SlideShare uma empresa Scribd logo
1 de 31
Baixar para ler offline
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
Prof. Luciana Nunes
lununes@mat.ufrgs.br
INFERÊNCIA
ESTATÍSTICA
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
2
PopulaçãoPopulação AmostraAmostra
Técnica de Amostragem
Inferência estatística
Utilizando uma técnica de amostragem
adequada...
...podemos pensar em fazer uma “Inferência”.
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
3
Inferência
Podemos pensar em fazer inferência
de duas maneiras:
 Testando hipóteses com base em
amostras. ⇒ TESTES DE HIPÓTESES
 Generalizando resultados de uma
amostra para a população de onde ela foi
extraída. ⇒ ESTIMAÇÃO
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
4
Estimação
Para entendermos a ideia da estimação é
preciso que vejamos alguns conceitos:
Parâmetro ⇒ É uma quantidade que resume na
população a informação relativa a uma variável.
Estatística ⇒ É uma quantidade que resume na
amostra a informação de uma variável.
Estimativa ⇒ valor da estatística calculado com
base na amostra efetivamente observada.
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
5
Exemplos de parâmetros
Média ⇒ É uma quantidade que resume na
população a informação relativa a uma variável
quantitativa. Por exemplo, podemos estar
interessados em estimar a média de altura de
uma determinada população.
Proporção ⇒ É uma quantidade que resume na
população a informação relativa a uma variável
qualitativa. Por exemplo, podemos querer estimar
a proporção de homens que têm diabete.
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
6
Alguns parâmetros e as respectivas
estatísticas que geralmente são usadas para estimá-los:
OBS: Toda a formulação apresentada parte da suposição de que os dados
em análise constituem uma amostra aleatória simples da população de
interesse.
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
7
Em geral, os parâmetros são números
desconhecidos (somente serão conhecidos se for feito
um censo – pesquisa de toda a população).
Já as estatísticas são variáveis aleatórias, pois
seus valores dependem dos elementos a serem sorteados
na amostragem. Ao observar efetivamente uma amostra,
a estatística se identifica com um valor (resultado do
cálculo), chamado de estimativa.
Por exemplo, se em uma amostra de n = 90
sujeitos, encontrarmos 72 sujeitos com a característica
de interesse, então temos a seguinte estimativa para o
parâmetro π:
80
90
72
,P == (ou, 80%)
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
8
Quanto ao erro amostral
Como as informações provêm de um conjunto menor
que a população, cometem-se erros amostrais ao se fazer
uma inferência.
Esses erros são quantificados por um valor
numérico, denominado probabilidade.
O erro amostral mencionado neste contexto não
deve ser confundido com os erros não amostrais (vieses),
que são, por exemplo, erro de medida, erro de digitação,
respondente não ter entendido a pergunta, etc . O erro
amostral é conseqüência inevitável da tentativa de
generalizações ou da flutuação de amostra para amostra,
enquanto os erros não amostrais devem ser evitados (por
exemplo, por treinamento dos entrevistadores, controle
de qualidade da digitação, aplicação de questionários
testados, instrumentos de medida calibrados...).
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
9
Há duas formas para se fazer a
estimação de parâmetros:
1. ESTIMATIVAS PONTUAIS
Valor numérico único usado para
fazer uma inferência sobre um
parâmetro desconhecido da
população.
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
10
2. ESTIMATIVAS POR INTERVALO
Um intervalo de valores é usado
para fazer uma inferência sobre um
parâmetro desconhecido da população.
A idéia do intervalo de confiança (IC)
é um refinamento da estimativa
pontual, de modo que este intervalo
tenha uma probabilidade de conter o
parâmetro.
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
Exemplo
SILVA, R.M.G.; KUPEK, E.; PERES, K. G.
"Prevalência de doação de sangue e
fatores associados em Florianópolis, Sul
do Brasil: estudo de base populacional."
Cadernos de Saúde Pública v.29 n.10
(2013): 2008-2016.
11
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
A prevalência de doação alguma vez na vida foi
30,6% (IC95%:28,4;32,8%), e doação nos últimos
12 meses 6,2% (IC95%:5,1;7,4%). Entre os
participantes que referiram doação nos últimos
12 meses 80,4% (IC95%:72,7;88,0%) declararam
doação espontânea; 15,9% (IC95%:8,8;22,9%)
doação de sangue para reposição; e 31,8%
(IC95%:22,8;40,7%) doação de repetição. 12
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
13
Estimação para proporção
•Por ponto: P
•Por intervalo:
com (1-α)% de confiança
Onde,
( )





 −
±
n
PP
zP
1
2/α
(n)a amostraunidades dnúmero de
terísticaom a caracunidades cnúmero de
P =
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
14
Estimação para média
•Por ponto:
•Por intervalo:
Ou






±
n
zX
σ
α 2/
com (1-α)% de
confiança






± −
n
s
tX n )2/;1( α
Quando a amostra é pequena
e σ é desconhecido.
Geralmente, α vale 0,1, 0,05 ou 0,01, gerando
intervalos de 90%, 95% ou 99% de confiança.
X
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
15
Esquema do Intervalo de Confiança
Toda afirmação deve vir acompanhada de um grau de
confiança, ou grau de certeza, ou seja, quanto se está
certo ao comunicar aquela informação. O nível ou grau de
confiança é denotado por 100(1-α), onde α (alfa) é o
nível de significância.
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
16
Perceba que podemos ter mais de um intervalo de confiança para um
mesmo parâmetro. Isso acontece porque podemos ter mais de uma
amostra de mesmo tamanho para uma mesma população. Por exemplo,
pense: quantas amostras diferentes de tamanho 100 podemos escolher
de uma população de tamanho 1000? Entretanto, na “vida real”
coletamos somente uma amostra, entre todas as possíveis amostras de
mesmo tamanho.
O conceito de
intervalo de confiança
pode ser visualizado
pela figura ao lado:
Estimativa
pontual
IC
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
17
Comentários...
 Quando se retira uma amostra e se calcula um intervalo de
confiança, não se sabe, na verdade, se o parâmetro da população
se encontra naquele intervalo calculado. Trabalhamos com um “nível
de confiança” para fazermos afirmações sobre nossas estimativas.
Essas afirmações baseiam-se na teoria da probabilidade e, nesse
caso, podemos afirmar com probabilidade (1-α) que o intervalo
obtido com essa amostra deve conter o verdadeiro valor do
parâmetro.
 O importante é reconhecer que se está usando um método com
100(1-α)% de probabilidade de sucesso: em uma seqüência grande
de repetições, 100(1-α)% dos intervalos assim construídos
conterão o verdadeiro valor do parâmetro, embora não se saiba
exatamente quanto ele vale.
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
18
Testes de Hipóteses
Muitas vezes o pesquisador tem
interesse no comportamento de uma
variável ou de uma possível associação
entre variáveis. Essas afirmações
provisórias são hipóteses de pesquisa.
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
19
Hipóteses Estatísticas
A partir das hipóteses de pesquisa, podemos
elaborar as hipóteses estatísticas.
Por definição, as hipóteses estatísticas são
suposições feitas sobre o valor dos parâmetros
nas populações. Elas são duas:
Hipótese nula (H0) ⇒ estabelece a ausência de diferença
entre os parâmetros. É sempre a primeira a ser
formulada.
Hipótese alternativa (H1 ou Ha) ⇒ é a hipótese contrária
à hipótese nula. Geralmente, é a que o pesquisador quer
ver confirmada.
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
20
Testes de hipóteses
O teste de hipóteses é um
procedimento estatístico através do qual
se aceita ou se rejeita uma hipótese, nesse
caso, aceitamos ou rejeitamos a hipótese
nula (H0). Nos baseamos na amostra para
tomar tal decisão. Por isso, o teste de
hipóteses é um método estatístico
inferencial.
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
21
Testes de hipóteses
Para a verificação das hipóteses, as
decisões envolverão um risco máximo
admissível para o erro de afirmar que
existe uma diferença, quando ela,
efetivamente, não existe, chamado α (alfa)
que é o nível de significância. O
pesquisador estabelece α antes de realizar
o teste de hipóteses.
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
22
Região crítica do teste
Para seguirmos o raciocínio sobre o teste de
hipóteses é preciso que o conceito de região
crítica do teste seja estabelecido.
Suponhamos, inicialmente, H0 como
verdadeira. H0 somente vai ser rejeitada em
favor de H1, se houver evidência suficiente que a
contradiga. A existência dessa possível
evidência será verificada num conjunto de
observações relativas ao problema em estudo
(amostra).
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
23
Região crítica do teste
Então, a partir dos dados amostrais, se
calcula uma estatística chamada de
“estatística do teste”.
Essa estatística do teste, supondo H0
verdadeira, deve seguir uma distribuição
de probabilidades que será a referência
básica para analisarmos o resultado da
amostra e decidirmos sobre aceitar ou
rejeitar H0.
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
24
Um exemplo de região crítica
Com a distribuição de probabilidades da
estatística do teste, podemos avaliar
melhor a adequação de H0 com o resultado
da estatística calculada com base na
amostra.
Suponha que, por exemplo, a estatística
do teste tem distribuição Normal. Nesse
caso, a distribuição tem a forma como
apresentada a seguir:
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
25
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
26
Testes bilaterais e unilaterais
A região crítica (indicada pelas setas na figura) na
respectiva distribuição de probabilidades vai depender da
hipótese alternativa. No exemplo abaixo foi considerado
α=0,05.
95%
95%
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
27
Região crítica
Com a distribuição de referência podemos
definir qual a região crítica do teste. Ou seja, a
decisão do teste se baseia no seguinte: se o
valor da estatística do teste cai na região
crítica (região hachurada na figura anterior),
rejeita-se H0, se o valor cai fora da região
crítica, aceita-se H0. Repare que a probabilidade
(α) associada a região crítica (de rejeição) é
bem menor que seu complemento (1- α). Essa
probabilidade α deve ser previamente
estabelecida.
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
28
Erros
Ainda na fase do planejamento de uma
pesquisa, quando desejamos confirmar ou
refutar alguma hipótese, é comum estabelecer o
valor da probabilidade tolerável de incorrer no
erro de rejeitar H0, quando H0 é verdadeira.
Este valor é conhecido como nível de
significância do teste e é designado pela letra
grega α. É comum se adotar nível de
significância de 5%, isto é, = 0,05.
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
29
Erros
Quando o teste rejeita H0, a probabilidade de se
estar tomando a decisão errada é, no máximo, igual ao
nível de significância adotado. Desta forma, temos certa
garantia da veracidade de H1.
Uma interpretação um pouco diferente é dada
quando o teste aceita a hipótese nula H0. Neste caso,
podemos dizer: os dados estão em conformidade com a
hipótese nula! Isto não implica, contudo, que H0 seja
realmente a hipótese verdadeira, mas que os dados não
mostraram evidência suficiente para rejeitá-la e, por
isso, continuamos acreditando em sua veracidade.
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
30
Erros
Estabelecido um nível de significância antes da
observação dos dados, temos as seguintes
possibilidades:
Amostragem e tratamento de dadosAmostragem e tratamento de dados
faltantesfaltantes
31
Conclusão
Observamos no esquema que, se o teste rejeitar
H0, temos controle do risco de erro (probabilidade igual
a α). Por outro lado, se o teste aceitar H0, não temos
controle do risco de erro. No esquema, representamos a
probabilidade de ocorrer o erro tipo II como β, mas, ao
contrário de α, a probabilidade β não é fixada a priori.
Em razão disso, usamos uma linguagem mais enfática
quando o teste rejeita H0 (p. ex., os dados provaram
estatisticamente que existe diferença entre...) e uma
linguagem mais suave quando o teste aceita H0 (p. ex., os
dados não mostraram evidência suficiente para que se
diga que há diferença entre...).

Mais conteúdo relacionado

Mais procurados

Teste de hipóteses - paramétricos
Teste de hipóteses - paramétricosTeste de hipóteses - paramétricos
Teste de hipóteses - paramétricosRodrigo Rodrigues
 
Exercicios amostragem e tamanho amostra
Exercicios amostragem e tamanho amostraExercicios amostragem e tamanho amostra
Exercicios amostragem e tamanho amostramorozo
 
Exercícios Resolvidos: Distribuição Binomial
Exercícios Resolvidos: Distribuição BinomialExercícios Resolvidos: Distribuição Binomial
Exercícios Resolvidos: Distribuição BinomialDiego Oliveira
 
Medidas de tendencia central
Medidas de tendencia centralMedidas de tendencia central
Medidas de tendencia centralrosania39
 
Introdução aos métodos de pesquisa. 2, Métodos quaNTItativos
Introdução aos métodos de pesquisa. 2, Métodos quaNTItativosIntrodução aos métodos de pesquisa. 2, Métodos quaNTItativos
Introdução aos métodos de pesquisa. 2, Métodos quaNTItativosLeticia Strehl
 
Cálculo do tamanho de uma Amostra
Cálculo do tamanho de uma AmostraCálculo do tamanho de uma Amostra
Cálculo do tamanho de uma AmostraFlávia Salame
 

Mais procurados (20)

Aula 30 testes de hipóteses
Aula 30   testes de hipótesesAula 30   testes de hipóteses
Aula 30 testes de hipóteses
 
Aula 22 probabilidade - parte 1
Aula 22   probabilidade - parte 1Aula 22   probabilidade - parte 1
Aula 22 probabilidade - parte 1
 
Teste de hipóteses - paramétricos
Teste de hipóteses - paramétricosTeste de hipóteses - paramétricos
Teste de hipóteses - paramétricos
 
Testes de hipóteses
Testes de hipótesesTestes de hipóteses
Testes de hipóteses
 
Teste t student
Teste t studentTeste t student
Teste t student
 
Correlação Estatística
Correlação EstatísticaCorrelação Estatística
Correlação Estatística
 
Exercicios amostragem e tamanho amostra
Exercicios amostragem e tamanho amostraExercicios amostragem e tamanho amostra
Exercicios amostragem e tamanho amostra
 
Cálculo Amostral
Cálculo AmostralCálculo Amostral
Cálculo Amostral
 
Regressão linear simples
Regressão linear simplesRegressão linear simples
Regressão linear simples
 
Bioestatística
BioestatísticaBioestatística
Bioestatística
 
Amostragem
AmostragemAmostragem
Amostragem
 
Aula 12 medidas de dispersão
Aula 12   medidas de dispersãoAula 12   medidas de dispersão
Aula 12 medidas de dispersão
 
Exercícios Resolvidos: Distribuição Binomial
Exercícios Resolvidos: Distribuição BinomialExercícios Resolvidos: Distribuição Binomial
Exercícios Resolvidos: Distribuição Binomial
 
Aula 01 introdução a estatística
Aula 01   introdução a estatísticaAula 01   introdução a estatística
Aula 01 introdução a estatística
 
Medidas de tendencia central
Medidas de tendencia centralMedidas de tendencia central
Medidas de tendencia central
 
Introdução aos métodos de pesquisa. 2, Métodos quaNTItativos
Introdução aos métodos de pesquisa. 2, Métodos quaNTItativosIntrodução aos métodos de pesquisa. 2, Métodos quaNTItativos
Introdução aos métodos de pesquisa. 2, Métodos quaNTItativos
 
Cálculo do tamanho de uma Amostra
Cálculo do tamanho de uma AmostraCálculo do tamanho de uma Amostra
Cálculo do tamanho de uma Amostra
 
Princípios de Estatística Inferencial - I
Princípios de Estatística Inferencial - IPrincípios de Estatística Inferencial - I
Princípios de Estatística Inferencial - I
 
Conceitos Básicos de Estatística II
Conceitos Básicos de Estatística IIConceitos Básicos de Estatística II
Conceitos Básicos de Estatística II
 
Estatistica Basica para Saude aula 2
Estatistica Basica para Saude aula 2Estatistica Basica para Saude aula 2
Estatistica Basica para Saude aula 2
 

Destaque

Aula 2 - Sistemas de informação
Aula 2 - Sistemas de informaçãoAula 2 - Sistemas de informação
Aula 2 - Sistemas de informaçãoCaroline Godoy
 
Retextualização aula
Retextualização aulaRetextualização aula
Retextualização aulaIsis Barros
 
GÊNERO TEXTUAL: CHARGE
GÊNERO TEXTUAL: CHARGEGÊNERO TEXTUAL: CHARGE
GÊNERO TEXTUAL: CHARGEJomari
 
Texto para avaliar leitura 3º ano
Texto para avaliar leitura 3º anoTexto para avaliar leitura 3º ano
Texto para avaliar leitura 3º anoSilvânia Silveira
 

Destaque (6)

Inferência
InferênciaInferência
Inferência
 
Aula 2 - Sistemas de informação
Aula 2 - Sistemas de informaçãoAula 2 - Sistemas de informação
Aula 2 - Sistemas de informação
 
Retextualização aula
Retextualização aulaRetextualização aula
Retextualização aula
 
Pressuposto e subentendido
Pressuposto e subentendidoPressuposto e subentendido
Pressuposto e subentendido
 
GÊNERO TEXTUAL: CHARGE
GÊNERO TEXTUAL: CHARGEGÊNERO TEXTUAL: CHARGE
GÊNERO TEXTUAL: CHARGE
 
Texto para avaliar leitura 3º ano
Texto para avaliar leitura 3º anoTexto para avaliar leitura 3º ano
Texto para avaliar leitura 3º ano
 

Semelhante a Amostragem, estimação e testes de hipóteses com dados faltantes

Fundamentos da bioestatística
Fundamentos da bioestatísticaFundamentos da bioestatística
Fundamentos da bioestatísticaJuliano van Melis
 
amostragem.ppt
amostragem.pptamostragem.ppt
amostragem.pptwfkam
 
Formas de amostragem
Formas de amostragemFormas de amostragem
Formas de amostragemPaulo Diniz
 
Formas de amostragem inspeções
Formas de amostragem inspeçõesFormas de amostragem inspeções
Formas de amostragem inspeçõesPaulo Diniz
 
Apresentacao quanti v4
Apresentacao quanti v4Apresentacao quanti v4
Apresentacao quanti v4Procambiental
 
bioestatística - 1 parte
bioestatística - 1 partebioestatística - 1 parte
bioestatística - 1 parteRobson Odé
 
Curso_de_Estatística_Aplicada_Usando_o_R.ppt
Curso_de_Estatística_Aplicada_Usando_o_R.pptCurso_de_Estatística_Aplicada_Usando_o_R.ppt
Curso_de_Estatística_Aplicada_Usando_o_R.pptssuser2b53fe
 
A escolha do método estatístico profa. dra. lívia maria andaló tenuta (unic...
A escolha do método estatístico   profa. dra. lívia maria andaló tenuta (unic...A escolha do método estatístico   profa. dra. lívia maria andaló tenuta (unic...
A escolha do método estatístico profa. dra. lívia maria andaló tenuta (unic...Jose Carlos Carlos Melo
 
Curso_de_Estatística_Aplicada_Usando_o_R.ppt
Curso_de_Estatística_Aplicada_Usando_o_R.pptCurso_de_Estatística_Aplicada_Usando_o_R.ppt
Curso_de_Estatística_Aplicada_Usando_o_R.pptssuser2b53fe
 
1-bioestatstica-140320051658-phpapp02.pdf
1-bioestatstica-140320051658-phpapp02.pdf1-bioestatstica-140320051658-phpapp02.pdf
1-bioestatstica-140320051658-phpapp02.pdfLuizAntnioDosSantos3
 
Análise de variância.pptx
Análise de variância.pptxAnálise de variância.pptx
Análise de variância.pptxAndre142201
 
Cap5 - Parte 2 - Intervalo De Confiança 1
Cap5 - Parte 2 - Intervalo De Confiança 1Cap5 - Parte 2 - Intervalo De Confiança 1
Cap5 - Parte 2 - Intervalo De Confiança 1Regis Andrade
 
Poder Amostral e Estatística
Poder Amostral e EstatísticaPoder Amostral e Estatística
Poder Amostral e EstatísticaSandro Esteves
 
1. Introdução a estatística, venha aprender
1. Introdução a estatística, venha aprender1. Introdução a estatística, venha aprender
1. Introdução a estatística, venha aprenderjuliocezar20067
 
Hipóteses e Estimativa do tamanho da amostra (aula 6)
Hipóteses e Estimativa do tamanho da amostra (aula 6)Hipóteses e Estimativa do tamanho da amostra (aula 6)
Hipóteses e Estimativa do tamanho da amostra (aula 6)Sandra Lago Moraes
 
estatistica.docx
estatistica.docxestatistica.docx
estatistica.docxpablovar159
 
Cap5 - Parte 1 - Conceitos
Cap5 - Parte 1 - ConceitosCap5 - Parte 1 - Conceitos
Cap5 - Parte 1 - ConceitosRegis Andrade
 

Semelhante a Amostragem, estimação e testes de hipóteses com dados faltantes (20)

Fundamentos da bioestatística
Fundamentos da bioestatísticaFundamentos da bioestatística
Fundamentos da bioestatística
 
amostragem.ppt
amostragem.pptamostragem.ppt
amostragem.ppt
 
Formas de amostragem
Formas de amostragemFormas de amostragem
Formas de amostragem
 
Formas de amostragem inspeções
Formas de amostragem inspeçõesFormas de amostragem inspeções
Formas de amostragem inspeções
 
Apresentacao quanti v4
Apresentacao quanti v4Apresentacao quanti v4
Apresentacao quanti v4
 
bioestatística - 1 parte
bioestatística - 1 partebioestatística - 1 parte
bioestatística - 1 parte
 
Curso_de_Estatística_Aplicada_Usando_o_R.ppt
Curso_de_Estatística_Aplicada_Usando_o_R.pptCurso_de_Estatística_Aplicada_Usando_o_R.ppt
Curso_de_Estatística_Aplicada_Usando_o_R.ppt
 
A escolha do método estatístico profa. dra. lívia maria andaló tenuta (unic...
A escolha do método estatístico   profa. dra. lívia maria andaló tenuta (unic...A escolha do método estatístico   profa. dra. lívia maria andaló tenuta (unic...
A escolha do método estatístico profa. dra. lívia maria andaló tenuta (unic...
 
Curso_de_Estatística_Aplicada_Usando_o_R.ppt
Curso_de_Estatística_Aplicada_Usando_o_R.pptCurso_de_Estatística_Aplicada_Usando_o_R.ppt
Curso_de_Estatística_Aplicada_Usando_o_R.ppt
 
1-bioestatstica-140320051658-phpapp02.pdf
1-bioestatstica-140320051658-phpapp02.pdf1-bioestatstica-140320051658-phpapp02.pdf
1-bioestatstica-140320051658-phpapp02.pdf
 
Amostragem
AmostragemAmostragem
Amostragem
 
Análise de variância.pptx
Análise de variância.pptxAnálise de variância.pptx
Análise de variância.pptx
 
Aula19
Aula19Aula19
Aula19
 
Cap5 - Parte 2 - Intervalo De Confiança 1
Cap5 - Parte 2 - Intervalo De Confiança 1Cap5 - Parte 2 - Intervalo De Confiança 1
Cap5 - Parte 2 - Intervalo De Confiança 1
 
Poder Amostral e Estatística
Poder Amostral e EstatísticaPoder Amostral e Estatística
Poder Amostral e Estatística
 
1. Introdução a estatística, venha aprender
1. Introdução a estatística, venha aprender1. Introdução a estatística, venha aprender
1. Introdução a estatística, venha aprender
 
Estatística para Ciências Sociais
Estatística para Ciências SociaisEstatística para Ciências Sociais
Estatística para Ciências Sociais
 
Hipóteses e Estimativa do tamanho da amostra (aula 6)
Hipóteses e Estimativa do tamanho da amostra (aula 6)Hipóteses e Estimativa do tamanho da amostra (aula 6)
Hipóteses e Estimativa do tamanho da amostra (aula 6)
 
estatistica.docx
estatistica.docxestatistica.docx
estatistica.docx
 
Cap5 - Parte 1 - Conceitos
Cap5 - Parte 1 - ConceitosCap5 - Parte 1 - Conceitos
Cap5 - Parte 1 - Conceitos
 

Amostragem, estimação e testes de hipóteses com dados faltantes

  • 1. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes Prof. Luciana Nunes lununes@mat.ufrgs.br INFERÊNCIA ESTATÍSTICA
  • 2. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 2 PopulaçãoPopulação AmostraAmostra Técnica de Amostragem Inferência estatística Utilizando uma técnica de amostragem adequada... ...podemos pensar em fazer uma “Inferência”.
  • 3. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 3 Inferência Podemos pensar em fazer inferência de duas maneiras:  Testando hipóteses com base em amostras. ⇒ TESTES DE HIPÓTESES  Generalizando resultados de uma amostra para a população de onde ela foi extraída. ⇒ ESTIMAÇÃO
  • 4. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 4 Estimação Para entendermos a ideia da estimação é preciso que vejamos alguns conceitos: Parâmetro ⇒ É uma quantidade que resume na população a informação relativa a uma variável. Estatística ⇒ É uma quantidade que resume na amostra a informação de uma variável. Estimativa ⇒ valor da estatística calculado com base na amostra efetivamente observada.
  • 5. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 5 Exemplos de parâmetros Média ⇒ É uma quantidade que resume na população a informação relativa a uma variável quantitativa. Por exemplo, podemos estar interessados em estimar a média de altura de uma determinada população. Proporção ⇒ É uma quantidade que resume na população a informação relativa a uma variável qualitativa. Por exemplo, podemos querer estimar a proporção de homens que têm diabete.
  • 6. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 6 Alguns parâmetros e as respectivas estatísticas que geralmente são usadas para estimá-los: OBS: Toda a formulação apresentada parte da suposição de que os dados em análise constituem uma amostra aleatória simples da população de interesse.
  • 7. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 7 Em geral, os parâmetros são números desconhecidos (somente serão conhecidos se for feito um censo – pesquisa de toda a população). Já as estatísticas são variáveis aleatórias, pois seus valores dependem dos elementos a serem sorteados na amostragem. Ao observar efetivamente uma amostra, a estatística se identifica com um valor (resultado do cálculo), chamado de estimativa. Por exemplo, se em uma amostra de n = 90 sujeitos, encontrarmos 72 sujeitos com a característica de interesse, então temos a seguinte estimativa para o parâmetro π: 80 90 72 ,P == (ou, 80%)
  • 8. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 8 Quanto ao erro amostral Como as informações provêm de um conjunto menor que a população, cometem-se erros amostrais ao se fazer uma inferência. Esses erros são quantificados por um valor numérico, denominado probabilidade. O erro amostral mencionado neste contexto não deve ser confundido com os erros não amostrais (vieses), que são, por exemplo, erro de medida, erro de digitação, respondente não ter entendido a pergunta, etc . O erro amostral é conseqüência inevitável da tentativa de generalizações ou da flutuação de amostra para amostra, enquanto os erros não amostrais devem ser evitados (por exemplo, por treinamento dos entrevistadores, controle de qualidade da digitação, aplicação de questionários testados, instrumentos de medida calibrados...).
  • 9. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 9 Há duas formas para se fazer a estimação de parâmetros: 1. ESTIMATIVAS PONTUAIS Valor numérico único usado para fazer uma inferência sobre um parâmetro desconhecido da população.
  • 10. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 10 2. ESTIMATIVAS POR INTERVALO Um intervalo de valores é usado para fazer uma inferência sobre um parâmetro desconhecido da população. A idéia do intervalo de confiança (IC) é um refinamento da estimativa pontual, de modo que este intervalo tenha uma probabilidade de conter o parâmetro.
  • 11. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes Exemplo SILVA, R.M.G.; KUPEK, E.; PERES, K. G. "Prevalência de doação de sangue e fatores associados em Florianópolis, Sul do Brasil: estudo de base populacional." Cadernos de Saúde Pública v.29 n.10 (2013): 2008-2016. 11
  • 12. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes A prevalência de doação alguma vez na vida foi 30,6% (IC95%:28,4;32,8%), e doação nos últimos 12 meses 6,2% (IC95%:5,1;7,4%). Entre os participantes que referiram doação nos últimos 12 meses 80,4% (IC95%:72,7;88,0%) declararam doação espontânea; 15,9% (IC95%:8,8;22,9%) doação de sangue para reposição; e 31,8% (IC95%:22,8;40,7%) doação de repetição. 12
  • 13. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 13 Estimação para proporção •Por ponto: P •Por intervalo: com (1-α)% de confiança Onde, ( )       − ± n PP zP 1 2/α (n)a amostraunidades dnúmero de terísticaom a caracunidades cnúmero de P =
  • 14. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 14 Estimação para média •Por ponto: •Por intervalo: Ou       ± n zX σ α 2/ com (1-α)% de confiança       ± − n s tX n )2/;1( α Quando a amostra é pequena e σ é desconhecido. Geralmente, α vale 0,1, 0,05 ou 0,01, gerando intervalos de 90%, 95% ou 99% de confiança. X
  • 15. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 15 Esquema do Intervalo de Confiança Toda afirmação deve vir acompanhada de um grau de confiança, ou grau de certeza, ou seja, quanto se está certo ao comunicar aquela informação. O nível ou grau de confiança é denotado por 100(1-α), onde α (alfa) é o nível de significância.
  • 16. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 16 Perceba que podemos ter mais de um intervalo de confiança para um mesmo parâmetro. Isso acontece porque podemos ter mais de uma amostra de mesmo tamanho para uma mesma população. Por exemplo, pense: quantas amostras diferentes de tamanho 100 podemos escolher de uma população de tamanho 1000? Entretanto, na “vida real” coletamos somente uma amostra, entre todas as possíveis amostras de mesmo tamanho. O conceito de intervalo de confiança pode ser visualizado pela figura ao lado: Estimativa pontual IC
  • 17. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 17 Comentários...  Quando se retira uma amostra e se calcula um intervalo de confiança, não se sabe, na verdade, se o parâmetro da população se encontra naquele intervalo calculado. Trabalhamos com um “nível de confiança” para fazermos afirmações sobre nossas estimativas. Essas afirmações baseiam-se na teoria da probabilidade e, nesse caso, podemos afirmar com probabilidade (1-α) que o intervalo obtido com essa amostra deve conter o verdadeiro valor do parâmetro.  O importante é reconhecer que se está usando um método com 100(1-α)% de probabilidade de sucesso: em uma seqüência grande de repetições, 100(1-α)% dos intervalos assim construídos conterão o verdadeiro valor do parâmetro, embora não se saiba exatamente quanto ele vale.
  • 18. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 18 Testes de Hipóteses Muitas vezes o pesquisador tem interesse no comportamento de uma variável ou de uma possível associação entre variáveis. Essas afirmações provisórias são hipóteses de pesquisa.
  • 19. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 19 Hipóteses Estatísticas A partir das hipóteses de pesquisa, podemos elaborar as hipóteses estatísticas. Por definição, as hipóteses estatísticas são suposições feitas sobre o valor dos parâmetros nas populações. Elas são duas: Hipótese nula (H0) ⇒ estabelece a ausência de diferença entre os parâmetros. É sempre a primeira a ser formulada. Hipótese alternativa (H1 ou Ha) ⇒ é a hipótese contrária à hipótese nula. Geralmente, é a que o pesquisador quer ver confirmada.
  • 20. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 20 Testes de hipóteses O teste de hipóteses é um procedimento estatístico através do qual se aceita ou se rejeita uma hipótese, nesse caso, aceitamos ou rejeitamos a hipótese nula (H0). Nos baseamos na amostra para tomar tal decisão. Por isso, o teste de hipóteses é um método estatístico inferencial.
  • 21. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 21 Testes de hipóteses Para a verificação das hipóteses, as decisões envolverão um risco máximo admissível para o erro de afirmar que existe uma diferença, quando ela, efetivamente, não existe, chamado α (alfa) que é o nível de significância. O pesquisador estabelece α antes de realizar o teste de hipóteses.
  • 22. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 22 Região crítica do teste Para seguirmos o raciocínio sobre o teste de hipóteses é preciso que o conceito de região crítica do teste seja estabelecido. Suponhamos, inicialmente, H0 como verdadeira. H0 somente vai ser rejeitada em favor de H1, se houver evidência suficiente que a contradiga. A existência dessa possível evidência será verificada num conjunto de observações relativas ao problema em estudo (amostra).
  • 23. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 23 Região crítica do teste Então, a partir dos dados amostrais, se calcula uma estatística chamada de “estatística do teste”. Essa estatística do teste, supondo H0 verdadeira, deve seguir uma distribuição de probabilidades que será a referência básica para analisarmos o resultado da amostra e decidirmos sobre aceitar ou rejeitar H0.
  • 24. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 24 Um exemplo de região crítica Com a distribuição de probabilidades da estatística do teste, podemos avaliar melhor a adequação de H0 com o resultado da estatística calculada com base na amostra. Suponha que, por exemplo, a estatística do teste tem distribuição Normal. Nesse caso, a distribuição tem a forma como apresentada a seguir:
  • 25. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 25
  • 26. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 26 Testes bilaterais e unilaterais A região crítica (indicada pelas setas na figura) na respectiva distribuição de probabilidades vai depender da hipótese alternativa. No exemplo abaixo foi considerado α=0,05. 95% 95%
  • 27. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 27 Região crítica Com a distribuição de referência podemos definir qual a região crítica do teste. Ou seja, a decisão do teste se baseia no seguinte: se o valor da estatística do teste cai na região crítica (região hachurada na figura anterior), rejeita-se H0, se o valor cai fora da região crítica, aceita-se H0. Repare que a probabilidade (α) associada a região crítica (de rejeição) é bem menor que seu complemento (1- α). Essa probabilidade α deve ser previamente estabelecida.
  • 28. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 28 Erros Ainda na fase do planejamento de uma pesquisa, quando desejamos confirmar ou refutar alguma hipótese, é comum estabelecer o valor da probabilidade tolerável de incorrer no erro de rejeitar H0, quando H0 é verdadeira. Este valor é conhecido como nível de significância do teste e é designado pela letra grega α. É comum se adotar nível de significância de 5%, isto é, = 0,05.
  • 29. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 29 Erros Quando o teste rejeita H0, a probabilidade de se estar tomando a decisão errada é, no máximo, igual ao nível de significância adotado. Desta forma, temos certa garantia da veracidade de H1. Uma interpretação um pouco diferente é dada quando o teste aceita a hipótese nula H0. Neste caso, podemos dizer: os dados estão em conformidade com a hipótese nula! Isto não implica, contudo, que H0 seja realmente a hipótese verdadeira, mas que os dados não mostraram evidência suficiente para rejeitá-la e, por isso, continuamos acreditando em sua veracidade.
  • 30. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 30 Erros Estabelecido um nível de significância antes da observação dos dados, temos as seguintes possibilidades:
  • 31. Amostragem e tratamento de dadosAmostragem e tratamento de dados faltantesfaltantes 31 Conclusão Observamos no esquema que, se o teste rejeitar H0, temos controle do risco de erro (probabilidade igual a α). Por outro lado, se o teste aceitar H0, não temos controle do risco de erro. No esquema, representamos a probabilidade de ocorrer o erro tipo II como β, mas, ao contrário de α, a probabilidade β não é fixada a priori. Em razão disso, usamos uma linguagem mais enfática quando o teste rejeita H0 (p. ex., os dados provaram estatisticamente que existe diferença entre...) e uma linguagem mais suave quando o teste aceita H0 (p. ex., os dados não mostraram evidência suficiente para que se diga que há diferença entre...).

Notas do Editor

  1. Clique para adicionar texto