05 tópico 4 - multicolinearidade

9.582 visualizações

Publicada em

Vídeos exemplos da Aula de Econometria do Curso de Economia da Universidade Federal do Pará.
Assunto: Multicolinearidade

Publicada em: Educação
0 comentários
3 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
9.582
No SlideShare
0
A partir de incorporações
0
Número de incorporações
5
Ações
Compartilhamentos
0
Downloads
251
Comentários
0
Gostaram
3
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

05 tópico 4 - multicolinearidade

  1. 1. Econometria Tópico 3 – Regressão Múltipla Quebra dos pressupostos: Multicolinearidade Ricardo Bruno N. dos Santos Professor Adjunto da Faculdade de Economia e do PPGE (Economia) UFPA
  2. 2. Lembre-se que os vídeos necessários para o acompanhamento dessa apresentação são todos os vídeos que iniciam por 05, e encontram-se dentro da pasta Vídeos no mediafire. Link do mediafire: http://www.mediafire.com/?q1dbpxh1b4uxo No Slideshare:
  3. 3. Quebra dos pressupostos: Multicolinearidade A hipótese 8 do MCRL enfatiza que não há multicolinearidade entre as variáveis independentes presentes no modelo de regressão. Aqui estaremos interessados em verificar: 1) Qual a natureza da multicolinearidade? 2) A multicolinearidade é realmente um problema? 3) Quais são suas consequências práticas? 4) Como é detectada? 5) Que medidas podem ser tomadas para atenuar o problema da multicolinearidade?
  4. 4. Quebra dos pressupostos: Multicolinearidade Com relação a sua natureza a multicolinearidade surgiu inicialmente com o conceito da existência de uma linearidade “perfeita” ou exata entre duas variáveis independentes. A principal causa da multicolinearidade é influenciar nos erros padrão dos coeficientes, fazendo com que tais sejam menores. Portanto, seu principal impacto é dificultar a estimação dos parâmetros da equação. Vejamos agora um exemplo concreto de multicolinearidade perfeita e uma outra não perfeita, porém, alta.
  5. 5. Quebra dos pressupostos: Multicolinearidade Podemos estabelecer o grau de multicolinearidade conforme observação gráfica das correlações indicadas por Gujarati:
  6. 6. Quebra dos pressupostos: Multicolinearidade Podemos observar o seguinte impacto da multicolinearidade perfeita sobre os coeficientes e erros padrões de X: 𝛽2 = 𝑦𝑖 𝑥2𝑖 𝑥3𝑖 2 − 𝑦𝑖 𝑥3𝑖 𝑥2𝑖 𝑥3𝑖 𝑥2𝑖 2 𝑥3𝑖 2 − 𝑥2𝑖 𝑥3𝑖 2 e 𝑣𝑎𝑟 𝛽2 = 𝜎2 𝑥2𝑖 2 1 − 𝑟23 2
  7. 7. Quebra dos pressupostos: Multicolinearidade Ou seja, se a multicolinearidade for perfeita os coeficientes de regressão das variáveis X serão indeterminados e seus erros padrão infinitos. Se a multicolinearidade for menos que perfeita, os coeficientes de regressão, embora sejam determinados, possuirão grande erro padrão, o que impede a precisão ou exatidão dos coeficientes.
  8. 8. Quebra dos pressupostos: Multicolinearidade Fontes da multicolinearidade: 1) Método da coleta de dados empregado. 2) Restrições ao modelo ou à população que está sendo amostrada. Exemplo, regressão do consumo de eletricidade contra renda (X2) e o tamanho da casa (X3), há uma restrição física na população, no sentido de que as famílias com renda mais altas em geral têm casas maiores. 3) Especificação do modelo. 4) Um modelo sobredeterminado. Quando em um modelo existem mais variáveis que informações.
  9. 9. Quebra dos pressupostos: Multicolinearidade Estimação na presença de multicolinearidade Para o modelo 𝑦𝑖 = 𝛽2 𝑥2𝑖 + 𝛽3 𝑥3𝑖 + 𝑢𝑖 Teremos 𝛽2 = 𝑦𝑖 𝑥2𝑖 𝑥3𝑖 2 − 𝑦𝑖 𝑥3𝑖 𝑥2𝑖 𝑥3𝑖 𝑥2𝑖 2 𝑥3𝑖 2 − 𝑥2𝑖 𝑥3𝑖 2 𝛽3 = 𝑦𝑖 𝑥3𝑖 𝑥2𝑖 2 − 𝑦𝑖 𝑥2𝑖 𝑥2𝑖 𝑥3𝑖 𝑥2𝑖 2 𝑥3𝑖 2 − 𝑥2𝑖 𝑥3𝑖 2
  10. 10. Quebra dos pressupostos: Multicolinearidade Suponha que 𝑋3𝑖 = 𝑋2𝑖 Substituindo na equação teremos: 𝛽2 = 𝑦𝑖 𝑥2𝑖 2 𝑥2𝑖 2 −  𝑦𝑖 𝑥2𝑖  𝑥2𝑖 𝑥2𝑖 𝑥2𝑖 2 2 𝑥2𝑖 2 − 2 𝑥2𝑖 𝑥2𝑖 2 = 0 0 Tanto o estimador beta 2 quanto o beta 3 serão indeterminados nesse caso. Agora porque isso acontece?
  11. 11. Quebra dos pressupostos: Multicolinearidade Devemos lembrar do significado do estimador 𝛽2. Ele nos fornece a variação do valor médio de Y quando X2 varia uma unidade, mantendo X3 constante. Porém como X2 e X3 são uma relação linear perfeita, a medida que um varia o outro também irá variar, variação esta medida por . Ou seja, não podemos distinguir diferenças entre o X2 e o X3. Considerando a relação perfeita entre X2 e X3 podemos também estabelecer que: 𝑦𝑖 = 𝛽2 𝑥2𝑖 + 𝛽3(𝑥2𝑖) + 𝑢𝑖 𝑦𝑖 = ( 𝛽2 +  𝛽3)𝑥2𝑖 + 𝑢𝑖 𝑦𝑖 = 𝛼𝑥2𝑖 + 𝑢𝑖
  12. 12. Quebra dos pressupostos: Multicolinearidade Com isso: 𝛼 = 𝛽2 +  𝛽3 = 𝑦𝑖 𝑥2𝑖 𝑥2𝑖 2 Estimação na presença de multicolinearidade “alta”, mas “imperfeita” A primeira situação é algo muito raro em se verificar em se tratando de dados econômicos. Porém, o que pode ser muito comum é uma colinearidade entre duas variáveis que seja alta, podemos identificar isso pela seguinte relação: 𝑥3𝑖 = 𝑥2𝑖 + 𝑣𝑖
  13. 13. Quebra dos pressupostos: Multicolinearidade Agora, a relação entre X3 e X2 está adicionada a um erro aleatório v, nesses termos temos, evidentemente, que considerar que ≠ 0 e 𝑥2𝑖 𝑣𝑖 = 0. O valor do estimador beta 2 então será 𝛽2 = 𝑦𝑖 𝑥2𝑖 2 𝑥2𝑖 2 + 𝑣𝑖 2 −  𝑦𝑖 𝑥2𝑖 + 𝑦𝑖 𝑣𝑖  𝑥2𝑖 2 𝑥2𝑖 2 2 𝑥2𝑖 2 + 𝑣𝑖 2 − 2 𝑥2𝑖 2 2 Agora a equação pode ser estimada. No entanto, conforme previamente observado, o problema residirá agora no erro dos estimadores que será supereistimado.
  14. 14. Quebra dos pressupostos: Multicolinearidade Consequências teóricas da Multicolinearidade Como foi visto o maior problema da multicolinearidade ocorrerá apenas, quando ela for perfeita, ou seja, podemos subentende que a multicolinearidade será um fenômeno que se apresentará na sua forma “alta” e não perfeita. Quando ocorre uma alta colinearidade entre duas variáveis independentes, gerando o efeito da multicolinearidade, os estimadores poderão, portanto, ser obtidos e eles conservarão a propriedade sendo não viesados.
  15. 15. Quebra dos pressupostos: Multicolinearidade Goldber acrescentou outro problema que acarreta em multicolinearidade, trata-se da micronumerosidade. A mesma ocorre quando o número de observações é muito próximo ao número de variáveis no modelo. Poderíamos associar isso ao exercício feito sobre o capítulo 7, quando o número de variáveis era igual ao número de observações do modelo, impedindo o cálculo dos erros padrão dos estimadores e da variância do resíduo. Muitas das vezes se é resolvido o problema da micronumerosidade, aumentando o tamanho da amostra, resolvemos o problema da multicolinearidade.
  16. 16. Quebra dos pressupostos: MulticolinearidadeConsequências práticas da multicolinearidade As principais consequências listadas por Gujarati são: a) Embora sejam MELNT, os estimadores de MQO têm GRANDE VARIÂNCIAS e COVARIÂNCIAS, tornando difícil uma estimação precisa e confiante; b) Devido a consequência (a), os INTERVALOS DE CONFIANÇA tendem a ser muito mais amplos, levando à aceitação imediata da “hipótese nula H0” (ou seja, de que o verdadeiro coeficiente populacional seja igual a zero). c) Também devido a consequência (a), a razão t de um ou mais coeficientes tende a ser estatisticamente insignificante. d) Embora a razão t de um ou mais coeficientes seja estatisticamente insignificante, o R2, a medida geral da qualidade do ajustamento, pode ser muito alto. e) Os estimadores de MQO e seus erros padrão podem ser sensíveis a pequenas alterações nos dados.
  17. 17. Quebra dos pressupostos: Multicolinearidade Para exemplificar isso, podemos estabelecer considerando a fórmula das variâncias que: 𝑣𝑎𝑟 𝛽2 = 𝜎2 𝑥2𝑖 2 1 − 𝑟23 2 𝑣𝑎𝑟 𝛽3 = 𝜎2 𝑥3𝑖 2 1 − 𝑟23 2 E 𝑐𝑜𝑣 𝛽2, 𝛽3 = 𝑟23 𝜎2 1 − 𝑟23 2 𝑥2𝑖 2 𝑥3𝑖 2
  18. 18. Quebra dos pressupostos: Multicolinearidade Se aplicarmos o limite de 𝑟23 → 1 então teremos: lim 𝑟23→1 𝑣𝑎𝑟( 𝛽2) = ∞ lim 𝑟23→1 𝑣𝑎𝑟( 𝛽3) = ∞ lim 𝑟23→1 𝑐𝑜𝑣( 𝛽2, 𝛽3) = ∞ Tendo de porte dessa informação, podemos identificar a velocidade em que esse aumento das variâncias e covariâncias estão ocorrendo. Tal aspecto ajudou a implementar o fator de inflação da variância (FIV), que é definido como: 𝐹𝐼𝑉 = 1 1 − 𝑟23 2
  19. 19. Quebra dos pressupostos: Multicolinearidade O FIV mostra como a variância de um estimador é inflada pela presença da multicolinearidade. Quando 𝑟23 2 aproxima-se de 1, o FIV aproxima-se do infinito. Ou seja, quando a colinearidade aumenta, a variância de um estimador aumenta e, no limite, pode tornar-se infinita. Se não houver colinearidade entre X2 e X3 o FIV será 1. Assim as equações de variância podem ser expressas também a partir do FIV. 𝑣𝑎𝑟 𝛽2 = 𝜎2 𝑥2𝑖 2 𝐹𝐼𝑉 𝑣𝑎𝑟 𝛽3 = 𝜎2 𝑥3𝑖 2 𝐹𝐼𝑉 Que mostra que as variâncias de 𝛽2 e 𝛽3 são diretamente proporcionais ao FIV.
  20. 20. Quebra dos pressupostos: Multicolinearidade É mostrada na Tabela 10.1 como evolui a Variância, o FIV e a Covariância a medida que aumenta-se a colinearidade (correlação) entre as variáveis X2 e X3.
  21. 21. Quebra dos pressupostos: Multicolinearidade Então, graficamente o comportamento da variância do estimador beta 2 tem um comportamento de crescimento exponencial a medida que a colinearidade se aproxima de 1.
  22. 22. Quebra dos pressupostos: Multicolinearidade Outro indicado útil utilizado é o TOL, que é conhecido como TOLERÂNCIA, trata-se da relação inversa da FIV, ou seja: 𝑇𝑂𝐿𝑗 = 1 𝐹𝐼𝑉𝑗 = (1 − 𝑅𝑗 2 ) Ou seja, quando 𝑅𝑗 2 = 1 (colinearidade perfeita), 𝑇𝑂𝐿𝑗 = 0 e 𝑅𝑗 2 = 0 (ausência de colinearidade), 𝑇𝑂𝐿𝑗 = 1.
  23. 23. Quebra dos pressupostos: Multicolinearidade INTERVALOS DE CONFIANÇA MAIS AMPLOS. Dado os erros padrão grandes, os intervalos de confiança dos parâmetros populacionais relevantes tendem a ser maiores, como podemos ver na Tabela 10.2 abaixo.
  24. 24. Quebra dos pressupostos: Multicolinearidade Por exemplo, quando 𝑟23 = 0,95, o intervalo de confiança para 𝛽2 é maior que quando 𝑟23 = 0 por um fator de 10,26, ou cerca de 3. Dessa forma, em casos de alta multicolinearidade, os dados da amostra podem ser compatíveis com um conjunto diverso de hipóteses. A probabilidade de aceitar uma hipótese falsa (erro tipo II) aumenta.
  25. 25. Quebra dos pressupostos: Multicolinearidade RAZÕES t “INSIGNIFICANTES” Ou seja, individualmente a estatística t é importante para se verificar a significância do estimador, pois, 𝑡 = 𝛽𝑖/𝑒𝑝( 𝛽𝑖). Porém, podemos observar que diante da multicolinearidade, os erros padrão aumentam consideravelmente, tornando os valores t menores. Em tais casos, aceita-se cada vez mais a hipótese nula de que o verdadeira valor populacional é zero.
  26. 26. Quebra dos pressupostos: Multicolinearidade ALTO VALOR DE 𝑅2 , MAS POUCA RAZÕES t SIGNIFICATIVAS. Vamos considerar o modelo de regressão linear com k variáveis: 𝑌𝑖 = 𝛽1 + 𝛽2 𝑋2𝑖 + 𝛽3 𝑋3𝑖 + ⋯ + 𝛽 𝑘 𝑋 𝑘𝑖 + 𝑢𝑖 Em casos de alta colinearidade, é possível constatar, como já verificado anteriormente, que um ou mais coeficientes angulares parciais são não significantes individualmente, baseado no teste t. Nessas situações, o 𝑅2 pode ser tão alto, como 0,9, que de acordo como teste F podemos rejeitar convicentemente a hipótese de que 𝛽2 = 𝛽3 = ⋯ = 𝛽 𝑘 = 0. De fato, esse é um dos indícios de multicolinearidade.
  27. 27. Quebra dos pressupostos: Multicolinearidade SENSIBILIDADE DOS ESTIMADORES DE MQO E DE SEUS ERROS PADRÃO A PEQUENAS ALTERAÇÕES NOS DADOS. Considerando uma alta colinearidade (e não a perfeita), é possível estimar os coeficientes de regressão, mas as estimativas e seus erros padrão tornam-se muito sensíveis até mesmo à menor alteração nos dados. O autor faz uso de uma tabela com 5 informações, onde são alteradas apenas a ordem de algumas observações da variável X3. Trata-se das tabelas 10.3 e 10.4. No slide a seguir encontram-se as tabelas e as estimativas antes e depois da modificação dos dados:
  28. 28. Quebra dos pressupostos: Multicolinearidade Os Resultados de cada modelo são:
  29. 29. Quebra dos pressupostos: Multicolinearidade Detecção da MULTICOLINEARIDADE Segundo Kmenta: 1 – A multicolinearidade é uma questão de grau e não de tipo. A distinção significativa não é entre a presença e a ausência da mesma, mas entre seus vários graus. 2 – Uma vez que a multicolinearidade refere-se à condição das variáveis explanatórias que se supõe não serem estocásticas, ela é uma característica da amostra, e não da população. Ou seja, não são realizado testes para a multicolinearidade, mas é medido o grau da multicolinearidade em uma amostra específica.
  30. 30. Quebra dos pressupostos: Multicolinearidade Com isso, podemos estabelecer algumas observações ou regras a serem utilizadas para identificar a presença o fenômeno da multicolinearidade em uma amostra de dados. Vejamos os principais: 1) 𝑅2 alto, mas poucas razões t significativas. É um dos mais clássicos e diretos sintomas da presença da Multicolinearidade. Evidencia-se como 𝑅2 alto aqueles com valor acima de 0,8. 2) Altas correlações entre os pares das variáveis independentes. Se for observadas correlações acima de 0,8 entre os regressores, devemos ligar o sinal de alerta sobre a presença da multicolinearidade.
  31. 31. Quebra dos pressupostos: Multicolinearidade 3) Regressões auxiliares. É uma das verificações mais comuns, trata-se de uma forma de se descobrir qual variável X está mais relacionada a outras variáveis X. A dinâmica do teste consiste em tirarmos a variável dependente do modelo (Y) e elencar (de forma alternada) outra variável independente e utiliza-la como dependente contra as demais em um novo modelo. Se o R2 desse novo modelo for maior que o R2 do modelo que inclui a variável Y, então há fortes indícios da presença da multicolinearidade.
  32. 32. Quebra dos pressupostos: Multicolinearidade Se tivermos o seguinte modelo: 𝑌𝑖 = 𝛽1 + 𝛽2 𝑋2𝑖 + 𝛽3 𝑋3𝑖 + 𝛽4 𝑋4𝑖 + 𝑢𝑖 𝑅 𝑦 2 E 𝑋2𝑖 = 𝛼1 + 𝛼2 𝑋3𝑖 + 𝛼3 𝑋4𝑖 + 𝑣𝑖 𝑅 𝑋2 2 Se o 𝑅 𝑋2 2 > 𝑅 𝑦 2, então temos forte evidência da existência da Multicolinearidade. Tal regressão pode ser ainda feita considerando as outras variáveis X (X3 e X4) como variáveis dependentes.
  33. 33. Quebra dos pressupostos: Multicolinearidade 4) TOL e FIV. 5) Diagrama de dispersão.
  34. 34. Quebra dos pressupostos: Multicolinearidade
  35. 35. Quebra dos pressupostos: Multicolinearidade Medidas Corretivas Deixa para lá (Não fazer nada). Gujarati remete a um exemplo do Blanchard indicando que a multicolinearidade é algo inerente dos dados (Micronumerosidade) e muitas das vezes não temos escolha sobre os dados disponíveis para a análise empírica. 1) Ter uma informação a priori. É tratado o exemplo sobre consumo (Y) sendo afetado por riqueza (X2) e renda (X3). Ora, se temos a informação de que há um forte grau entre as variáveis X2 e X3, porque manter as duas no modelo, basta rodar o modelo apenas com uma. O conhecimento de vasta literatura é que nos propicia diversos elementos para definir se duas variáveis específicas irão relacionar a algo comum ou não.
  36. 36. Quebra dos pressupostos: Multicolinearidade 2) Combinar dados de corte transversal com séries de tempo. Esse tipo de medida é uma tentativa de aumentar o número de observações na amostra. Empilhar os dados dessa forma é conhecido como montagem de um painel. 3) Exclusão de variável(is) e viés de especificação. Excluir uma das variáveis que está causando a colinearidade é a saída mais comum adotada por quem modela. Porém, em algumas situações essa decisão nos leva a tomar decisões polêmicas. Um dos exemplos citados no livro e a relação que pode existir entre renda e riqueza. Se a teoria econômica informa que essas variáveis devem ser estimadas em conjunto, e verifica- se que ambas possuem forte correlação (colinearidade) então o que devemos atender, a situação em que a teoria define a presença da mesma, ou então tirar a variável do modelo?
  37. 37. Quebra dos pressupostos: Multicolinearidade Quando acontece esse empasse, o que permite mantes duas variáveis no mesmo modelo e a transformação das mesmas. 4) Transformação de variáveis. Usar artifícios como tirar o log, definir uma primeira diferença, ou ate estipular uma transformação proporcional são artifícios que podem ser utilizados para modificar variáveis do modelo. 5) Inserir novos dados. É um artifício muito interessante, no entanto inserir novas informações na amostra pode se mostrar um processo caro e demorado, o que torna algo pouco comum de ser feito.
  38. 38. Quebra dos pressupostos: Multicolinearidade 6) Reduzindo a colinearidade em regressões polinomiais; 7) Uso da análise multivariada para criação de fatores.
  39. 39. Quebra dos pressupostos: Multicolinearidade Exemplo: Uso dos dados de Longley. No Gretl será realizado a partir da tabela 10.7, a mesma estará disponível no mediafire com o nome “Gujarati - Tabela 10.7 - Dados de Longley.gdt”
  40. 40. FIM DO TÓPICO 3

×