SlideShare uma empresa Scribd logo
Exercícios de Recuperação – 1º Bimestre
Matemática Básica – Professor Rafael
Números Inteiros
Adição e Subtração:
A adição de dois números inteiros obedece às seguintes
regras:
a ) números de mesmo sinal : somam-se os módulos e
conserva-se o sinal comum.
Exemplos:
(-3) + (-5) + (-2) = - 10
(-7) + (-6) = - 13
b) números de sinais opostos: subtraem-se os módulos e
conserva-se o sinal do maior em módulo.
Exemplos:
(-3) + (+7) = + 4
(-12) + (+5) = -7
10 – (-3) = 10 + 3 = 13
(-5) – (- 10) = (-5) +10 = +5 = 5
(-3) – (+7) = (-3) -7 = - 10
Multiplicação
A multiplicação de números inteiros, dar-se-á segundo a
seguinte regra de sinais:
(+) x (+) = +
(+) x (-) = -
(-) x (+) = -
(-) x (-) = +
Exemplos:
(-3) x (-4) = +12 = 12
(-4) x (+3) = -12
Potenciação
É um caso particular da multiplicação, onde os fatores são
iguais. Por exemplo, 53 = 5.5.5 = 125, 71 = 7, 43 = 4.4.4 =
64, etc.
Exemplos:
(-2)4 = +16 = 16
(-3)2 = +9 = 9
(-5)4 = +625 = 625
(-1)4 = + 1 = 1
(-2)3 = - 8
(-5)3 = - 125
(-1)13 = - 1
Divisão
A divisão de números inteiros, no que concerne à regra de
sinais, obedece às mesmas regras vistas para a
multiplicação, ou seja:
Exemplos:
(–10) : (– 2) = + 5 = 5
(– 30) : (+ 5) = – 6
Expressões Numéricas
Nas expressões, as operações se realizam obedecendo à
seguinte ordem:
1º) multiplicações e divisões ( X ÷ )
2º) adições e subtrações ( + - )
Se houver sinais de associação (parênteses, colchetes e
chaves) devemos proceder da seguinte maneira:
1º) As contas dentro dos parênteses seguindo a ordem
acima colocada
2º) As contas dentro dos colchetes seguindo a ordem
acima colocada
3º) As contas dentro das chaves seguindo a ordem
acima colocada
1) Calcule as adições:
a) (+20) + (-18) b) (+21) + (-30)
c) (-81) + (-17) d) (+37) + (+62)
2) Calcule as subtrações:
a) (-9) – (+15) b) (+16) – (+20)
c) (-1) – (-18) d) (-72) – (-81)
3) Calcule as multiplicações:
a) (-20) . (+4) b) (-8) . (-7)
c) (+23) . (+3) d) (+2) . (-27)
4) Resolva as divisões:
a) (-40) : (+2) b) (+20) : (-4)
c) (-18) : (-3) d) (+36) : (+4)
5) Calcule as Potências:
a) (-11)² b) (+5)³
c) ( -7)¹ d) 0²
6) Calcule o valor das expressões:
a) 16+[10-(18:3+2)+5]
b) 25-[12-(3x2+1)]
c) 90-[25+(5x2-1)+3]
d) 45+[(8x5-10:2)+(18:6-2)]
e) 50-2x{7+8:2-[9-3x(5-4)]}
f) 100-3x{5+8:2-[3x(7-6)]}
g) 1000 - [(2 . 4 - 6) + ( 2 + 6 . 4)]
h) 60 + 2 . {[ 4 . ( 6 + 2 ) - 10 ] + 12}
i) [( 4 + 16 . 2) . 5 - 10] . 100
j) { 10 + [ 5 . ( 4 + 2 . 5) - 8] . 2 } - 100
k) 80 - 5 . ( 28 - 6 . 4 ) + 6 - 3 . 4
Números Racionais
1ª condição: denominadores iguais.
Quando os denominadores são iguais, os numeradores
devem ser somados ou subtraídos de acordo com os sinais
operatórios e o valor do denominador mantido.
Observe os exemplos:
2º condição: denominadores diferentes.
Nas operações da adição ou subtração envolvendo
números na forma de fração com denominadores diferentes,
devemos criar um novo denominador através do cálculo do
mínimo múltiplo comum – MMC dos denominadores
fornecidos. O novo denominador deverá ser dividido pelos
denominadores atuais, multiplicando o quociente pelo
numerador correspondente, constituindo novas frações
proporcionalmente iguais as anteriores e com
denominadores iguais. Observe os cálculos:
Realizar o MMC entre 3 e 4.
Multiplicação
A multiplicação de frações é muito simples, basta
multiplicarmos numerador por numerador e denominador
por denominador, respeitando suas posições. Observe:
Divisão
A divisão deve ser efetuada aplicando uma regra prática e
de fácil assimilação, que diz: “repetir a primeira fração e
multiplicar pelo inverso da segunda”.
7) Calcule:
a) 
5
2
3
1
b) 
3
2
2
7
c) 
4
1
2 d) 
5
3
2
5
1
3
e) 
3
2
2
3
f) 
4
3
6
7
2
g)
3
1
2
11
5
2
2  = h) 
2
1
6
5
4
3
i)
18
5
12
7
 = j) 
10
7
3
2
1
5
4
1
k) 
3
2
4
5
6
1
m) 
4
3
6
5
3
1
2
1
8) Efetue as multiplicações:
a) 
2
1
.
4
3
b) 
5
8
.
4
1
.
3
2
c) 
2
9
.
3
25
.
5
6
d) 
4
3
.
7
9
e) 
6
49
.
7
2
.
5
14
f) 
8
5
.
14
7
.
15
16
g) 
8
7
.
5
8
h) 
16
45
.
3
1
.
15
8
i) 
9
22
.
28
2
.
12
18
9) Efetue as divisões:
a) 
3
2
:
5
4
b) 2:
5
4
c) 
14
39
:
49
13
d) 
25
27
:
5
81
e) 
3
14
:
9
7
f) 
9
5
:
3
10
g) 
81
128
:
27
64
h) 
3
1
2:
3
14
i) 
8
3
:
4
3
10) Calcule o valor das expressões numéricas:
a) 












3
2
4
5
5
2
2
3
b) 












8
7
7
8
.
3
4
4
3
c) 












9
7
9
8
6
5
8
7
d)
3
7
.
2
3
5
2
.
3
1
5
3
.
2
1
 =
e) 












4
5
4
7
5
1
2
1
1
f) 












5
1
2
1
.
4
13
2
11
7 =
g) 












6
1
2
1
2
4
1
3
1
h) 












5
1
.
2
1
6
1
.
5
1
3
1
.
2
1
5
1
.
2
1
=
Equações 1º grau
Exemplo1:
4x + 2 = 8 – 2x
Colocamos x de um lado e número do outro, invertendo o
sinal dos termos que mudarem de lado na igualdade.
4x + 2x = 8 – 2
6x = 6
Passamos o 6 da letra x dividindo o 6 que está sozinho do
outro lada da igualdade.
O coeficiente numérico da letra x do 1º membro deve passar
para o outro lado, dividindo o elemento pertencente ao 2º
membro da equação. Observe:
x = 6 / 6
x = 1
Exemplo 02:
10x – 9 = 21 + 2x + 3x
10x – 2x – 3x = 21 + 9
10x – 5x = 30
5x = 30
x = 30/5
x = 6
Propriedade distributiva:
1) Resolva a equação 4 (x + 3) = 4
Devemos multiplicar o número 4 pelos dois fatores que
estão dentro do parênteses ( x e +3), assim teremos a
seguinte equação formada:
4x + 12 = 4
4x = 4 - 12
4x = - 8
x = - 8/4
x = - 2
2) Resolver a equação 5 (2x - 4) = 7 (x+1) - 3
Multiplicamos os termos, teremos:
10x - 20 = 7x + 7 - 3
10x - 7x = 7 - 3 + 20
3x = 4 + 20
3x = 24
x = 24/3
x = 8
11) Resolva as seguintes equações do 1º grau, aplicando a
propriedade distributiva da multiplicação.
a) 4x - 1 = 3 (x -1)
b) 3 (x - 2) = 2x - 4
c) 3x + 4 = 2 (x -1)
d) 3 (x-1) - 7 = 17
e) 7 (x-4) = 2x - 3
f) 3 (3x-1) = 2 (3x +2)
g) 7 (x-2) = 5 (x+4)
h) 5 (x-2) = 3 (x+2)
i) 4 (x+5) - 21 = 3 (x+5)
Equações 2º grau
As equações do 2º grau poderão ser resolvidas
utilizando a seguinte fórmula:
Dada a equação x² + 3x – 10 = 0, determine suas raízes,
se existirem.
a = 1, b = 3 e c = –10
∆ = b² – 4ac
∆ = 3² – 4 * 1 * (–10)
∆= 9 + 40
∆ = 49
As raízes da equação são x’ = 2 e x” = – 5
12) Achar as raízes das equações:
a) x² - 5x + 6 = 0 (R: 2, 3)
b) x² - 8x + 12 = 0 (R: 2, 6)
c) x² + 2x - 8 = 0 (R: 2, -4)
d) 2x² - 8x + 8 = 0 (R: 2,)
e) x² - 4x - 5 = 0 (R: -1, 5)
f) -x² + x + 12 = 0 (R: -3, 4)
g) -x² + 6x - 5 = 0 (R: 1, 5)
h) 6x² + x - 1 = 0 (R: 1/3 , -1/2)
i) 3x² - 7x + 2 = 0 (R: 2, 1/3)
j) 2x² - 7x = 15 (R: 5, -3/2)
k) 4x² + 9 = 12x (R: 3/2)
l) x² = x + 12 (R: -3 , 4)
m) 2x² = -12x - 18 (R: -3 )

Mais conteúdo relacionado

Mais procurados

Questões média mediana e moda
Questões média mediana e modaQuestões média mediana e moda
Questões média mediana e moda
Keyla Christianne
 
Soma dos ângulos internos de um triângulo
Soma dos ângulos internos de um triânguloSoma dos ângulos internos de um triângulo
Soma dos ângulos internos de um triângulo
CIEP 456 - E.M. Milcah de Sousa
 
Lista de exercício com propriedades de radicais
Lista de exercício com propriedades de radicaisLista de exercício com propriedades de radicais
Lista de exercício com propriedades de radicais
alunosderoberto
 
Lista de Exercícios – Razão e Proporção
Lista de Exercícios – Razão e ProporçãoLista de Exercícios – Razão e Proporção
Lista de Exercícios – Razão e Proporção
Everton Moraes
 
Potenciação naturais - 6º
Potenciação naturais - 6ºPotenciação naturais - 6º
Potenciação naturais - 6º
Airton Sabino
 
Lista de exercícios – expressões algébricas
Lista de exercícios – expressões algébricasLista de exercícios – expressões algébricas
Lista de exercícios – expressões algébricas
Everton Moraes
 
Exercícios com Radicais - 2011
Exercícios com Radicais - 2011Exercícios com Radicais - 2011
Exercícios com Radicais - 2011
tioheraclito
 
Miniteste do 8º e 9º ano
Miniteste do 8º e 9º anoMiniteste do 8º e 9º ano
Miniteste do 8º e 9º ano
alunosderoberto
 
Operações com Frações
Operações com FraçõesOperações com Frações
Operações com Frações
Luiz Alfredo Andrade Ferraz
 
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
Hélio Rocha
 
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Secretaria de Estado de Educação do Pará
 
Triangulo exercicios
Triangulo   exerciciosTriangulo   exercicios
Triangulo exercicios
Diomedes Manoel
 
2º lista de exercícios potenciação e radiciação - 9º ano
2º lista de exercícios   potenciação e radiciação - 9º ano2º lista de exercícios   potenciação e radiciação - 9º ano
2º lista de exercícios potenciação e radiciação - 9º ano
afpinto
 
2ª lista de exercícios 9º ano (eq. 2º grau)
2ª lista de exercícios   9º ano (eq. 2º grau)2ª lista de exercícios   9º ano (eq. 2º grau)
2ª lista de exercícios 9º ano (eq. 2º grau)
Ilton Bruno
 
prof.Calazans(Geom.plana) - Polígonos(20 questões resolvidas)
prof.Calazans(Geom.plana) - Polígonos(20 questões resolvidas)prof.Calazans(Geom.plana) - Polígonos(20 questões resolvidas)
prof.Calazans(Geom.plana) - Polígonos(20 questões resolvidas)
ProfCalazans
 
2 4 - exercícios - quadrados perfeitos, raízes , método (1)
2   4  - exercícios - quadrados perfeitos, raízes , método (1)2   4  - exercícios - quadrados perfeitos, raízes , método (1)
2 4 - exercícios - quadrados perfeitos, raízes , método (1)
Kamilla Souza
 
Atividades e jogos referentes aos números inteiros 7 ° ano
Atividades e jogos referentes aos números inteiros  7 ° anoAtividades e jogos referentes aos números inteiros  7 ° ano
Atividades e jogos referentes aos números inteiros 7 ° ano
SENHORINHA GOI
 
SONDAGEM DE MATEMÁTICA/ 6º ANO
SONDAGEM DE MATEMÁTICA/ 6º ANOSONDAGEM DE MATEMÁTICA/ 6º ANO
SONDAGEM DE MATEMÁTICA/ 6º ANO
Etiene Isaias da Silva
 
Areas de figuras planas
Areas de figuras planasAreas de figuras planas
Areas de figuras planas
Bruno Araujo Lima
 
1ª lista de exercícios(razão e proporção) 9º ano ilton bruno
1ª lista de exercícios(razão e proporção) 9º ano   ilton bruno1ª lista de exercícios(razão e proporção) 9º ano   ilton bruno
1ª lista de exercícios(razão e proporção) 9º ano ilton bruno
Ilton Bruno
 

Mais procurados (20)

Questões média mediana e moda
Questões média mediana e modaQuestões média mediana e moda
Questões média mediana e moda
 
Soma dos ângulos internos de um triângulo
Soma dos ângulos internos de um triânguloSoma dos ângulos internos de um triângulo
Soma dos ângulos internos de um triângulo
 
Lista de exercício com propriedades de radicais
Lista de exercício com propriedades de radicaisLista de exercício com propriedades de radicais
Lista de exercício com propriedades de radicais
 
Lista de Exercícios – Razão e Proporção
Lista de Exercícios – Razão e ProporçãoLista de Exercícios – Razão e Proporção
Lista de Exercícios – Razão e Proporção
 
Potenciação naturais - 6º
Potenciação naturais - 6ºPotenciação naturais - 6º
Potenciação naturais - 6º
 
Lista de exercícios – expressões algébricas
Lista de exercícios – expressões algébricasLista de exercícios – expressões algébricas
Lista de exercícios – expressões algébricas
 
Exercícios com Radicais - 2011
Exercícios com Radicais - 2011Exercícios com Radicais - 2011
Exercícios com Radicais - 2011
 
Miniteste do 8º e 9º ano
Miniteste do 8º e 9º anoMiniteste do 8º e 9º ano
Miniteste do 8º e 9º ano
 
Operações com Frações
Operações com FraçõesOperações com Frações
Operações com Frações
 
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
 
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
 
Triangulo exercicios
Triangulo   exerciciosTriangulo   exercicios
Triangulo exercicios
 
2º lista de exercícios potenciação e radiciação - 9º ano
2º lista de exercícios   potenciação e radiciação - 9º ano2º lista de exercícios   potenciação e radiciação - 9º ano
2º lista de exercícios potenciação e radiciação - 9º ano
 
2ª lista de exercícios 9º ano (eq. 2º grau)
2ª lista de exercícios   9º ano (eq. 2º grau)2ª lista de exercícios   9º ano (eq. 2º grau)
2ª lista de exercícios 9º ano (eq. 2º grau)
 
prof.Calazans(Geom.plana) - Polígonos(20 questões resolvidas)
prof.Calazans(Geom.plana) - Polígonos(20 questões resolvidas)prof.Calazans(Geom.plana) - Polígonos(20 questões resolvidas)
prof.Calazans(Geom.plana) - Polígonos(20 questões resolvidas)
 
2 4 - exercícios - quadrados perfeitos, raízes , método (1)
2   4  - exercícios - quadrados perfeitos, raízes , método (1)2   4  - exercícios - quadrados perfeitos, raízes , método (1)
2 4 - exercícios - quadrados perfeitos, raízes , método (1)
 
Atividades e jogos referentes aos números inteiros 7 ° ano
Atividades e jogos referentes aos números inteiros  7 ° anoAtividades e jogos referentes aos números inteiros  7 ° ano
Atividades e jogos referentes aos números inteiros 7 ° ano
 
SONDAGEM DE MATEMÁTICA/ 6º ANO
SONDAGEM DE MATEMÁTICA/ 6º ANOSONDAGEM DE MATEMÁTICA/ 6º ANO
SONDAGEM DE MATEMÁTICA/ 6º ANO
 
Areas de figuras planas
Areas de figuras planasAreas de figuras planas
Areas de figuras planas
 
1ª lista de exercícios(razão e proporção) 9º ano ilton bruno
1ª lista de exercícios(razão e proporção) 9º ano   ilton bruno1ª lista de exercícios(razão e proporção) 9º ano   ilton bruno
1ª lista de exercícios(razão e proporção) 9º ano ilton bruno
 

Destaque

Prova de matemática 9 ano prof thiago versao 1 8 copias
Prova de matemática 9 ano  prof thiago versao 1   8 copiasProva de matemática 9 ano  prof thiago versao 1   8 copias
Prova de matemática 9 ano prof thiago versao 1 8 copias
abbeg
 
2ª Lista de Matematica 9º ano - SESC ESCOLA
2ª Lista de Matematica 9º ano - SESC ESCOLA2ª Lista de Matematica 9º ano - SESC ESCOLA
2ª Lista de Matematica 9º ano - SESC ESCOLA
SENAI/FATEC - MT
 
Prova 8º ano - 4º bimestre - 2010 - SME - Cientistas do Amanhã
Prova 8º ano - 4º bimestre - 2010 - SME - Cientistas do AmanhãProva 8º ano - 4º bimestre - 2010 - SME - Cientistas do Amanhã
Prova 8º ano - 4º bimestre - 2010 - SME - Cientistas do Amanhã
Leonardo Kaplan
 
Prova do 8º ano do auzanir
Prova do 8º ano do auzanirProva do 8º ano do auzanir
Prova do 8º ano do auzanir
alunosderoberto
 
Prova 4º bim 9ano
Prova 4º bim   9anoProva 4º bim   9ano
Prova 4º bim 9ano
Adriano Capilupe
 
Exercicios de revisão 7 ano
Exercicios de revisão 7 anoExercicios de revisão 7 ano
Exercicios de revisão 7 ano
alex01166
 
Prova de Matemática 8ano
Prova de Matemática 8anoProva de Matemática 8ano
Prova de Matemática 8ano
Hélio Rocha
 
Prova sme 8º ano - 4º bim - 2010
Prova sme 8º ano - 4º bim - 2010Prova sme 8º ano - 4º bim - 2010
Prova sme 8º ano - 4º bim - 2010
Leonardo Kaplan
 
Revisão para prova
Revisão para provaRevisão para prova
Revisão para prova
Cristina J. Neves
 
PB 8º ano 2º BIMESTRE ciencias gabarito
PB 8º ano 2º BIMESTRE ciencias gabaritoPB 8º ano 2º BIMESTRE ciencias gabarito
PB 8º ano 2º BIMESTRE ciencias gabarito
Grazi Grazi
 

Destaque (10)

Prova de matemática 9 ano prof thiago versao 1 8 copias
Prova de matemática 9 ano  prof thiago versao 1   8 copiasProva de matemática 9 ano  prof thiago versao 1   8 copias
Prova de matemática 9 ano prof thiago versao 1 8 copias
 
2ª Lista de Matematica 9º ano - SESC ESCOLA
2ª Lista de Matematica 9º ano - SESC ESCOLA2ª Lista de Matematica 9º ano - SESC ESCOLA
2ª Lista de Matematica 9º ano - SESC ESCOLA
 
Prova 8º ano - 4º bimestre - 2010 - SME - Cientistas do Amanhã
Prova 8º ano - 4º bimestre - 2010 - SME - Cientistas do AmanhãProva 8º ano - 4º bimestre - 2010 - SME - Cientistas do Amanhã
Prova 8º ano - 4º bimestre - 2010 - SME - Cientistas do Amanhã
 
Prova do 8º ano do auzanir
Prova do 8º ano do auzanirProva do 8º ano do auzanir
Prova do 8º ano do auzanir
 
Prova 4º bim 9ano
Prova 4º bim   9anoProva 4º bim   9ano
Prova 4º bim 9ano
 
Exercicios de revisão 7 ano
Exercicios de revisão 7 anoExercicios de revisão 7 ano
Exercicios de revisão 7 ano
 
Prova de Matemática 8ano
Prova de Matemática 8anoProva de Matemática 8ano
Prova de Matemática 8ano
 
Prova sme 8º ano - 4º bim - 2010
Prova sme 8º ano - 4º bim - 2010Prova sme 8º ano - 4º bim - 2010
Prova sme 8º ano - 4º bim - 2010
 
Revisão para prova
Revisão para provaRevisão para prova
Revisão para prova
 
PB 8º ano 2º BIMESTRE ciencias gabarito
PB 8º ano 2º BIMESTRE ciencias gabaritoPB 8º ano 2º BIMESTRE ciencias gabarito
PB 8º ano 2º BIMESTRE ciencias gabarito
 

Semelhante a Recuperação lista exercicios 9º ano 1º bimestre

Recuperação lista exercicios 7º ano 1º bimestre
Recuperação lista exercicios 7º ano 1º bimestreRecuperação lista exercicios 7º ano 1º bimestre
Recuperação lista exercicios 7º ano 1º bimestre
Rafael Marques
 
Fin a01
Fin a01Fin a01
Fin a01
Angelo Yasui
 
Apostila revisao de matematica
Apostila    revisao de matematicaApostila    revisao de matematica
Apostila revisao de matematica
Alexandre Junqueira
 
Fin a01
Fin a01Fin a01
Fin a01
Angelo Yasui
 
Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012
Centro Social Marista Ecológica
 
Exercicios
ExerciciosExercicios
Exercicios
nosbier
 
Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012
Mardson Pimenta
 
Apostila pré cálculo
Apostila pré cálculoApostila pré cálculo
Apostila pré cálculo
Adelson Diogo de Carvalho
 
Equações do 2° grau
Equações do 2° grauEquações do 2° grau
Equações do 2° grau
Derivaldo Oliveira
 
Aula2 equação 1º_
Aula2 equação 1º_Aula2 equação 1º_
Aula2 equação 1º_
Marcia Roberto
 
Eq. 2º grau
Eq. 2º grauEq. 2º grau
Eq. 2º grau
Nilton Seixas Santos
 
Apostila de matemática aplicada vol i 2004
Apostila de matemática aplicada vol i 2004Apostila de matemática aplicada vol i 2004
Apostila de matemática aplicada vol i 2004
aldobrasilro
 
Apostila nivelamento cal
Apostila nivelamento calApostila nivelamento cal
Apostila nivelamento cal
André Piazza
 
Matematica
MatematicaMatematica
Matematica
Cleuvânia Dias
 
Matematica eja
Matematica ejaMatematica eja
Matematica eja
Marlei Bento
 
Equações e enequações modulares.
Equações e  enequações modulares.Equações e  enequações modulares.
Equações e enequações modulares.
Noely Menezes
 
Apostila eja-matematica-basica-medio-2012
Apostila eja-matematica-basica-medio-2012Apostila eja-matematica-basica-medio-2012
Apostila eja-matematica-basica-medio-2012
Marciano Santos
 
lista-de-exercicios-funcao-exponencial
lista-de-exercicios-funcao-exponenciallista-de-exercicios-funcao-exponencial
lista-de-exercicios-funcao-exponencial
Ministério da Educação
 
Trabalho de mat.pptx
Trabalho de mat.pptxTrabalho de mat.pptx
Trabalho de mat.pptx
jonaldinhogaucho08
 
Apostila bastante completa de matematica
Apostila bastante completa de matematicaApostila bastante completa de matematica
Apostila bastante completa de matematica
Roberio Figueiredo
 

Semelhante a Recuperação lista exercicios 9º ano 1º bimestre (20)

Recuperação lista exercicios 7º ano 1º bimestre
Recuperação lista exercicios 7º ano 1º bimestreRecuperação lista exercicios 7º ano 1º bimestre
Recuperação lista exercicios 7º ano 1º bimestre
 
Fin a01
Fin a01Fin a01
Fin a01
 
Apostila revisao de matematica
Apostila    revisao de matematicaApostila    revisao de matematica
Apostila revisao de matematica
 
Fin a01
Fin a01Fin a01
Fin a01
 
Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012
 
Exercicios
ExerciciosExercicios
Exercicios
 
Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012
 
Apostila pré cálculo
Apostila pré cálculoApostila pré cálculo
Apostila pré cálculo
 
Equações do 2° grau
Equações do 2° grauEquações do 2° grau
Equações do 2° grau
 
Aula2 equação 1º_
Aula2 equação 1º_Aula2 equação 1º_
Aula2 equação 1º_
 
Eq. 2º grau
Eq. 2º grauEq. 2º grau
Eq. 2º grau
 
Apostila de matemática aplicada vol i 2004
Apostila de matemática aplicada vol i 2004Apostila de matemática aplicada vol i 2004
Apostila de matemática aplicada vol i 2004
 
Apostila nivelamento cal
Apostila nivelamento calApostila nivelamento cal
Apostila nivelamento cal
 
Matematica
MatematicaMatematica
Matematica
 
Matematica eja
Matematica ejaMatematica eja
Matematica eja
 
Equações e enequações modulares.
Equações e  enequações modulares.Equações e  enequações modulares.
Equações e enequações modulares.
 
Apostila eja-matematica-basica-medio-2012
Apostila eja-matematica-basica-medio-2012Apostila eja-matematica-basica-medio-2012
Apostila eja-matematica-basica-medio-2012
 
lista-de-exercicios-funcao-exponencial
lista-de-exercicios-funcao-exponenciallista-de-exercicios-funcao-exponencial
lista-de-exercicios-funcao-exponencial
 
Trabalho de mat.pptx
Trabalho de mat.pptxTrabalho de mat.pptx
Trabalho de mat.pptx
 
Apostila bastante completa de matematica
Apostila bastante completa de matematicaApostila bastante completa de matematica
Apostila bastante completa de matematica
 

Mais de Rafael Marques

Dinamica demográfica
Dinamica demográficaDinamica demográfica
Dinamica demográfica
Rafael Marques
 
Geofísica da terra
Geofísica da terraGeofísica da terra
Geofísica da terra
Rafael Marques
 
Brasil rural x urbano
Brasil   rural x urbanoBrasil   rural x urbano
Brasil rural x urbano
Rafael Marques
 
Can and can't revision
Can and can't   revisionCan and can't   revision
Can and can't revision
Rafael Marques
 
Formação do território brasileiro
Formação do território brasileiroFormação do território brasileiro
Formação do território brasileiro
Rafael Marques
 
Fotos feira alimentação saudável
Fotos feira alimentação saudávelFotos feira alimentação saudável
Fotos feira alimentação saudável
Rafael Marques
 
Teatro lambe lambe
Teatro lambe lambeTeatro lambe lambe
Teatro lambe lambe
Rafael Marques
 
Confecção carrinho fabiano
Confecção carrinho fabianoConfecção carrinho fabiano
Confecção carrinho fabiano
Rafael Marques
 
Construção vilmar 2
Construção vilmar 2Construção vilmar 2
Construção vilmar 2
Rafael Marques
 
Obra 2 banheiro
Obra 2 banheiroObra 2 banheiro
Obra 2 banheiro
Rafael Marques
 
Obra 1 entrelagos
Obra 1 entrelagosObra 1 entrelagos
Obra 1 entrelagos
Rafael Marques
 
Pitiguari 2013/2014
Pitiguari 2013/2014Pitiguari 2013/2014
Pitiguari 2013/2014
Rafael Marques
 
Guia alimentar populacao_brasileira
Guia alimentar populacao_brasileiraGuia alimentar populacao_brasileira
Guia alimentar populacao_brasileira
Rafael Marques
 
Dicas e horario de estudo 2015
Dicas e horario de estudo   2015Dicas e horario de estudo   2015
Dicas e horario de estudo 2015
Rafael Marques
 
Alimentacaosaudavel un b
Alimentacaosaudavel un bAlimentacaosaudavel un b
Alimentacaosaudavel un b
Rafael Marques
 
Cont e procedimentos 7 ano 2º bimestre
Cont e procedimentos 7 ano   2º  bimestreCont e procedimentos 7 ano   2º  bimestre
Cont e procedimentos 7 ano 2º bimestre
Rafael Marques
 
Cont e procedimentos 6 ano 2º bimestre
Cont e procedimentos 6 ano   2º  bimestreCont e procedimentos 6 ano   2º  bimestre
Cont e procedimentos 6 ano 2º bimestre
Rafael Marques
 
Revision answers 7th grade
Revision answers   7th gradeRevision answers   7th grade
Revision answers 7th grade
Rafael Marques
 
Revision answers 6th grade laura canto
Revision answers 6th grade   laura cantoRevision answers 6th grade   laura canto
Revision answers 6th grade laura canto
Rafael Marques
 
Escala marcos
Escala marcosEscala marcos
Escala marcos
Rafael Marques
 

Mais de Rafael Marques (20)

Dinamica demográfica
Dinamica demográficaDinamica demográfica
Dinamica demográfica
 
Geofísica da terra
Geofísica da terraGeofísica da terra
Geofísica da terra
 
Brasil rural x urbano
Brasil   rural x urbanoBrasil   rural x urbano
Brasil rural x urbano
 
Can and can't revision
Can and can't   revisionCan and can't   revision
Can and can't revision
 
Formação do território brasileiro
Formação do território brasileiroFormação do território brasileiro
Formação do território brasileiro
 
Fotos feira alimentação saudável
Fotos feira alimentação saudávelFotos feira alimentação saudável
Fotos feira alimentação saudável
 
Teatro lambe lambe
Teatro lambe lambeTeatro lambe lambe
Teatro lambe lambe
 
Confecção carrinho fabiano
Confecção carrinho fabianoConfecção carrinho fabiano
Confecção carrinho fabiano
 
Construção vilmar 2
Construção vilmar 2Construção vilmar 2
Construção vilmar 2
 
Obra 2 banheiro
Obra 2 banheiroObra 2 banheiro
Obra 2 banheiro
 
Obra 1 entrelagos
Obra 1 entrelagosObra 1 entrelagos
Obra 1 entrelagos
 
Pitiguari 2013/2014
Pitiguari 2013/2014Pitiguari 2013/2014
Pitiguari 2013/2014
 
Guia alimentar populacao_brasileira
Guia alimentar populacao_brasileiraGuia alimentar populacao_brasileira
Guia alimentar populacao_brasileira
 
Dicas e horario de estudo 2015
Dicas e horario de estudo   2015Dicas e horario de estudo   2015
Dicas e horario de estudo 2015
 
Alimentacaosaudavel un b
Alimentacaosaudavel un bAlimentacaosaudavel un b
Alimentacaosaudavel un b
 
Cont e procedimentos 7 ano 2º bimestre
Cont e procedimentos 7 ano   2º  bimestreCont e procedimentos 7 ano   2º  bimestre
Cont e procedimentos 7 ano 2º bimestre
 
Cont e procedimentos 6 ano 2º bimestre
Cont e procedimentos 6 ano   2º  bimestreCont e procedimentos 6 ano   2º  bimestre
Cont e procedimentos 6 ano 2º bimestre
 
Revision answers 7th grade
Revision answers   7th gradeRevision answers   7th grade
Revision answers 7th grade
 
Revision answers 6th grade laura canto
Revision answers 6th grade   laura cantoRevision answers 6th grade   laura canto
Revision answers 6th grade laura canto
 
Escala marcos
Escala marcosEscala marcos
Escala marcos
 

Último

Relatório de Atividades 2009 CENSIPAM
Relatório de Atividades 2009 CENSIPAM Relatório de Atividades 2009 CENSIPAM
Relatório de Atividades 2009 CENSIPAM
Falcão Brasil
 
1°ao5°ano_HISTÓRIA_ORGANIZADOR CURRICULAR BIMESTRAL (1) educação infantil fu...
1°ao5°ano_HISTÓRIA_ORGANIZADOR CURRICULAR BIMESTRAL (1)  educação infantil fu...1°ao5°ano_HISTÓRIA_ORGANIZADOR CURRICULAR BIMESTRAL (1)  educação infantil fu...
1°ao5°ano_HISTÓRIA_ORGANIZADOR CURRICULAR BIMESTRAL (1) educação infantil fu...
antonio carlos
 
Relatório de Atividades 2011 CENSIPAM.pdf
Relatório de Atividades 2011 CENSIPAM.pdfRelatório de Atividades 2011 CENSIPAM.pdf
Relatório de Atividades 2011 CENSIPAM.pdf
Falcão Brasil
 
oficia de construção de recursos para aluno DI.pdf
oficia de construção de recursos para aluno DI.pdfoficia de construção de recursos para aluno DI.pdf
oficia de construção de recursos para aluno DI.pdf
marcos oliveira
 
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptxSlides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
LuizHenriquedeAlmeid6
 
Painel para comemerorar odia dos avós grátis.pdf
Painel  para comemerorar odia dos avós grátis.pdfPainel  para comemerorar odia dos avós grátis.pdf
Painel para comemerorar odia dos avós grátis.pdf
marcos oliveira
 
Relatório de Atividades 2019 CENSIPAM.pdf
Relatório de Atividades 2019 CENSIPAM.pdfRelatório de Atividades 2019 CENSIPAM.pdf
Relatório de Atividades 2019 CENSIPAM.pdf
Falcão Brasil
 
Relatório de Atividades 2020 CENSIPAM.pdf
Relatório de Atividades 2020 CENSIPAM.pdfRelatório de Atividades 2020 CENSIPAM.pdf
Relatório de Atividades 2020 CENSIPAM.pdf
Falcão Brasil
 
Folha de Atividades (Virei Super-Herói! Projeto de Edição de Fotos) com Grade...
Folha de Atividades (Virei Super-Herói! Projeto de Edição de Fotos) com Grade...Folha de Atividades (Virei Super-Herói! Projeto de Edição de Fotos) com Grade...
Folha de Atividades (Virei Super-Herói! Projeto de Edição de Fotos) com Grade...
marcos oliveira
 
Caderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdf
Caderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdfCaderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdf
Caderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdf
shirleisousa9166
 
Slides Lição 2, CPAD, O Livro de Rute, 3Tr24.pptx
Slides Lição 2, CPAD, O Livro de Rute, 3Tr24.pptxSlides Lição 2, CPAD, O Livro de Rute, 3Tr24.pptx
Slides Lição 2, CPAD, O Livro de Rute, 3Tr24.pptx
LuizHenriquedeAlmeid6
 
Slide para aplicação da AVAL. FLUÊNCIA.pptx
Slide para aplicação  da AVAL. FLUÊNCIA.pptxSlide para aplicação  da AVAL. FLUÊNCIA.pptx
Slide para aplicação da AVAL. FLUÊNCIA.pptx
LeilaVilasboas
 
Guerra de reconquista da Península ibérica
Guerra de reconquista da Península ibéricaGuerra de reconquista da Península ibérica
Guerra de reconquista da Península ibérica
felipescherner
 
farmacologia-segura-em-mapas-mentais-reduzindo-os-riscos-da-terapeutica-24040...
farmacologia-segura-em-mapas-mentais-reduzindo-os-riscos-da-terapeutica-24040...farmacologia-segura-em-mapas-mentais-reduzindo-os-riscos-da-terapeutica-24040...
farmacologia-segura-em-mapas-mentais-reduzindo-os-riscos-da-terapeutica-24040...
AngelicaCostaMeirele2
 
Alfabetização de adultos.pdf
Alfabetização de             adultos.pdfAlfabetização de             adultos.pdf
Alfabetização de adultos.pdf
arodatos81
 
Temática – Projeto para Empreendedores Locais
Temática – Projeto para Empreendedores LocaisTemática – Projeto para Empreendedores Locais
Temática – Projeto para Empreendedores Locais
Colaborar Educacional
 
Apostila em LIBRAS - Curso Básico ENAP 2019.pdf
Apostila em LIBRAS - Curso Básico ENAP 2019.pdfApostila em LIBRAS - Curso Básico ENAP 2019.pdf
Apostila em LIBRAS - Curso Básico ENAP 2019.pdf
pattyhsilva271204
 
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
LuizHenriquedeAlmeid6
 
Caça - palavras e cruzadinha com dígrafos
Caça - palavras  e cruzadinha   com  dígrafosCaça - palavras  e cruzadinha   com  dígrafos
Caça - palavras e cruzadinha com dígrafos
Mary Alvarenga
 

Último (20)

Relatório de Atividades 2009 CENSIPAM
Relatório de Atividades 2009 CENSIPAM Relatório de Atividades 2009 CENSIPAM
Relatório de Atividades 2009 CENSIPAM
 
1°ao5°ano_HISTÓRIA_ORGANIZADOR CURRICULAR BIMESTRAL (1) educação infantil fu...
1°ao5°ano_HISTÓRIA_ORGANIZADOR CURRICULAR BIMESTRAL (1)  educação infantil fu...1°ao5°ano_HISTÓRIA_ORGANIZADOR CURRICULAR BIMESTRAL (1)  educação infantil fu...
1°ao5°ano_HISTÓRIA_ORGANIZADOR CURRICULAR BIMESTRAL (1) educação infantil fu...
 
Relatório de Atividades 2011 CENSIPAM.pdf
Relatório de Atividades 2011 CENSIPAM.pdfRelatório de Atividades 2011 CENSIPAM.pdf
Relatório de Atividades 2011 CENSIPAM.pdf
 
oficia de construção de recursos para aluno DI.pdf
oficia de construção de recursos para aluno DI.pdfoficia de construção de recursos para aluno DI.pdf
oficia de construção de recursos para aluno DI.pdf
 
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptxSlides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
 
Painel para comemerorar odia dos avós grátis.pdf
Painel  para comemerorar odia dos avós grátis.pdfPainel  para comemerorar odia dos avós grátis.pdf
Painel para comemerorar odia dos avós grátis.pdf
 
Relatório de Atividades 2019 CENSIPAM.pdf
Relatório de Atividades 2019 CENSIPAM.pdfRelatório de Atividades 2019 CENSIPAM.pdf
Relatório de Atividades 2019 CENSIPAM.pdf
 
Relatório de Atividades 2020 CENSIPAM.pdf
Relatório de Atividades 2020 CENSIPAM.pdfRelatório de Atividades 2020 CENSIPAM.pdf
Relatório de Atividades 2020 CENSIPAM.pdf
 
Folha de Atividades (Virei Super-Herói! Projeto de Edição de Fotos) com Grade...
Folha de Atividades (Virei Super-Herói! Projeto de Edição de Fotos) com Grade...Folha de Atividades (Virei Super-Herói! Projeto de Edição de Fotos) com Grade...
Folha de Atividades (Virei Super-Herói! Projeto de Edição de Fotos) com Grade...
 
FOTOS_AS CIÊNCIAS EM AÇÃO .
FOTOS_AS CIÊNCIAS EM AÇÃO                .FOTOS_AS CIÊNCIAS EM AÇÃO                .
FOTOS_AS CIÊNCIAS EM AÇÃO .
 
Caderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdf
Caderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdfCaderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdf
Caderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdf
 
Slides Lição 2, CPAD, O Livro de Rute, 3Tr24.pptx
Slides Lição 2, CPAD, O Livro de Rute, 3Tr24.pptxSlides Lição 2, CPAD, O Livro de Rute, 3Tr24.pptx
Slides Lição 2, CPAD, O Livro de Rute, 3Tr24.pptx
 
Slide para aplicação da AVAL. FLUÊNCIA.pptx
Slide para aplicação  da AVAL. FLUÊNCIA.pptxSlide para aplicação  da AVAL. FLUÊNCIA.pptx
Slide para aplicação da AVAL. FLUÊNCIA.pptx
 
Guerra de reconquista da Península ibérica
Guerra de reconquista da Península ibéricaGuerra de reconquista da Península ibérica
Guerra de reconquista da Península ibérica
 
farmacologia-segura-em-mapas-mentais-reduzindo-os-riscos-da-terapeutica-24040...
farmacologia-segura-em-mapas-mentais-reduzindo-os-riscos-da-terapeutica-24040...farmacologia-segura-em-mapas-mentais-reduzindo-os-riscos-da-terapeutica-24040...
farmacologia-segura-em-mapas-mentais-reduzindo-os-riscos-da-terapeutica-24040...
 
Alfabetização de adultos.pdf
Alfabetização de             adultos.pdfAlfabetização de             adultos.pdf
Alfabetização de adultos.pdf
 
Temática – Projeto para Empreendedores Locais
Temática – Projeto para Empreendedores LocaisTemática – Projeto para Empreendedores Locais
Temática – Projeto para Empreendedores Locais
 
Apostila em LIBRAS - Curso Básico ENAP 2019.pdf
Apostila em LIBRAS - Curso Básico ENAP 2019.pdfApostila em LIBRAS - Curso Básico ENAP 2019.pdf
Apostila em LIBRAS - Curso Básico ENAP 2019.pdf
 
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
 
Caça - palavras e cruzadinha com dígrafos
Caça - palavras  e cruzadinha   com  dígrafosCaça - palavras  e cruzadinha   com  dígrafos
Caça - palavras e cruzadinha com dígrafos
 

Recuperação lista exercicios 9º ano 1º bimestre

  • 1. Exercícios de Recuperação – 1º Bimestre Matemática Básica – Professor Rafael Números Inteiros Adição e Subtração: A adição de dois números inteiros obedece às seguintes regras: a ) números de mesmo sinal : somam-se os módulos e conserva-se o sinal comum. Exemplos: (-3) + (-5) + (-2) = - 10 (-7) + (-6) = - 13 b) números de sinais opostos: subtraem-se os módulos e conserva-se o sinal do maior em módulo. Exemplos: (-3) + (+7) = + 4 (-12) + (+5) = -7 10 – (-3) = 10 + 3 = 13 (-5) – (- 10) = (-5) +10 = +5 = 5 (-3) – (+7) = (-3) -7 = - 10 Multiplicação A multiplicação de números inteiros, dar-se-á segundo a seguinte regra de sinais: (+) x (+) = + (+) x (-) = - (-) x (+) = - (-) x (-) = + Exemplos: (-3) x (-4) = +12 = 12 (-4) x (+3) = -12 Potenciação É um caso particular da multiplicação, onde os fatores são iguais. Por exemplo, 53 = 5.5.5 = 125, 71 = 7, 43 = 4.4.4 = 64, etc. Exemplos: (-2)4 = +16 = 16 (-3)2 = +9 = 9 (-5)4 = +625 = 625 (-1)4 = + 1 = 1 (-2)3 = - 8 (-5)3 = - 125 (-1)13 = - 1 Divisão A divisão de números inteiros, no que concerne à regra de sinais, obedece às mesmas regras vistas para a multiplicação, ou seja: Exemplos: (–10) : (– 2) = + 5 = 5 (– 30) : (+ 5) = – 6 Expressões Numéricas Nas expressões, as operações se realizam obedecendo à seguinte ordem: 1º) multiplicações e divisões ( X ÷ ) 2º) adições e subtrações ( + - ) Se houver sinais de associação (parênteses, colchetes e chaves) devemos proceder da seguinte maneira: 1º) As contas dentro dos parênteses seguindo a ordem acima colocada 2º) As contas dentro dos colchetes seguindo a ordem acima colocada 3º) As contas dentro das chaves seguindo a ordem acima colocada 1) Calcule as adições: a) (+20) + (-18) b) (+21) + (-30) c) (-81) + (-17) d) (+37) + (+62) 2) Calcule as subtrações: a) (-9) – (+15) b) (+16) – (+20) c) (-1) – (-18) d) (-72) – (-81) 3) Calcule as multiplicações: a) (-20) . (+4) b) (-8) . (-7) c) (+23) . (+3) d) (+2) . (-27) 4) Resolva as divisões: a) (-40) : (+2) b) (+20) : (-4) c) (-18) : (-3) d) (+36) : (+4) 5) Calcule as Potências: a) (-11)² b) (+5)³ c) ( -7)¹ d) 0² 6) Calcule o valor das expressões: a) 16+[10-(18:3+2)+5] b) 25-[12-(3x2+1)] c) 90-[25+(5x2-1)+3] d) 45+[(8x5-10:2)+(18:6-2)] e) 50-2x{7+8:2-[9-3x(5-4)]} f) 100-3x{5+8:2-[3x(7-6)]} g) 1000 - [(2 . 4 - 6) + ( 2 + 6 . 4)] h) 60 + 2 . {[ 4 . ( 6 + 2 ) - 10 ] + 12} i) [( 4 + 16 . 2) . 5 - 10] . 100 j) { 10 + [ 5 . ( 4 + 2 . 5) - 8] . 2 } - 100 k) 80 - 5 . ( 28 - 6 . 4 ) + 6 - 3 . 4
  • 2. Números Racionais 1ª condição: denominadores iguais. Quando os denominadores são iguais, os numeradores devem ser somados ou subtraídos de acordo com os sinais operatórios e o valor do denominador mantido. Observe os exemplos: 2º condição: denominadores diferentes. Nas operações da adição ou subtração envolvendo números na forma de fração com denominadores diferentes, devemos criar um novo denominador através do cálculo do mínimo múltiplo comum – MMC dos denominadores fornecidos. O novo denominador deverá ser dividido pelos denominadores atuais, multiplicando o quociente pelo numerador correspondente, constituindo novas frações proporcionalmente iguais as anteriores e com denominadores iguais. Observe os cálculos: Realizar o MMC entre 3 e 4. Multiplicação A multiplicação de frações é muito simples, basta multiplicarmos numerador por numerador e denominador por denominador, respeitando suas posições. Observe: Divisão A divisão deve ser efetuada aplicando uma regra prática e de fácil assimilação, que diz: “repetir a primeira fração e multiplicar pelo inverso da segunda”. 7) Calcule: a)  5 2 3 1 b)  3 2 2 7 c)  4 1 2 d)  5 3 2 5 1 3 e)  3 2 2 3 f)  4 3 6 7 2 g) 3 1 2 11 5 2 2  = h)  2 1 6 5 4 3 i) 18 5 12 7  = j)  10 7 3 2 1 5 4 1 k)  3 2 4 5 6 1 m)  4 3 6 5 3 1 2 1 8) Efetue as multiplicações: a)  2 1 . 4 3 b)  5 8 . 4 1 . 3 2 c)  2 9 . 3 25 . 5 6 d)  4 3 . 7 9 e)  6 49 . 7 2 . 5 14 f)  8 5 . 14 7 . 15 16 g)  8 7 . 5 8 h)  16 45 . 3 1 . 15 8 i)  9 22 . 28 2 . 12 18 9) Efetue as divisões: a)  3 2 : 5 4 b) 2: 5 4 c)  14 39 : 49 13 d)  25 27 : 5 81 e)  3 14 : 9 7 f)  9 5 : 3 10 g)  81 128 : 27 64 h)  3 1 2: 3 14 i)  8 3 : 4 3 10) Calcule o valor das expressões numéricas: a)              3 2 4 5 5 2 2 3 b)              8 7 7 8 . 3 4 4 3 c)              9 7 9 8 6 5 8 7 d) 3 7 . 2 3 5 2 . 3 1 5 3 . 2 1  = e)              4 5 4 7 5 1 2 1 1 f)              5 1 2 1 . 4 13 2 11 7 = g)              6 1 2 1 2 4 1 3 1 h)              5 1 . 2 1 6 1 . 5 1 3 1 . 2 1 5 1 . 2 1 =
  • 3. Equações 1º grau Exemplo1: 4x + 2 = 8 – 2x Colocamos x de um lado e número do outro, invertendo o sinal dos termos que mudarem de lado na igualdade. 4x + 2x = 8 – 2 6x = 6 Passamos o 6 da letra x dividindo o 6 que está sozinho do outro lada da igualdade. O coeficiente numérico da letra x do 1º membro deve passar para o outro lado, dividindo o elemento pertencente ao 2º membro da equação. Observe: x = 6 / 6 x = 1 Exemplo 02: 10x – 9 = 21 + 2x + 3x 10x – 2x – 3x = 21 + 9 10x – 5x = 30 5x = 30 x = 30/5 x = 6 Propriedade distributiva: 1) Resolva a equação 4 (x + 3) = 4 Devemos multiplicar o número 4 pelos dois fatores que estão dentro do parênteses ( x e +3), assim teremos a seguinte equação formada: 4x + 12 = 4 4x = 4 - 12 4x = - 8 x = - 8/4 x = - 2 2) Resolver a equação 5 (2x - 4) = 7 (x+1) - 3 Multiplicamos os termos, teremos: 10x - 20 = 7x + 7 - 3 10x - 7x = 7 - 3 + 20 3x = 4 + 20 3x = 24 x = 24/3 x = 8 11) Resolva as seguintes equações do 1º grau, aplicando a propriedade distributiva da multiplicação. a) 4x - 1 = 3 (x -1) b) 3 (x - 2) = 2x - 4 c) 3x + 4 = 2 (x -1) d) 3 (x-1) - 7 = 17 e) 7 (x-4) = 2x - 3 f) 3 (3x-1) = 2 (3x +2) g) 7 (x-2) = 5 (x+4) h) 5 (x-2) = 3 (x+2) i) 4 (x+5) - 21 = 3 (x+5) Equações 2º grau As equações do 2º grau poderão ser resolvidas utilizando a seguinte fórmula: Dada a equação x² + 3x – 10 = 0, determine suas raízes, se existirem. a = 1, b = 3 e c = –10 ∆ = b² – 4ac ∆ = 3² – 4 * 1 * (–10) ∆= 9 + 40 ∆ = 49 As raízes da equação são x’ = 2 e x” = – 5 12) Achar as raízes das equações: a) x² - 5x + 6 = 0 (R: 2, 3) b) x² - 8x + 12 = 0 (R: 2, 6) c) x² + 2x - 8 = 0 (R: 2, -4) d) 2x² - 8x + 8 = 0 (R: 2,) e) x² - 4x - 5 = 0 (R: -1, 5) f) -x² + x + 12 = 0 (R: -3, 4) g) -x² + 6x - 5 = 0 (R: 1, 5) h) 6x² + x - 1 = 0 (R: 1/3 , -1/2) i) 3x² - 7x + 2 = 0 (R: 2, 1/3) j) 2x² - 7x = 15 (R: 5, -3/2) k) 4x² + 9 = 12x (R: 3/2) l) x² = x + 12 (R: -3 , 4) m) 2x² = -12x - 18 (R: -3 )