinômio A multiplicação de um monômio por um polinômio é feita multiplicando-se o monômio por cada termo do polinômio. = 8x5 y3 – 20x3 y7 Ex: 4x2 y3 . (2x3 – 5xy4 ) = = 4x2 y3 . 2x3 + 4x2 y3 . (– 5xy4 ) * Não esqueça da regra de sinais!
  28. A multiplicação de um polinômio por outro polinômio é feita multiplicando-se cada termo de um deles pelos termos do outro e, sempre que possível, reduzindo os termos semelhantes. Ex: (a + b) . (c + d) = ac + ad + bc + bd Multiplicação de Monômio por Polinômio
  29. Divisão de Polinômio por Monômio Efetuamos a divisão de um polinômio por um monômio fazendo a divisão de cada termo do polinômio pelo monômio. Ex: (18x3 – 12x2 + 3x) : (3x) = = (18x3 : 3x) – (12x2 : 3x) + (3x : 3x) = 6x2 – 4x + 1
  30. Valor Numérico de uma Após obtida a expressão algébrica, basta substituir cada incógnita pelo valor estabelecido pelo exercício. Ex: 3x2 – 2x + 7y + 3x – 17y 3x2 + x – 10y Determine o valor numérico da expressão abaixo para x = 2 e y = 3 1º reduzimos os termos semelhantes Expressão Algébrica 2º substituímos os valores de x = 2 e y = 3 3.22 + 2 – 10.3 3.4 + 2 – 30 12 + 2 – 30 = - 16
  31. Equações polinomiaisEquações polinomiais 0...2 2 1 10 =++++ −− n nnn axaxaxa ( ) 0=αP Raízes de uma equaçãoRaízes de uma equação raizé→α Teorema da decomposiçãoTeorema da decomposição ( ) n nnn axaxaxaxP ++++= −− ...2 2 1 10 ( ) ( ) ( ) ( )nrxrxrxaxP −⋅⋅−⋅−⋅= ...210 Polinômios
  32. Propriedades:Propriedades: 2) Se b for raiz de P(x) = 0 , então P(x) é divisível por2) Se b for raiz de P(x) = 0 , então P(x) é divisível por x - b .x - b . 3) Se o número complexo a + bi for raiz de P(x) = 0 ,3) Se o número complexo a + bi for raiz de P(x) = 0 , então o conjugado a - bi também será raiz .então o conjugado a - bi também será raiz . 1) Toda equação algébrica de grau n possui exatamente1) Toda equação algébrica de grau n possui exatamente n raízes .n raízes . 2x2x44 +x³ + 6x² + 2x – 1 = 0+x³ + 6x² + 2x – 1 = 0 Grau da equação ( Representa o número de raízes)Grau da equação ( Representa o número de raízes) Polinômios
  33. 4) Se a equação P(x) = 0 possuir k raízes iguais a m4) Se a equação P(x) = 0 possuir k raízes iguais a m então dizemos que m é uma raiz de grau deentão dizemos que m é uma raiz de grau de multiplicidade k .multiplicidade k . Exemplo: xExemplo: x22 - 8x + 16 = 0, possui duas raízes reais iguais a 4, (x- 8x + 16 = 0, possui duas raízes reais iguais a 4, (x11 = x= x22 = 4).= 4). Dizemos então que 4 é uma raiz dupla ou de ordem de multiplicidade dois.Dizemos então que 4 é uma raiz dupla ou de ordem de multiplicidade dois. Propriedades:Propriedades: Polinômios
  34. Lembre que quando: a.x³ + bx² + cx + da.x³ + bx² + cx + d = 0= 05) Se a =5) Se a = ±± 11 ∴∴ não há raízes fracionárias.não há raízes fracionárias. 6) Se d = 06) Se d = 0 ∴∴ xx11 = 0 (Lembre a quantidade de= 0 (Lembre a quantidade de raízes nulas é determinada, pelo menorraízes nulas é determinada, pelo menor expoente da incógnita.)expoente da incógnita.) Ex: 2xEx: 2x77 +3x+3x44 + 2x² = 0+ 2x² = 0 Polinômios
  35. Há duas raízes nulas 7) Se a + b + c + d = 07) Se a + b + c + d = 0 ∴∴ xx11 = 1 é raiz.= 1 é raiz. Polinômios Lembre que quando: a.x³ + bx² + cx + da.x³ + bx² + cx + d = 0= 0 5) Se a =5) Se a = ±± 11 ∴∴ não há raízes fracionárias.não há raízes fracionárias. 6) Se d = 06) Se d = 0 ∴∴ xx11 = 0 (Lembre a quantidade de= 0 (Lembre a quantidade de raízes nulas é determinada, pelo menorraízes nulas é determinada, pelo menor expoente da incógnita.)expoente da incógnita.) Ex: 2xEx: 2x77 +3x+3x44 + 2x² = 0+ 2x² = 0
  36. Toda equação algébrica P(x) = 0 de grau n ≥ 1Toda equação algébrica P(x) = 0 de grau n ≥ 1 admite, pelo menos, uma raiz complexa.admite, pelo menos, uma raiz complexa. Teorema das raízes complexas ( PRRI)Teorema das raízes complexas ( PRRI) 06²4³ =++− xxx Polinômios
  37. 11 11 ––44 11 66 11 ––33 -2-2 RestoResto ≠≠ 00∴∴x =1 não éx =1 não é raiz.raiz. 44 Divisores do termo independente: ±1, ±2, ±3, ±6 -1-1 11 ––55 66 Resto = 0Resto = 0 ∴∴ xx11 = -1 é raiz= -1 é raiz00 Grau n – 1Grau n – 1 0652 =+− xx 22 =x 33 =x Toda equação algébrica P(x) = 0 de grau n ≥ 1Toda equação algébrica P(x) = 0 de grau n ≥ 1 admite, pelo menos, uma raiz complexa.admite, pelo menos, uma raiz complexa. Teorema das raízes complexas ( PRRI)Teorema das raízes complexas ( PRRI) 06²4³ =++− xxx Polinômios
  38. Teorema das raízes complexasTeorema das raízes complexas 010144 234 =++−− xxxx 11 −=x ––11 11 ––44 ––11 1414 11 ––55 44 00 RestoResto Grau n – 2Grau n – 2 01062 =+− xx 1010 12 −=x 1010––11 11 ––66 1010 00 RestoResto Polinômios
  39. 010144 234 =++−− xxxx 11 −=x 01062 =+− xx 12 −=x acb 42 −=∆ 4036 −=∆ 4−=∆ a b x 2 ∆±− = 2 46 −± =x 2 26 i x ± = ix ±= 3 ix += 33 ix −= 34 Teorema das raízes complexasTeorema das raízes complexas Polinômios
  40. Teorema das raízes complexas ( PRRF)Teorema das raízes complexas ( PRRF) 18 x3 + 9x2 - 2x -1 = 0 Polinômios
  41. Divisores do termo independente: ±1 Teorema das raízes complexas ( PRRF)Teorema das raízes complexas ( PRRF) 18 x3 + 9x2 - 2x -1 = 0 Polinômios
  42. Divisores do coeficiente da incógnita de maior expoente: ±1, ±2, ±3, ±6, ±9, ±18 PRRF:PRRF: ±1/2, ±1/3, ± 1/6, ±1/9, ±1/18 ––1/21/2 1818 99 -2-2 -1-1 1818 00 -2-2 00 RestoResto ∴∴ xx11 = -1/2= -1/2 18x² +0x -2 = 0 x² = 1/9 3/12 −=x 3/13 =x Divisores do termo independente: ±1 Teorema das raízes complexas ( PRRF)Teorema das raízes complexas ( PRRF) 18 x3 + 9x2 - 2x -1 = 0 Polinômios
  43. Relações de GirardRelações de Girard 02 =++ cbxax a b xx −=+ 21 a c xx =⋅ 21 Polinômios
  44. 023 =+++ dcxbxax a b xxx −=++ 321 ( ) ( ) ( ) a c xxxxxx =⋅+⋅+⋅ 323121 a d xxx −=⋅⋅ 321 Relações de GirardRelações de Girard Polinômios
  45. 0...2 2 1 10 =++++ −− n nnn axaxaxa 0 1 321 ... a a xxxx n −=++++ ( ) ( ) ( ) ( ) 0 2 1413121 ... a a xxxxxxxx nn =⋅++⋅+⋅+⋅ − ( ) ( ) ( ) 0 3 12421321 ... a a xxxxxxxxx nnn −=⋅⋅++⋅⋅+⋅⋅ −− ( ) 0 321 1... a a xxxx nn n ⋅−=⋅⋅⋅⋅ Relações de GirardRelações de Girard Polinômios
  46. Teorema do resto (divisor de 1º grau - d = ax + b)Teorema do resto (divisor de 1º grau - d = ax + b) P(x)P(x) ax + bax + b Q(x)Q(x) RR P(x) = (ax + b)P(x) = (ax + b) · Q(x) + R· Q(x) + R Raiz do divisorRaiz do divisor a b x −=1 ( ) RxQ a b P +⋅=      − 0 R a b P =      − Polinômios
  47. P(x)P(x) ax + bax + b Q(x)Q(x) RR 0=R R a b P =      − Condição necessária para queCondição necessária para que P(x) seja divisível por ax + b.P(x) seja divisível por ax + b. 0=      − a b P Teorema de D’alembertTeorema de D’alembert Polinômios
  48. (UDESC 2006-1) O resto da divisão do polinômio(UDESC 2006-1) O resto da divisão do polinômio pelo binômiopelo binômio Teorema do restoTeorema do resto ( ) 111122 23 −+−= xxxxP ( ) 111122 23 −+−= xxxxP ( ) 5−= xxD é:é: ( ) ( ) ( ) ( ) 1511512525 23 −⋅+⋅−⋅=P ( ) 1511251212525 −⋅+⋅−⋅=P ( ) 1553002505 −+−=P ( ) 3013055 −=P ( ) 45 =P ( ) RP =5 Polinômios
  49. P(x)P(x) ax + bax + b Q(x)Q(x) RR Grau nGrau n Grau 1Grau 1 Grau n – 1Grau n – 1 RestoResto ...... ...... Coeficientes de P(x)Coeficientes de P(x) Raiz doRaiz do divisordivisor a b − Coeficientes doCoeficientes do polinômio apolinômio a · Q(x)· Q(x) RestoResto Dispositivo Briot-RuffiniDispositivo Briot-Ruffini Polinômios
  50. ( ) 5673 23 ++−= xxxxP ( ) 2+−= xxD 22 33 –– 77 66 55 21 =x 33 Polinômios Dispositivo Briot-RuffiniDispositivo Briot-Ruffini
  51. 22 33 33 ×× ++ == ––11 –– 77 66 55 Polinômios ( ) 5673 23 ++−= xxxxP ( ) 2+−= xxD 21 =x Dispositivo Briot-RuffiniDispositivo Briot-Ruffini
  52. 22 33 33 ×× ++ == ––11 44 –– 77 66 55 Polinômios ( ) 5673 23 ++−= xxxxP ( ) 2+−= xxD 21 =x Dispositivo Briot-RuffiniDispositivo Briot-Ruffini
  53. 22 33 33 ×× ++ == ––11 44 1313 –– 77 66 55 Polinômios ( ) 5673 23 ++−= xxxxP ( ) 2+−= xxD 21 =x Dispositivo Briot-RuffiniDispositivo Briot-Ruffini
  54. 22 33 33 ––11 44 1313 RestoResto Coeficientes doCoeficientes do polinômio apolinômio a · Q(x)· Q(x) –– 77 66 55 Polinômios ( ) 5673 23 ++−= xxxxP ( ) 2+−= xxD 21 =x Dispositivo Briot-RuffiniDispositivo Briot-Ruffini
  55. 22 33 –– 77 66 55 33 ––11 44 1313 RestoResto Coeficientes doCoeficientes do polinômio apolinômio a · Q(x)· Q(x) Grau do polinômioGrau do polinômio Q(x) é uma unidadeQ(x) é uma unidade menor que o grau do polinômio P(x)menor que o grau do polinômio P(x) ( )xQaquociente ⋅→ ( ) ( ) 431 2 +−=⋅− xxxQ ( ) 43 2 −+−= xxxQ 13=→ Rresto Polinômios ( ) 5673 23 ++−= xxxxP ( ) 2+−= xxD 21 =x Dispositivo Briot-RuffiniDispositivo Briot-Ruffini
  56. Equações polinomiaisEquações polinomiais 0...2 2 1 10 =++++ −− n nnn axaxaxa ( ) 0=αP Raízes de uma equaçãoRaízes de uma equação raizé→α Teorema da decomposiçãoTeorema da decomposição ( ) n nnn axaxaxaxP ++++= −− ...2 2 1 10 ( ) ( ) ( ) ( )nrxrxrxaxP −⋅⋅−⋅−⋅= ...210 Polinômios
  57. (UDESC 2009 – 2) Seja p um polinômio de grau seis,(UDESC 2009 – 2) Seja p um polinômio de grau seis, cujos coeficientes de termo de maior grau é igual a 2.cujos coeficientes de termo de maior grau é igual a 2. As raízes deste polinômio são c, 2 e 0, comAs raízes deste polinômio são c, 2 e 0, com multiplicidades 3, 2 e 1 respectivamente.multiplicidades 3, 2 e 1 respectivamente. Considerando p(1) = 16, o valor da raiz c é igual a:Considerando p(1) = 16, o valor da raiz c é igual a: a) –1.a) –1. b) .b) . c) –7.c) –7. d) 7.d) 7. e) 15.e) 15. 3 221− Polinômios
  58. (UDESC 2005-1) Sobre todas as raízes da equação(UDESC 2005-1) Sobre todas as raízes da equação afirma-se que essa equação possui:afirma-se que essa equação possui:04423 =−+− xxx ( ) ( ) 01412 =−⋅+−⋅ xxx 04423 =−+− xxx ( ) ( ) 0142 =−⋅+ xx 042 =+x 01=−x 42 −=x 4−±=x ix 2±= 1=x { }iiS 2,2,1 −= uma raiz real e duas complexas.uma raiz real e duas complexas. Polinômios
  59. Teorema das raízes complexasTeorema das raízes complexas 010144 234 =++−− xxxx 11 −=x ––11 11 ––44 ––11 1414 11 ––55 44 00 RestoResto Grau n – 2Grau n – 2 01062 =+− xx 1010 12 −=x 1010––11 11 ––66 1010 00 RestoResto Polinômios
  60. 01062 =+− xx acb 42 −=∆ 4036 −=∆ 4−=∆ a b x 2 ∆±− = 2 46 −± =x 2 26 i x ± = ix ±= 3 ix += 33 ix −= 34 Polinômios Teorema das raízes complexasTeorema das raízes complexas 010144 234 =++−− xxxx 11 −=x 12 −=x
  61. (UDESC 2009-1) Seja P(x) um polinômio de terceiro grau,(UDESC 2009-1) Seja P(x) um polinômio de terceiro grau, cujo gráfico está representado na figura abaixo:cujo gráfico está representado na figura abaixo: 22 2211––11 xx yy Então o resto da divisão de P(x)Então o resto da divisão de P(x) pelo monômio x + 2 é:pelo monômio x + 2 é: Polinômios
  62. Professor Antonio Carlos carneiro Barroso  Colégio estadual Dinah Gonçalves Graduado em Ciências naturais pela UFBA Pós graduado em Metodologia e Didática de ensino Superior Lecionando Matemática e Biologia http://ensinodematemtica.blogspot.com Salvador-Ba
Anúncio