SlideShare uma empresa Scribd logo
1 de 41
Ricardo Bruno N. dos Santos
Professor Adjunto da Faculdade de Economia
e do PPGE (Economia) UFPA
Estatística II
UNIVERSIDADE FEDERAL DO PARÁ
INSTITUTO DE CIÊNCIAS SOCIAIS APLICADAS
FACULDADE DE ECONOMIA
Simples
A interpretação moderna da
regressãoA análise de regressão se ocupa do estudo da
dependência de uma variável, a variável dependente, em
relação a uma ou mais variáveis, as variáveis explanatórias,
com vistas a estimar e/ou prever o valor médio (da
população) da primeira em termo dos valores conhecidos ou
fixados (em amostragens repetidas) das segundas.
Simples
A interpretação moderna da
regressão
Simples
A interpretação moderna da
regressão
Simples
A interpretação moderna da
regressão
Simples
Conceito da Função de Regressão Populacional
(FRP)A regressão populacional (RP) indica apenas o valor
esperado da distribuição de Y, dado Xi, ou seja, ela aponta que
a resposta média de Y varia com X.
𝐸 𝑌 𝑋𝑖 = 𝑓(𝑋𝑖)
Pressupondo que é uma regressão linear teremos:
𝐸 𝑌 𝑋𝑖 = 𝛽1 + 𝛽2 𝑋𝑖
Nesse caso 1 e 2 são parâmetros conhecidos como
intercepto e coeficiente angular
O modelo de Regressão Linear
Simples
O significado do termo linearQual a diferença entre a linearidade das variáveis e a
dos parâmetros?
O modelo de Regressão Linear
Simples
O Erro EstocásticoPodemos expressar o desvio de um valor individual de Y
(Yi) em torno de seu valor esperado, assim temos:
𝑢𝑖 = 𝑌𝑖 − 𝐸(𝑌|𝑋𝑖)
Ou então
𝑌𝑖 = 𝐸 𝑌 𝑋𝑖 + 𝑢𝑖
Onde o desvio ui é uma variável aleatória não
observável que assume valores positivos ou negativos.
O termo ui também é conhecido como distúrbio
estocástico ou termo de erro estocástico.
O modelo de Regressão Linear
Simples
O Erro Estocástico
𝑌𝑖 = 𝐸 𝑌 𝑋𝑖 + 𝑢𝑖
𝑌𝑖 = 𝛽1 + 𝛽2 𝑋𝑖 + 𝑢𝑖 que é a FRP
No entanto, se tomarmos o valor esperado de 𝑌𝑖 =
𝐸 𝑌 𝑋𝑖 + 𝑢𝑖 nos dois lados da equação, obtém-se:
Assim, a pressuposição de que a linha de regressão
passa pelas médias condicionais de Y implica que os valores
médios condicionais de ui são iguais a zero.
( | ) [ ( | )] ( | )
( | ) ( | )
( | ) ( | ) ( | ) 0
i i i i i
i i i
i i i i
E Y X E E Y X E u X
E Y X E u X
E u X E Y X E Y X
 
 
  
O modelo de Regressão Linear
Simples
Função de regressão Amostral (FRA)
E quando tivermos não uma população, mas sim, apenas
amostras de uma população. Na maior parte das situações práticas
é impossível trabalhar com dados populacionais. O que teríamos
agora são amostras de Y correspondentes a alguns X fixados.
O modelo de Regressão Linear
Simples
Função de regressão Amostral (FRA)
O modelo de Regressão Linear
Simples
Função de regressão Amostral (FRA)Acredita-se que as linhas das FRA representem a linha
da FRP, porém, devido às variações amostrais, elas são, na
melhor das hipóteses, aproximações da verdadeira regressão
populacional.
Como a FRA é uma aproximação da FRP podemos
representar a linha de regressão da FRA pela seguinte
notação.
Que assim como FRA pode ser representado por
1 2
ˆ ˆˆ
i iY X  
1 2
ˆ ˆ ˆi i iY X u   
O modelo de Regressão Linear
Simples
Função de regressão Amostral (FRA)Assim, nosso principal objetivo passa a ser estimar a
FRP com base na FRA.
O modelo de Regressão Linear
Simples
Função de regressão Amostral (FRA)Fica a pergunta: A partir da FRA pode-se formular um
método ou regra que torne a aproximação entre FRA e FRP o
“mais próximo”, possível? Em outras palavras, tornar os
estimadores i’s chapéu mais próximos dos verdadeiros i’s.
O Problema da Estimação: O Método
dos Mínimos Quadrados Ordinários
(MQO)
O Método dos Mínimos Quadrados
Ordinários (MQO)
Aqui iremos estimar a FRP a partir da FRA da maneira
mais acurada possível.
Recorrendo a FRP de duas variáveis temos:
Porém como a FRP não pode ser observada
diretamente. Temos que estimá-la a partir da FRA:
1 2i i iY X u   
1 2
ˆ ˆ ˆ
ˆ ˆˆ ,
i i i
i i i i
Y X u
Y u Y Y
   
  sendo o valor estimado de
O Método dos Mínimos Quadrados
Ordinários (MQO)
Como determinar a Própria FRA? Para vermos isso,
faremos o seguinte:
Expressamos Yi como:
Ou seja, os resíduos são simplesmente a diferença
entre os valores observados e estimados de Y.
Agora nosso objetivo é estimar a FRA de tal forma que
a mesma fique o mais próximo possível do Y observado.
1 2
ˆˆ
ˆ ˆ
i i i
i i
u Y Y
Y X 
 
  
O Método dos Mínimos Quadrados
Ordinários (MQO)
Para tornar o valor de Y observado o mais próximo do
estimado basta adotarmos o seguinte critério:
deve ser o menor possível.
Embora intuitivamente seja um bom critério ele não
funciona, pois a soma dos resíduos se anulam. Para resolver
esse problema utilizamos a soma do quadrado dos resíduos.
ˆˆ ( )i i iu Y Y  
22
2
1 2
ˆˆ ( )
ˆ ˆ( )
i i i
i i
u Y Y
Y X 
 
  
 

O Método dos Mínimos Quadrados
Ordinários (MQO)
O princípio do MQO é escolher os estimadores de
e de tal forma que, para qualquer amostra ou conjunto de
dados, a seja a menor possível.
Aplicando um processo de otimização podemos verificar isso,
levando em conta que
Considerando
1
ˆ
2
ˆ
2
ˆiu
1 2
2
ˆ ˆ( , )
ˆmin iu
 

2
ˆiu Q
Cálculo dos estimadores por MQO
Pelo método de MQO podemos encontrar os
estimadores 𝛽𝑖
′
𝑠 da regressão linear simples, esses
estimadores são dados por:
𝛽1 = 𝑌 − 𝛽2 𝑋
E
𝛽2 =
𝑋𝑖 𝑦𝑖
𝑋𝑖
2
− 𝑛 𝑋2
𝑜𝑢 𝛽2 =
𝑥𝑖 𝑦𝑖
𝑥𝑖
2
Cálculo dos estimadores por MQO
COM BASE NAS FÓRMULAS DOS BETAS CALCULE
A REGRESSÃO, OS RESÍDUOS PARA OS DADOS DA
TABELA ABAIXO:
Cálculo dos estimadores por MQO
MQO: Propriedades Estatísticas do
MQO
i) Os estimadores de MQO são expressos unicamente em
termos de quantidades observáveis (isto é, amostra)
como X e Y. Portanto, podem ser calculados com
facilidade.
ii) São estimadores pontuais, isto é, dada a amostra, cada
estimador proporciona apenas um único valor (ponto) do
parâmetro populacional relevante.
iii) Uma vez obtidas as estimativas de MQO para os dados
amostrais, a linha de regressão amostral pode ser
facilmente obtida, tendo as seguintes propriedades:
MQO: Propriedades Estatísticas do
MQO
a) Passa pelas médias amostrais de Y e X. Esse fato fica óbvio
pela estimativa de 1.
b) O valor médio do Y estimado, 𝑌 , é igual ao valor médio do
Y observado para:
𝑌𝑖 = 𝛽1 + 𝛽2 𝑋𝑖
= 𝑌 − 𝛽2 𝑋 + 𝛽2 𝑋𝑖
= 𝑌 + 𝛽2(𝑋𝑖 − 𝑋)
Somando-se os dois lados da equação e dividindo por n
teremos: ˆY Y
MQO: Propriedades Estatísticas do
MQO
c) O valor médio dos resíduos 𝒖𝒊 é igual a zero.
iv) Os resíduos 𝒖𝒊 não estão correlacionados ao Yi
previsto.
𝒚𝒊 𝒖𝒊 = 𝜷 𝟐 𝒙𝒊 𝒖𝒊
= 𝜷 𝟐 𝒙𝒊(𝒚𝒊 − 𝜷 𝟐 𝒙𝒊)
= 𝜷 𝟐 𝒙𝒊 𝒚𝒊 − 𝜷 𝟐
𝟐
𝒙𝒊
𝟐
= 𝜷 𝟐
𝟐
𝒙𝒊
𝟐
− 𝜷 𝟐
𝟐
𝒙𝒊
𝟐
= 𝟎
v) Os resíduos 𝑢𝑖 não estão correlacionados com os 𝑋𝑖,
isto é 1 2
ˆ ˆ ˆ2 ( ) 0i i i i iY X X u X      
MQO: Pressupostos do MQO
1) Modelo de Regressão Linear. O modelo de regressão é
linear nos parâmetros.
2) Os valores de X são fixos em amostras repetidas. Ou seja,
X é não estocástico.
MQO: Pressupostos do MQO
3) O valor médio do termo de erro ui é zero. Dado o
valor de X, o valor médio, ou esperado, do distúrbio aleatório
ui é zero. Ou seja, o valor médio condicional de ui é zero:
Homocedasticidade ou variância igual de ui. A variância
de ui é a mesma para todas as observações, isto é, as
variâncias condicionais de ui são idênticas. Simbolicamente,
temos:
( | ) 0i iE u X 
2
2
2
var( | ) [ ( | )]
( | ),
i i i i i
i i
u X E u E u X
E u X

 


em decorrência de 3
MQO: Pressupostos do MQO
MQO: Pressupostos do MQO
5) Não há autocorrelação entre os termos de erro.
Dados quaisquer dois valores de X, Xi e Xj (i≠j), a correlação
entre quaisquer ui e uj (i≠j) é zero. (MRLM)
6) Ausência de covariância entre ui e Xi ou E(ui|Xi)=0
cov( , | , ) {[ ( )]| }{[ ( )]| }
( | )( | ) 0
i j i j i i i j j j
i i j j
u u X X E u E u X u E u X
E u X u X
  
 
cov( , ) [ ( )][ ( )]
( ( ( )), ( ) 0
( ) ( ) ( ), ( )
(
i i i i i i
i i i i
i i i i i
i
u X E u E u X E X
E u X E X E u
E u X E X E u E X
E u X
  
  
 

já que
já que é não estocástico
) ( ) 0
0
i iE u 

já que
por hipótese
MQO: Pressupostos do MQO
7) O número de observações n deve ser maior que o
número de parâmetros a serem estimados. Ou então, o
número de observações n deve ser maior que o número de
variáveis. (MRLM)
8) Variabilidade dos valores de X. Os valores de X em
uma dada amostra não devem ser os mesmos. Técnicamente.
Var(X) deve ser um número positivo finito.
9) O modelo de regressão está especificado da forma
correta. Ou então, não há viés ou erro de especificação no
modelo empregado na análise empírica.
10) Não há multicolinearidade perfeita. Isto é, não há
relações lineares perfeitas entre as variáveis independentes.
(MRLM)
MQO: Precisão nas Estimativas **
Como verificamos, cada FRA pode nos fornecer
diferentes valores dos estimadores Betas da regressão, por
este motivo, devemos sempre levar em consideração uma
medida de “confiabilidade” ou precisão dos estimadores 𝛽1 e
𝛽2. Na estatística, a precisão de uma estimativa é medida
pelo seu erro padrão (ep). Podemos estimar os erros a partir
das variâncias dos 𝛽, que são:
𝑣𝑎𝑟 𝛽2 =
𝜎2
𝑥𝑖
2 , 𝑒 𝑒𝑝 𝛽2 =
𝜎
𝑥𝑖
2
𝑣𝑎𝑟 𝛽1 =
𝑋𝑖
2
𝑛 𝑥𝑖
2 𝜎2 𝑒 𝑒𝑝 𝛽1 =
𝑋𝑖
2
𝑛 𝑥𝑖
2 𝜎
MQO: Precisão nas Estimativas
Uma estimativa viável da variância do erro 𝜎2 pode ser
obtida pela Soma do Quadrado dos Resíduos (SQR). Assim
tem-se:
𝜎2 =
𝑢𝑖
2
𝑛 − 2
Onde o valor de n-2 é o grau de liberdade e o 𝑢𝑖
2
é a
SQR.
MQO: Precisão nas Estimativas
Para um melhor entendimento podemos representar a
SQR a partir da seguinte expressão:
𝑢𝑖
2
= 𝑦𝑖
2
− 𝛽2
2
𝑥𝑖
2
Já verificamos que 𝛽2 =
𝑥 𝑖 𝑦 𝑖
𝑥 𝑖
2 , que substituindo na
expressão acima teremos:
𝑢𝑖
2
= 𝑦𝑖
2
−
𝑥𝑖 𝑦𝑖
2
𝑥𝑖
2
Portanto, podemos afirmar que a SQR é composta pela
Soma de Quadrados Total (SQT= 𝑦𝑖
2
) menos a soma de
quadrados explicada (SQE=
𝑥 𝑖 𝑦 𝑖
2
𝑥 𝑖
2 ).
MQO: Propriedades dos estimadores
(𝜷) – o Teorema de Gauss-Markov
O Teorema de Gauss-Markov é um dos mais importantes
dentre da Econometria, é a partir deste teorema que provamos
três importantes propriedades dos estimadores que garantem a
confiabilidade nas suas estimativas, são elas:
1) É Linear: ou seja, trata-se de uma função linear de uma
variável aleatória.
2) É Não Viesado (ou não TENDENCIOSO): ou seja, seu valor
médio ou esperado 𝐸( 𝛽2) é igual ao verdadeiro valor de 𝛽2.
3) Tem VARIÂNCIA MÍNIMA na classe de todos os estimadores
lineares não viesados: um estimador não viesado com a menor
variância é conhecido como ESTIMADOR EFICIENTE.
MQO: Propriedades dos estimadores
(𝜷) – o Teorema de Gauss-Markov
Todo o objetivo por trás da regressão é provar que os
estimadores de MQO são MELNT (Melhor Estimador Linear
Não Tendencioso). O Teorema de Gauss-Markov prova isso,
logo, essa é a principal finalidade de tal teorema.
Podemos demostrar isso através de um gráfico de
distribuição normal destinado apenas aos estimadores, logo:
MQO: O coeficiente de Determinação R2 –
uma medida da “qualidade do
ajustamento”
Na verdade o principal objetivo desse coeficiente é
mostrar o quanto de X consegue explicar em Y, pode-se
verificar isso no seguinte diagrama de Venn
MQO: O coeficiente de Determinação R2 –
uma medida da “qualidade do
ajustamento”Ou seja considerando a equação em forma dos desvios
(para facilitar o cálculo), pode-se verificar que:
𝑦𝑖 = 𝑦𝑖 + 𝑢𝑖
Lembrando que: 𝑦𝑖 = 𝛽2 𝑥𝑖 + 𝑢𝑖 e 𝑦𝑖 = 𝛽2 𝑥𝑖, se
elevarmos os dois lados da primeira equação ao quadrado e
somando na amostra, teremos
𝑦𝑖
2
= 𝑦𝑖
2
+ 𝑢𝑖
2
+ 2 𝑦𝑖 𝑢𝑖
= 𝑦𝑖
2
+ 𝑢𝑖
2
= 𝛽2
2
𝑥𝑖
2
+ 𝑢𝑖
2
MQO: O coeficiente de Determinação R2 –
uma medida da “qualidade do
ajustamento”
Na composição final temos o conceito de que a
SQT=SQE+SQR
Soma de Quadrados Total = Soma de Quadrados
Explicada + Soma de Quadrados dos Resíduos.
Isso no gráfico pode ser representado da seguinte
forma:
MQO: O coeficiente de Determinação R2 –
uma medida da “qualidade do
ajustamento”
Dividindo ambos os lados de SQT por SQT teremos:
1 =
𝑆𝑄𝐸
𝑆𝑄𝑇
+
𝑆𝑄𝑅
𝑆𝑄𝑇
=
𝑌𝑖 − 𝑌
2
𝑌𝑖 − 𝑌 2
+
𝑢𝑖
2
𝑌𝑖 − 𝑌 2
Podemos então definir o 𝑟2
como sendo
𝑟2
=
𝑆𝑄𝐸
𝑆𝑄𝑇
=
𝑦𝑖
2
𝑦𝑖
2 𝑜𝑢 =
𝛽2
2
𝑥𝑖
2
𝑦𝑖
2 𝑜𝑢 =
𝑥𝑖 𝑦𝑖
2
𝑥𝑖
2
𝑦𝑖
2 𝑜𝑢 = 1 −
𝑢𝑖
2
𝑦𝑖
2
MQO: O coeficiente de Determinação R2 –
uma medida da “qualidade do
ajustamento”
Lembrando do nosso exemplo anterior vamos calcular o
𝑟2
MQO: Um exemplo numérico
Vamos construir a tabela 3.3 do capitulo 3 (seção 3.6)
usando o software Gretl. Os dados são referentes as despesas
familiares de consumo semanal (Y) e renda familiar semanal
(X)

Mais conteúdo relacionado

Mais procurados

Regressão - aula 03/04
Regressão - aula 03/04Regressão - aula 03/04
Regressão - aula 03/04
Rodrigo de Sá
 
amostragem
amostragemamostragem
amostragem
socram01
 
Modelo de regressão linear: aspectos teóricos e computacionais
Modelo de regressão linear: aspectos teóricos e computacionais Modelo de regressão linear: aspectos teóricos e computacionais
Modelo de regressão linear: aspectos teóricos e computacionais
Rodrigo Rodrigues
 
Correlacao
CorrelacaoCorrelacao
Correlacao
jon024
 
Testes parametricos e nao parametricos
Testes parametricos e nao parametricosTestes parametricos e nao parametricos
Testes parametricos e nao parametricos
Rosario Cação
 

Mais procurados (20)

Regressão Linear Simples
Regressão Linear SimplesRegressão Linear Simples
Regressão Linear Simples
 
Regressao linear
Regressao linearRegressao linear
Regressao linear
 
05 tópico 4 - multicolinearidade
05   tópico 4 - multicolinearidade05   tópico 4 - multicolinearidade
05 tópico 4 - multicolinearidade
 
03 tópico 2 - regressão multipla
03   tópico 2 - regressão multipla03   tópico 2 - regressão multipla
03 tópico 2 - regressão multipla
 
Correlação Estatística
Correlação EstatísticaCorrelação Estatística
Correlação Estatística
 
Aula 3 testes de hipóteses e anova
Aula 3   testes de hipóteses e anovaAula 3   testes de hipóteses e anova
Aula 3 testes de hipóteses e anova
 
06 tópico 5 - heterocedasticidade
06   tópico 5 - heterocedasticidade06   tópico 5 - heterocedasticidade
06 tópico 5 - heterocedasticidade
 
Regressão - aula 03/04
Regressão - aula 03/04Regressão - aula 03/04
Regressão - aula 03/04
 
amostragem
amostragemamostragem
amostragem
 
02 tópico 1 - regressão linear simples 02 - Econometria - Graduação - UFPA
02   tópico 1 - regressão linear simples 02 - Econometria - Graduação - UFPA02   tópico 1 - regressão linear simples 02 - Econometria - Graduação - UFPA
02 tópico 1 - regressão linear simples 02 - Econometria - Graduação - UFPA
 
Modelo de regressão linear: aspectos teóricos e computacionais
Modelo de regressão linear: aspectos teóricos e computacionais Modelo de regressão linear: aspectos teóricos e computacionais
Modelo de regressão linear: aspectos teóricos e computacionais
 
Estatistica descritiva
Estatistica descritiva Estatistica descritiva
Estatistica descritiva
 
Regressao linear multipla
Regressao linear multiplaRegressao linear multipla
Regressao linear multipla
 
Correlacao
CorrelacaoCorrelacao
Correlacao
 
Estatistica inferencial
Estatistica inferencial Estatistica inferencial
Estatistica inferencial
 
Módulo4 regressao no spss
Módulo4 regressao no spssMódulo4 regressao no spss
Módulo4 regressao no spss
 
Testes parametricos e nao parametricos
Testes parametricos e nao parametricosTestes parametricos e nao parametricos
Testes parametricos e nao parametricos
 
Análise exploratória de dados no SPSS
Análise exploratória de dados no SPSSAnálise exploratória de dados no SPSS
Análise exploratória de dados no SPSS
 
Testes de especificação, diagnóstico e interpretação de Modelo OLS (Ordinary ...
Testes de especificação, diagnóstico e interpretação de Modelo OLS (Ordinary ...Testes de especificação, diagnóstico e interpretação de Modelo OLS (Ordinary ...
Testes de especificação, diagnóstico e interpretação de Modelo OLS (Ordinary ...
 
Tópico 4 regressão linear simples 02
Tópico 4   regressão linear simples 02Tópico 4   regressão linear simples 02
Tópico 4 regressão linear simples 02
 

Destaque

Destaque (12)

Tópico 3 testes de hípoteses - 1 amostra
Tópico 3   testes de hípoteses - 1 amostraTópico 3   testes de hípoteses - 1 amostra
Tópico 3 testes de hípoteses - 1 amostra
 
Variáveis Aleatórias Multidimensionais
Variáveis Aleatórias MultidimensionaisVariáveis Aleatórias Multidimensionais
Variáveis Aleatórias Multidimensionais
 
Tópico 09 - Integral
Tópico 09 - IntegralTópico 09 - Integral
Tópico 09 - Integral
 
Distribuição normal
Distribuição normalDistribuição normal
Distribuição normal
 
Variáveis aleatórias contínuas - Estatística II
Variáveis aleatórias contínuas - Estatística IIVariáveis aleatórias contínuas - Estatística II
Variáveis aleatórias contínuas - Estatística II
 
Tópico 3 Testes de Hipóteses - 2 amostras
Tópico 3   Testes de Hipóteses - 2 amostrasTópico 3   Testes de Hipóteses - 2 amostras
Tópico 3 Testes de Hipóteses - 2 amostras
 
Probabilidade - Estatística I
Probabilidade - Estatística IProbabilidade - Estatística I
Probabilidade - Estatística I
 
Aplicação derivada e integral
Aplicação derivada e integralAplicação derivada e integral
Aplicação derivada e integral
 
Tópico 2 Intervalo de Confiança
Tópico 2   Intervalo de ConfiançaTópico 2   Intervalo de Confiança
Tópico 2 Intervalo de Confiança
 
Variáveis aleatórias discretas - Estatística II
Variáveis aleatórias discretas - Estatística IIVariáveis aleatórias discretas - Estatística II
Variáveis aleatórias discretas - Estatística II
 
Tópico 07 - Limite de uma função
Tópico 07 - Limite de uma funçãoTópico 07 - Limite de uma função
Tópico 07 - Limite de uma função
 
Distribuição binomial, poisson e hipergeométrica - Estatística I
Distribuição binomial, poisson e hipergeométrica - Estatística IDistribuição binomial, poisson e hipergeométrica - Estatística I
Distribuição binomial, poisson e hipergeométrica - Estatística I
 

Semelhante a Tópico 4 regressão linear simples 01

Apostila regressao linear
Apostila regressao linearApostila regressao linear
Apostila regressao linear
coelhojmm
 
AMD - Aula n.º 8 - regressão linear simples.pptx
AMD - Aula n.º 8 - regressão linear simples.pptxAMD - Aula n.º 8 - regressão linear simples.pptx
AMD - Aula n.º 8 - regressão linear simples.pptx
NunoSilva599593
 
Apostila de metodos_quantitativos_-_prof._joao_furtado
Apostila de metodos_quantitativos_-_prof._joao_furtadoApostila de metodos_quantitativos_-_prof._joao_furtado
Apostila de metodos_quantitativos_-_prof._joao_furtado
Wannessa Souza
 
Econometria_Cap12_Heterocedasticidade (1).pdf
Econometria_Cap12_Heterocedasticidade (1).pdfEconometria_Cap12_Heterocedasticidade (1).pdf
Econometria_Cap12_Heterocedasticidade (1).pdf
StellaBucuane
 

Semelhante a Tópico 4 regressão linear simples 01 (20)

Apostila regressao linear
Apostila regressao linearApostila regressao linear
Apostila regressao linear
 
econometria
 econometria econometria
econometria
 
Lista de Exercícios Econometria I - UFES
Lista de Exercícios Econometria I - UFESLista de Exercícios Econometria I - UFES
Lista de Exercícios Econometria I - UFES
 
A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...
A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...
A previsão do ibovespa através de um modelo de regressão linear múltipla - Da...
 
Monica Barros - Econometria - ENCE - 2010 - Resumo Capitulo 7 Gujarati
Monica Barros - Econometria - ENCE - 2010 - Resumo Capitulo 7 GujaratiMonica Barros - Econometria - ENCE - 2010 - Resumo Capitulo 7 Gujarati
Monica Barros - Econometria - ENCE - 2010 - Resumo Capitulo 7 Gujarati
 
Regressao
RegressaoRegressao
Regressao
 
Capitulo 8 gujarati resumo
Capitulo 8 gujarati resumoCapitulo 8 gujarati resumo
Capitulo 8 gujarati resumo
 
Apostila estatistica descritiva pareto ch
Apostila estatistica descritiva pareto chApostila estatistica descritiva pareto ch
Apostila estatistica descritiva pareto ch
 
AMD - Aula n.º 8 - regressão linear simples.pptx
AMD - Aula n.º 8 - regressão linear simples.pptxAMD - Aula n.º 8 - regressão linear simples.pptx
AMD - Aula n.º 8 - regressão linear simples.pptx
 
Cap.10 Multicolinearidade.pptCap.10 Multicolinearidade.pptCap.10 Multicolinea...
Cap.10 Multicolinearidade.pptCap.10 Multicolinearidade.pptCap.10 Multicolinea...Cap.10 Multicolinearidade.pptCap.10 Multicolinearidade.pptCap.10 Multicolinea...
Cap.10 Multicolinearidade.pptCap.10 Multicolinearidade.pptCap.10 Multicolinea...
 
C7 exercicios
C7 exerciciosC7 exercicios
C7 exercicios
 
Apostila física exp ii
Apostila física exp iiApostila física exp ii
Apostila física exp ii
 
Cadeira_Econometria_2.pdf
Cadeira_Econometria_2.pdfCadeira_Econometria_2.pdf
Cadeira_Econometria_2.pdf
 
Regressão aula
Regressão aulaRegressão aula
Regressão aula
 
Apostila de metodos_quantitativos_-_prof._joao_furtado
Apostila de metodos_quantitativos_-_prof._joao_furtadoApostila de metodos_quantitativos_-_prof._joao_furtado
Apostila de metodos_quantitativos_-_prof._joao_furtado
 
AULA-11-REGRESSAO-LINEAR-pptx.pptx
AULA-11-REGRESSAO-LINEAR-pptx.pptxAULA-11-REGRESSAO-LINEAR-pptx.pptx
AULA-11-REGRESSAO-LINEAR-pptx.pptx
 
Gustavo relatorio
Gustavo relatorioGustavo relatorio
Gustavo relatorio
 
Princípios de Estatística Inferencial - I
Princípios de Estatística Inferencial - IPrincípios de Estatística Inferencial - I
Princípios de Estatística Inferencial - I
 
var_copulas
var_copulasvar_copulas
var_copulas
 
Econometria_Cap12_Heterocedasticidade (1).pdf
Econometria_Cap12_Heterocedasticidade (1).pdfEconometria_Cap12_Heterocedasticidade (1).pdf
Econometria_Cap12_Heterocedasticidade (1).pdf
 

Mais de Ricardo Bruno - Universidade Federal do Pará

Mais de Ricardo Bruno - Universidade Federal do Pará (9)

Estatística Descritiva
Estatística DescritivaEstatística Descritiva
Estatística Descritiva
 
Tópico 08 - Derivadas
Tópico 08 - DerivadasTópico 08 - Derivadas
Tópico 08 - Derivadas
 
Tópico 06 - Funções Compostas e Irracionas
Tópico 06 - Funções Compostas e IrracionasTópico 06 - Funções Compostas e Irracionas
Tópico 06 - Funções Compostas e Irracionas
 
Tópico 05 - Funções Exponenciais e Logarítmicas
Tópico 05 - Funções Exponenciais e LogarítmicasTópico 05 - Funções Exponenciais e Logarítmicas
Tópico 05 - Funções Exponenciais e Logarítmicas
 
Matemática I - Tópico 04: Equações do 1º e 2º graus e Inequações
Matemática I - Tópico 04: Equações do 1º e 2º graus e InequaçõesMatemática I - Tópico 04: Equações do 1º e 2º graus e Inequações
Matemática I - Tópico 04: Equações do 1º e 2º graus e Inequações
 
Matemática I - Tópico 02 e 03
Matemática I - Tópico 02 e 03Matemática I - Tópico 02 e 03
Matemática I - Tópico 02 e 03
 
Matemática I - Tópico 01
Matemática I - Tópico 01 Matemática I - Tópico 01
Matemática I - Tópico 01
 
07 tópico 6 - autocorrelação
07   tópico 6 - autocorrelação07   tópico 6 - autocorrelação
07 tópico 6 - autocorrelação
 
04 tópico 3 - regressão multipla
04   tópico 3 - regressão multipla04   tópico 3 - regressão multipla
04 tópico 3 - regressão multipla
 

Último

Gramática - Texto - análise e construção de sentido - Moderna.pdf
Gramática - Texto - análise e construção de sentido - Moderna.pdfGramática - Texto - análise e construção de sentido - Moderna.pdf
Gramática - Texto - análise e construção de sentido - Moderna.pdf
Kelly Mendes
 
História concisa da literatura brasileira- Alfredo Bosi..pdf
História concisa da literatura brasileira- Alfredo Bosi..pdfHistória concisa da literatura brasileira- Alfredo Bosi..pdf
História concisa da literatura brasileira- Alfredo Bosi..pdf
GisellySobral
 

Último (20)

QUESTÃO 4 Os estudos das competências pessoais é de extrema importância, pr...
QUESTÃO 4   Os estudos das competências pessoais é de extrema importância, pr...QUESTÃO 4   Os estudos das competências pessoais é de extrema importância, pr...
QUESTÃO 4 Os estudos das competências pessoais é de extrema importância, pr...
 
662938.pdf aula digital de educação básica
662938.pdf aula digital de educação básica662938.pdf aula digital de educação básica
662938.pdf aula digital de educação básica
 
Gramática - Texto - análise e construção de sentido - Moderna.pdf
Gramática - Texto - análise e construção de sentido - Moderna.pdfGramática - Texto - análise e construção de sentido - Moderna.pdf
Gramática - Texto - análise e construção de sentido - Moderna.pdf
 
nocoes-basicas-de-hereditariedade 9º ano.ppt
nocoes-basicas-de-hereditariedade 9º ano.pptnocoes-basicas-de-hereditariedade 9º ano.ppt
nocoes-basicas-de-hereditariedade 9º ano.ppt
 
Dados espaciais em R - 2023 - UFABC - Geoprocessamento
Dados espaciais em R - 2023 - UFABC - GeoprocessamentoDados espaciais em R - 2023 - UFABC - Geoprocessamento
Dados espaciais em R - 2023 - UFABC - Geoprocessamento
 
5. EJEMPLOS DE ESTRUCTURASQUINTO GRADO.pptx
5. EJEMPLOS DE ESTRUCTURASQUINTO GRADO.pptx5. EJEMPLOS DE ESTRUCTURASQUINTO GRADO.pptx
5. EJEMPLOS DE ESTRUCTURASQUINTO GRADO.pptx
 
Quiz | Dia da Europa 2024 (comemoração)
Quiz | Dia da Europa 2024  (comemoração)Quiz | Dia da Europa 2024  (comemoração)
Quiz | Dia da Europa 2024 (comemoração)
 
Maio Laranja - Combate à violência sexual contra crianças e adolescentes
Maio Laranja - Combate à violência sexual contra crianças e adolescentesMaio Laranja - Combate à violência sexual contra crianças e adolescentes
Maio Laranja - Combate à violência sexual contra crianças e adolescentes
 
Histogramas.pptx...............................
Histogramas.pptx...............................Histogramas.pptx...............................
Histogramas.pptx...............................
 
QUESTÃO 4 Os estudos das competências pessoais é de extrema importância, pr...
QUESTÃO 4   Os estudos das competências pessoais é de extrema importância, pr...QUESTÃO 4   Os estudos das competências pessoais é de extrema importância, pr...
QUESTÃO 4 Os estudos das competências pessoais é de extrema importância, pr...
 
Sopa de letras | Dia da Europa 2024 (nível 2)
Sopa de letras | Dia da Europa 2024 (nível 2)Sopa de letras | Dia da Europa 2024 (nível 2)
Sopa de letras | Dia da Europa 2024 (nível 2)
 
Power Point sobre as etapas do Desenvolvimento infantil
Power Point sobre as etapas do Desenvolvimento infantilPower Point sobre as etapas do Desenvolvimento infantil
Power Point sobre as etapas do Desenvolvimento infantil
 
Formação T.2 do Modulo I da Formação HTML & CSS
Formação T.2 do Modulo I da Formação HTML & CSSFormação T.2 do Modulo I da Formação HTML & CSS
Formação T.2 do Modulo I da Formação HTML & CSS
 
Química-ensino médio ESTEQUIOMETRIA.pptx
Química-ensino médio ESTEQUIOMETRIA.pptxQuímica-ensino médio ESTEQUIOMETRIA.pptx
Química-ensino médio ESTEQUIOMETRIA.pptx
 
História concisa da literatura brasileira- Alfredo Bosi..pdf
História concisa da literatura brasileira- Alfredo Bosi..pdfHistória concisa da literatura brasileira- Alfredo Bosi..pdf
História concisa da literatura brasileira- Alfredo Bosi..pdf
 
FUNDAMENTOS DA PSICOPEDAGOGIA - material
FUNDAMENTOS DA PSICOPEDAGOGIA - materialFUNDAMENTOS DA PSICOPEDAGOGIA - material
FUNDAMENTOS DA PSICOPEDAGOGIA - material
 
SQL Parte 1 - Criação de Banco de Dados.pdf
SQL Parte 1 - Criação de Banco de Dados.pdfSQL Parte 1 - Criação de Banco de Dados.pdf
SQL Parte 1 - Criação de Banco de Dados.pdf
 
Periodo da escravidAo O Brasil tem seu corpo na América e sua alma na África
Periodo da escravidAo O Brasil tem seu corpo na América e sua alma na ÁfricaPeriodo da escravidAo O Brasil tem seu corpo na América e sua alma na África
Periodo da escravidAo O Brasil tem seu corpo na América e sua alma na África
 
Proposta de redação Soneto de texto do gênero poema para a,usos do 9 ano do e...
Proposta de redação Soneto de texto do gênero poema para a,usos do 9 ano do e...Proposta de redação Soneto de texto do gênero poema para a,usos do 9 ano do e...
Proposta de redação Soneto de texto do gênero poema para a,usos do 9 ano do e...
 
UFCD_8291_Preparação e confeção de peixes e mariscos_índice.pdf
UFCD_8291_Preparação e confeção de peixes e mariscos_índice.pdfUFCD_8291_Preparação e confeção de peixes e mariscos_índice.pdf
UFCD_8291_Preparação e confeção de peixes e mariscos_índice.pdf
 

Tópico 4 regressão linear simples 01

  • 1. Ricardo Bruno N. dos Santos Professor Adjunto da Faculdade de Economia e do PPGE (Economia) UFPA Estatística II UNIVERSIDADE FEDERAL DO PARÁ INSTITUTO DE CIÊNCIAS SOCIAIS APLICADAS FACULDADE DE ECONOMIA
  • 2. Simples A interpretação moderna da regressãoA análise de regressão se ocupa do estudo da dependência de uma variável, a variável dependente, em relação a uma ou mais variáveis, as variáveis explanatórias, com vistas a estimar e/ou prever o valor médio (da população) da primeira em termo dos valores conhecidos ou fixados (em amostragens repetidas) das segundas.
  • 6. Simples Conceito da Função de Regressão Populacional (FRP)A regressão populacional (RP) indica apenas o valor esperado da distribuição de Y, dado Xi, ou seja, ela aponta que a resposta média de Y varia com X. 𝐸 𝑌 𝑋𝑖 = 𝑓(𝑋𝑖) Pressupondo que é uma regressão linear teremos: 𝐸 𝑌 𝑋𝑖 = 𝛽1 + 𝛽2 𝑋𝑖 Nesse caso 1 e 2 são parâmetros conhecidos como intercepto e coeficiente angular
  • 7. O modelo de Regressão Linear Simples O significado do termo linearQual a diferença entre a linearidade das variáveis e a dos parâmetros?
  • 8. O modelo de Regressão Linear Simples O Erro EstocásticoPodemos expressar o desvio de um valor individual de Y (Yi) em torno de seu valor esperado, assim temos: 𝑢𝑖 = 𝑌𝑖 − 𝐸(𝑌|𝑋𝑖) Ou então 𝑌𝑖 = 𝐸 𝑌 𝑋𝑖 + 𝑢𝑖 Onde o desvio ui é uma variável aleatória não observável que assume valores positivos ou negativos. O termo ui também é conhecido como distúrbio estocástico ou termo de erro estocástico.
  • 9. O modelo de Regressão Linear Simples O Erro Estocástico 𝑌𝑖 = 𝐸 𝑌 𝑋𝑖 + 𝑢𝑖 𝑌𝑖 = 𝛽1 + 𝛽2 𝑋𝑖 + 𝑢𝑖 que é a FRP No entanto, se tomarmos o valor esperado de 𝑌𝑖 = 𝐸 𝑌 𝑋𝑖 + 𝑢𝑖 nos dois lados da equação, obtém-se: Assim, a pressuposição de que a linha de regressão passa pelas médias condicionais de Y implica que os valores médios condicionais de ui são iguais a zero. ( | ) [ ( | )] ( | ) ( | ) ( | ) ( | ) ( | ) ( | ) 0 i i i i i i i i i i i i E Y X E E Y X E u X E Y X E u X E u X E Y X E Y X       
  • 10. O modelo de Regressão Linear Simples Função de regressão Amostral (FRA) E quando tivermos não uma população, mas sim, apenas amostras de uma população. Na maior parte das situações práticas é impossível trabalhar com dados populacionais. O que teríamos agora são amostras de Y correspondentes a alguns X fixados.
  • 11. O modelo de Regressão Linear Simples Função de regressão Amostral (FRA)
  • 12. O modelo de Regressão Linear Simples Função de regressão Amostral (FRA)Acredita-se que as linhas das FRA representem a linha da FRP, porém, devido às variações amostrais, elas são, na melhor das hipóteses, aproximações da verdadeira regressão populacional. Como a FRA é uma aproximação da FRP podemos representar a linha de regressão da FRA pela seguinte notação. Que assim como FRA pode ser representado por 1 2 ˆ ˆˆ i iY X   1 2 ˆ ˆ ˆi i iY X u   
  • 13. O modelo de Regressão Linear Simples Função de regressão Amostral (FRA)Assim, nosso principal objetivo passa a ser estimar a FRP com base na FRA.
  • 14. O modelo de Regressão Linear Simples Função de regressão Amostral (FRA)Fica a pergunta: A partir da FRA pode-se formular um método ou regra que torne a aproximação entre FRA e FRP o “mais próximo”, possível? Em outras palavras, tornar os estimadores i’s chapéu mais próximos dos verdadeiros i’s.
  • 15. O Problema da Estimação: O Método dos Mínimos Quadrados Ordinários (MQO)
  • 16. O Método dos Mínimos Quadrados Ordinários (MQO) Aqui iremos estimar a FRP a partir da FRA da maneira mais acurada possível. Recorrendo a FRP de duas variáveis temos: Porém como a FRP não pode ser observada diretamente. Temos que estimá-la a partir da FRA: 1 2i i iY X u    1 2 ˆ ˆ ˆ ˆ ˆˆ , i i i i i i i Y X u Y u Y Y       sendo o valor estimado de
  • 17. O Método dos Mínimos Quadrados Ordinários (MQO) Como determinar a Própria FRA? Para vermos isso, faremos o seguinte: Expressamos Yi como: Ou seja, os resíduos são simplesmente a diferença entre os valores observados e estimados de Y. Agora nosso objetivo é estimar a FRA de tal forma que a mesma fique o mais próximo possível do Y observado. 1 2 ˆˆ ˆ ˆ i i i i i u Y Y Y X      
  • 18. O Método dos Mínimos Quadrados Ordinários (MQO) Para tornar o valor de Y observado o mais próximo do estimado basta adotarmos o seguinte critério: deve ser o menor possível. Embora intuitivamente seja um bom critério ele não funciona, pois a soma dos resíduos se anulam. Para resolver esse problema utilizamos a soma do quadrado dos resíduos. ˆˆ ( )i i iu Y Y   22 2 1 2 ˆˆ ( ) ˆ ˆ( ) i i i i i u Y Y Y X         
  • 19. O Método dos Mínimos Quadrados Ordinários (MQO) O princípio do MQO é escolher os estimadores de e de tal forma que, para qualquer amostra ou conjunto de dados, a seja a menor possível. Aplicando um processo de otimização podemos verificar isso, levando em conta que Considerando 1 ˆ 2 ˆ 2 ˆiu 1 2 2 ˆ ˆ( , ) ˆmin iu    2 ˆiu Q
  • 20. Cálculo dos estimadores por MQO Pelo método de MQO podemos encontrar os estimadores 𝛽𝑖 ′ 𝑠 da regressão linear simples, esses estimadores são dados por: 𝛽1 = 𝑌 − 𝛽2 𝑋 E 𝛽2 = 𝑋𝑖 𝑦𝑖 𝑋𝑖 2 − 𝑛 𝑋2 𝑜𝑢 𝛽2 = 𝑥𝑖 𝑦𝑖 𝑥𝑖 2
  • 21. Cálculo dos estimadores por MQO COM BASE NAS FÓRMULAS DOS BETAS CALCULE A REGRESSÃO, OS RESÍDUOS PARA OS DADOS DA TABELA ABAIXO:
  • 23. MQO: Propriedades Estatísticas do MQO i) Os estimadores de MQO são expressos unicamente em termos de quantidades observáveis (isto é, amostra) como X e Y. Portanto, podem ser calculados com facilidade. ii) São estimadores pontuais, isto é, dada a amostra, cada estimador proporciona apenas um único valor (ponto) do parâmetro populacional relevante. iii) Uma vez obtidas as estimativas de MQO para os dados amostrais, a linha de regressão amostral pode ser facilmente obtida, tendo as seguintes propriedades:
  • 24. MQO: Propriedades Estatísticas do MQO a) Passa pelas médias amostrais de Y e X. Esse fato fica óbvio pela estimativa de 1. b) O valor médio do Y estimado, 𝑌 , é igual ao valor médio do Y observado para: 𝑌𝑖 = 𝛽1 + 𝛽2 𝑋𝑖 = 𝑌 − 𝛽2 𝑋 + 𝛽2 𝑋𝑖 = 𝑌 + 𝛽2(𝑋𝑖 − 𝑋) Somando-se os dois lados da equação e dividindo por n teremos: ˆY Y
  • 25. MQO: Propriedades Estatísticas do MQO c) O valor médio dos resíduos 𝒖𝒊 é igual a zero. iv) Os resíduos 𝒖𝒊 não estão correlacionados ao Yi previsto. 𝒚𝒊 𝒖𝒊 = 𝜷 𝟐 𝒙𝒊 𝒖𝒊 = 𝜷 𝟐 𝒙𝒊(𝒚𝒊 − 𝜷 𝟐 𝒙𝒊) = 𝜷 𝟐 𝒙𝒊 𝒚𝒊 − 𝜷 𝟐 𝟐 𝒙𝒊 𝟐 = 𝜷 𝟐 𝟐 𝒙𝒊 𝟐 − 𝜷 𝟐 𝟐 𝒙𝒊 𝟐 = 𝟎 v) Os resíduos 𝑢𝑖 não estão correlacionados com os 𝑋𝑖, isto é 1 2 ˆ ˆ ˆ2 ( ) 0i i i i iY X X u X      
  • 26. MQO: Pressupostos do MQO 1) Modelo de Regressão Linear. O modelo de regressão é linear nos parâmetros. 2) Os valores de X são fixos em amostras repetidas. Ou seja, X é não estocástico.
  • 27. MQO: Pressupostos do MQO 3) O valor médio do termo de erro ui é zero. Dado o valor de X, o valor médio, ou esperado, do distúrbio aleatório ui é zero. Ou seja, o valor médio condicional de ui é zero: Homocedasticidade ou variância igual de ui. A variância de ui é a mesma para todas as observações, isto é, as variâncias condicionais de ui são idênticas. Simbolicamente, temos: ( | ) 0i iE u X  2 2 2 var( | ) [ ( | )] ( | ), i i i i i i i u X E u E u X E u X      em decorrência de 3
  • 29. MQO: Pressupostos do MQO 5) Não há autocorrelação entre os termos de erro. Dados quaisquer dois valores de X, Xi e Xj (i≠j), a correlação entre quaisquer ui e uj (i≠j) é zero. (MRLM) 6) Ausência de covariância entre ui e Xi ou E(ui|Xi)=0 cov( , | , ) {[ ( )]| }{[ ( )]| } ( | )( | ) 0 i j i j i i i j j j i i j j u u X X E u E u X u E u X E u X u X      cov( , ) [ ( )][ ( )] ( ( ( )), ( ) 0 ( ) ( ) ( ), ( ) ( i i i i i i i i i i i i i i i i u X E u E u X E X E u X E X E u E u X E X E u E X E u X          já que já que é não estocástico ) ( ) 0 0 i iE u   já que por hipótese
  • 30. MQO: Pressupostos do MQO 7) O número de observações n deve ser maior que o número de parâmetros a serem estimados. Ou então, o número de observações n deve ser maior que o número de variáveis. (MRLM) 8) Variabilidade dos valores de X. Os valores de X em uma dada amostra não devem ser os mesmos. Técnicamente. Var(X) deve ser um número positivo finito. 9) O modelo de regressão está especificado da forma correta. Ou então, não há viés ou erro de especificação no modelo empregado na análise empírica. 10) Não há multicolinearidade perfeita. Isto é, não há relações lineares perfeitas entre as variáveis independentes. (MRLM)
  • 31. MQO: Precisão nas Estimativas ** Como verificamos, cada FRA pode nos fornecer diferentes valores dos estimadores Betas da regressão, por este motivo, devemos sempre levar em consideração uma medida de “confiabilidade” ou precisão dos estimadores 𝛽1 e 𝛽2. Na estatística, a precisão de uma estimativa é medida pelo seu erro padrão (ep). Podemos estimar os erros a partir das variâncias dos 𝛽, que são: 𝑣𝑎𝑟 𝛽2 = 𝜎2 𝑥𝑖 2 , 𝑒 𝑒𝑝 𝛽2 = 𝜎 𝑥𝑖 2 𝑣𝑎𝑟 𝛽1 = 𝑋𝑖 2 𝑛 𝑥𝑖 2 𝜎2 𝑒 𝑒𝑝 𝛽1 = 𝑋𝑖 2 𝑛 𝑥𝑖 2 𝜎
  • 32. MQO: Precisão nas Estimativas Uma estimativa viável da variância do erro 𝜎2 pode ser obtida pela Soma do Quadrado dos Resíduos (SQR). Assim tem-se: 𝜎2 = 𝑢𝑖 2 𝑛 − 2 Onde o valor de n-2 é o grau de liberdade e o 𝑢𝑖 2 é a SQR.
  • 33. MQO: Precisão nas Estimativas Para um melhor entendimento podemos representar a SQR a partir da seguinte expressão: 𝑢𝑖 2 = 𝑦𝑖 2 − 𝛽2 2 𝑥𝑖 2 Já verificamos que 𝛽2 = 𝑥 𝑖 𝑦 𝑖 𝑥 𝑖 2 , que substituindo na expressão acima teremos: 𝑢𝑖 2 = 𝑦𝑖 2 − 𝑥𝑖 𝑦𝑖 2 𝑥𝑖 2 Portanto, podemos afirmar que a SQR é composta pela Soma de Quadrados Total (SQT= 𝑦𝑖 2 ) menos a soma de quadrados explicada (SQE= 𝑥 𝑖 𝑦 𝑖 2 𝑥 𝑖 2 ).
  • 34. MQO: Propriedades dos estimadores (𝜷) – o Teorema de Gauss-Markov O Teorema de Gauss-Markov é um dos mais importantes dentre da Econometria, é a partir deste teorema que provamos três importantes propriedades dos estimadores que garantem a confiabilidade nas suas estimativas, são elas: 1) É Linear: ou seja, trata-se de uma função linear de uma variável aleatória. 2) É Não Viesado (ou não TENDENCIOSO): ou seja, seu valor médio ou esperado 𝐸( 𝛽2) é igual ao verdadeiro valor de 𝛽2. 3) Tem VARIÂNCIA MÍNIMA na classe de todos os estimadores lineares não viesados: um estimador não viesado com a menor variância é conhecido como ESTIMADOR EFICIENTE.
  • 35. MQO: Propriedades dos estimadores (𝜷) – o Teorema de Gauss-Markov Todo o objetivo por trás da regressão é provar que os estimadores de MQO são MELNT (Melhor Estimador Linear Não Tendencioso). O Teorema de Gauss-Markov prova isso, logo, essa é a principal finalidade de tal teorema. Podemos demostrar isso através de um gráfico de distribuição normal destinado apenas aos estimadores, logo:
  • 36. MQO: O coeficiente de Determinação R2 – uma medida da “qualidade do ajustamento” Na verdade o principal objetivo desse coeficiente é mostrar o quanto de X consegue explicar em Y, pode-se verificar isso no seguinte diagrama de Venn
  • 37. MQO: O coeficiente de Determinação R2 – uma medida da “qualidade do ajustamento”Ou seja considerando a equação em forma dos desvios (para facilitar o cálculo), pode-se verificar que: 𝑦𝑖 = 𝑦𝑖 + 𝑢𝑖 Lembrando que: 𝑦𝑖 = 𝛽2 𝑥𝑖 + 𝑢𝑖 e 𝑦𝑖 = 𝛽2 𝑥𝑖, se elevarmos os dois lados da primeira equação ao quadrado e somando na amostra, teremos 𝑦𝑖 2 = 𝑦𝑖 2 + 𝑢𝑖 2 + 2 𝑦𝑖 𝑢𝑖 = 𝑦𝑖 2 + 𝑢𝑖 2 = 𝛽2 2 𝑥𝑖 2 + 𝑢𝑖 2
  • 38. MQO: O coeficiente de Determinação R2 – uma medida da “qualidade do ajustamento” Na composição final temos o conceito de que a SQT=SQE+SQR Soma de Quadrados Total = Soma de Quadrados Explicada + Soma de Quadrados dos Resíduos. Isso no gráfico pode ser representado da seguinte forma:
  • 39. MQO: O coeficiente de Determinação R2 – uma medida da “qualidade do ajustamento” Dividindo ambos os lados de SQT por SQT teremos: 1 = 𝑆𝑄𝐸 𝑆𝑄𝑇 + 𝑆𝑄𝑅 𝑆𝑄𝑇 = 𝑌𝑖 − 𝑌 2 𝑌𝑖 − 𝑌 2 + 𝑢𝑖 2 𝑌𝑖 − 𝑌 2 Podemos então definir o 𝑟2 como sendo 𝑟2 = 𝑆𝑄𝐸 𝑆𝑄𝑇 = 𝑦𝑖 2 𝑦𝑖 2 𝑜𝑢 = 𝛽2 2 𝑥𝑖 2 𝑦𝑖 2 𝑜𝑢 = 𝑥𝑖 𝑦𝑖 2 𝑥𝑖 2 𝑦𝑖 2 𝑜𝑢 = 1 − 𝑢𝑖 2 𝑦𝑖 2
  • 40. MQO: O coeficiente de Determinação R2 – uma medida da “qualidade do ajustamento” Lembrando do nosso exemplo anterior vamos calcular o 𝑟2
  • 41. MQO: Um exemplo numérico Vamos construir a tabela 3.3 do capitulo 3 (seção 3.6) usando o software Gretl. Os dados são referentes as despesas familiares de consumo semanal (Y) e renda familiar semanal (X)