SlideShare uma empresa Scribd logo
Exercícios Resolvidos de Fatoração Algébrica


Exemplo 19) Fatore c2 - 2bc - a2 + b2
                                                                                     2           2       2       2                   2       2
Reagrupando o polinômio, teremos : b - 2bc + c - a = (b - 2bc + c ) - a
                             2                       2                                                       2
O trinômio b - 2bc + c pode ser fatorado como : (b - c)
                                                                                                                     2       2
E dessa forma, teremos a diferença de dois quadrados (b - c) - a , e finalmente, teremos :
             2   2
(b - c) - a = (b - c + a) (b - c - a)
                                                         8                   4
Exemplo 20) Fatore: 5m + 10m - 15

Percebemos que o fator 5 pode ser evidenciado, Assim:
     8               4                           8                   4
5m + 10m - 15 = 5(m + 2m - 3)
                             8           4
O trinômio m + 2m - 3 não é um trinômio quadrado perfeito, mas poderá ser um trinômio de Stevin.
E realmente o é, pois os números 3 e -1, têm por soma 2 e por produto - 3, e a soma aparece multiplicada pela
raiz quadrada m4
      8
de m .
                                                                 8               4           8       4                   4               4
Dessa forma, teremos : 5m + 10m - 15 = 5(m + 2m - 3) = 5(m + 3) (m - 1)
                     4                       2                       2                       2                                                   8       4   4   2
E como (m - 1) = (m + 1) (m - 1) , e como (m - 1) (m + 1)(m - 1) teremos : 5m + 10m - 15 = 5(m + 3)(m + 1)(m
+ 1)(m - 1)
                                                                 2
Exemplo 21) Fatore: (x - y) + 2(y - x) - 24
                                                                                         2           2
Antes de mais nada, lembremos que (x - y) = (y - x) ( verifique se isso é verdade )
                                                                                                                     2
Com isso podemos escrever a expressão dada como : (y - x) + 2(y - x) - 24

Para facilitar o reconhecimento do caso de fatoração, chamemos o binômio (y - x) de A, então :
         2                                               2
(y - x) + 2(y - x) - 24 = A + 2A - 24

O trinômio não é quadrado perfeito, mas parece ser de Stevin.
Verificando, percebemos que os números - 4 e + 6 têm por soma + 2 e por produto - 24 e a soma + 2 aparece
multiplicada pela raiz
                 2
quadrada A de A .
                         2                                                                                                                           2
E assim : A + 2A - 24 = (A + 6) (A - 4) e como A = y - x, finalmente teremos: (x - y) + 2(y - x) - 24 = (y - x + 6) (y -
x - 4)
                                                 6           6
Exemplo 22) Fatore x - y

1ª Resolução: Considerando uma diferença de dois cubos

Como ambos são termos cúbicos, essa diferença poderá ser fatorada.
                                             6   2                                         2   2
A raiz cúbica de x6 é x2 e a raiz cúbica de y é y . Assim já temos o nosso primeiro fator x - y
                                                                    2   4                   2    2 2 2
A partir dele montaremos o nosso segundo fator. O quadrado de x é x ; o produto entre x e y é x y e o
quadrado do
             2   4
segundo é y é y .

E dessa forma, teremos:
 6       6       2               2   4               2 2                 4                                                       2       2
x - y = (x - y ) ( x + x y + y ). Como a diferença de quadrados (x - y ) ainda pode ser fatorado, teremos :
6   6                                     4       2 2         4
x - y = (x + y) (x - y) ( x + x y + y ).
                                                       4       2 2             4
Se escrevermos o trinômio ( x + x y + y ) de uma outra forma, perceberemos que ele também poderá ser
fatorado. Vejamos :
 4       2 2       4       4           2 2         4       2 2             2       2 2     2 2
x + x y + y = x + 2x y + y - x y = (x + y ) - x y , que é uma diferença de dois quadrados.
               2       2 2         2 2             2       2                   2       2                 2       2       2       2
Assim : (x + y ) - x y = ( x + y + xy) ( x + y - xy) = ( x - xy + y ) ( x + xy + y ). E finalmente :
 6   6                                     2               2           2               2
x - y = (x + y) (x - y) ( x - xy + y ) ( x + xy + y )

2ª Resolução: Considerando uma diferença de dois quadrados. Como ambos são quadrados, temos uma
diferença de dois
quadrados.
                                   6           3                                           6     3
A raiz quadrada de x é x e a raiz quadrada de y é y .
                                                                               3       3                             3       3
Assim já temos o nosso primeiro fator (x + y ) e o segundo fator (x - y ).

Assim, teremos : x6 - y6 = (x3 + y3) (x3 - y3) .
                                                 3 3 3   3
Como a soma e a diferença de dois cubos (x + y ) e (x - y ) ainda podem ser fatorados, teremos :
 6   6         3       3       3       3                           2               2                 2       2
x - y = (x + y ) (x - y ) = (x + y) ( x - xy + y ) (x - y) ( x + xy + y ) , ou ainda :
 6   6                                     2               2           2               2
x - y = (x + y) (x - y) ( x - xy + y ) ( x + xy + y )

OBSERVAÇÃO MUITO IMPORTANTE

Sempre que fatoramos uma expressão algébrica ou quando efetuamos um produto notável devemos utilizar o
sinal de identidade
que é uma ampliação do conceito de igualdade.

Vamos entender melhor essa diferenciação:

Quando afirmamos que 3x + 4 = 19, sabemos que apenas o valor de x = 5 tornará verdadeira essa sentença.
Nesse caso utilizaremos o sinal de igualdade.

Quando afirmamos que 2(x + 3) = 2x + 6, percebemos que qualquer valor de x, torna essa sentença verdadeira.

Nesse caso devemos utilizar o sinal de identidade                                                    .


E escrevermos :

Assim o correto seria utilizarmos o sinal de identidade para todos os casos de produtos notáveis e, também,
de fatoração.

Assim, por exemplo :




                                   Fatoração Algébrica - Exercícios Propostos


I - Fatore colocando em evidência
II - Fatore os trinômios quadrados perfeitos




III - Fatore as diferenças entre quadrados




IV - Fatore os trinômios de Stevin




V - Fatore as Somas ou diferenças entre dois cubos




VI - Fatore por agrupamento




VII - Fatore as expressões algébricas




           Resposta dos Exercícios Propostos de Fatoração Algébrica
Mat fatoracao algebrica exercicios resolvidos

Mais conteúdo relacionado

Mais procurados

2ª Lista de Matematica 9º ano - SESC ESCOLA
2ª Lista de Matematica 9º ano - SESC ESCOLA2ª Lista de Matematica 9º ano - SESC ESCOLA
2ª Lista de Matematica 9º ano - SESC ESCOLA
SENAI/FATEC - MT
 
Produtos notáveis
Produtos notáveisProdutos notáveis
Produtos notáveis
Juliana Malta de Sousa
 
Lista 3 equacoes_1_grau
Lista 3 equacoes_1_grauLista 3 equacoes_1_grau
Lista 3 equacoes_1_grau
Uniengenheiros2011
 
I lista de exercícios frações algébricas para publicação
I lista de exercícios   frações algébricas para publicaçãoI lista de exercícios   frações algébricas para publicação
I lista de exercícios frações algébricas para publicação
luisresponde
 
Exercícios produtos notáveis
Exercícios produtos notáveisExercícios produtos notáveis
Exercícios produtos notáveis
Michele Boulanger
 
Exercicios exp-algebricas (1)
Exercicios exp-algebricas (1)Exercicios exp-algebricas (1)
Exercicios exp-algebricas (1)
Andrea Pereira
 
Mat pa pg exercicios gabarito
Mat pa  pg exercicios gabaritoMat pa  pg exercicios gabarito
Mat pa pg exercicios gabarito
trigono_metrico
 
Microsoft word exercicio matemática com gabarito equações do 2º grau
Microsoft word   exercicio matemática com  gabarito equações do 2º grauMicrosoft word   exercicio matemática com  gabarito equações do 2º grau
Microsoft word exercicio matemática com gabarito equações do 2º grau
Betão Betão
 
Mat exercicios deteminantes 2 e 3 ordem
Mat exercicios deteminantes  2 e 3 ordemMat exercicios deteminantes  2 e 3 ordem
Mat exercicios deteminantes 2 e 3 ordem
trigono_metria
 
SIMULADO - RADICIAÇÃO
SIMULADO - RADICIAÇÃOSIMULADO - RADICIAÇÃO
SIMULADO - RADICIAÇÃO
Hélio Rocha
 
Lista exercicios 7º ano 1º bimestre
Lista exercicios 7º ano 1º bimestreLista exercicios 7º ano 1º bimestre
Lista exercicios 7º ano 1º bimestre
Rafael Marques
 
Mat utfrs 10. produtos notaveis e fatoracao exercicios
Mat utfrs 10. produtos notaveis e fatoracao exerciciosMat utfrs 10. produtos notaveis e fatoracao exercicios
Mat utfrs 10. produtos notaveis e fatoracao exercicios
trigono_metria
 
Lista (5) de exercícios adição e subtração 2 parte (gabaritada)
Lista (5) de exercícios adição e subtração 2 parte (gabaritada)Lista (5) de exercícios adição e subtração 2 parte (gabaritada)
Lista (5) de exercícios adição e subtração 2 parte (gabaritada)
Olicio Silva
 
ExercíCio De FatoraçãO Com Gabarito 50 Questoes. Antonio Carlos
ExercíCio De FatoraçãO Com Gabarito 50 Questoes. Antonio CarlosExercíCio De FatoraçãO Com Gabarito 50 Questoes. Antonio Carlos
ExercíCio De FatoraçãO Com Gabarito 50 Questoes. Antonio Carlos
guesta4929b
 
L ista de exercícios operacoes com monômios
L ista de exercícios   operacoes com monômiosL ista de exercícios   operacoes com monômios
L ista de exercícios operacoes com monômios
Cinthia Oliveira Brito da Silva
 
Matemática – produtos notáveis 02 2013
Matemática – produtos notáveis 02  2013Matemática – produtos notáveis 02  2013
Matemática – produtos notáveis 02 2013
Jakson Raphael Pereira Barbosa
 
Exercicios Resolvidos Equacao 2 Grau 0
Exercicios Resolvidos Equacao 2 Grau 0Exercicios Resolvidos Equacao 2 Grau 0
Exercicios Resolvidos Equacao 2 Grau 0
Adriana Bonato
 
Exercícios função de 2° grau 2p
Exercícios função de 2° grau 2pExercícios função de 2° grau 2p
Exercícios função de 2° grau 2p
Kamilla Oliveira
 
9° ano equações do 2° grau incompletas
9° ano equações do 2° grau incompletas9° ano equações do 2° grau incompletas
9° ano equações do 2° grau incompletas
Hélio Rocha
 
Lista de exercícios 8º ano - 3ª etapa - produto notável
Lista de exercícios   8º ano - 3ª etapa - produto notávelLista de exercícios   8º ano - 3ª etapa - produto notável
Lista de exercícios 8º ano - 3ª etapa - produto notável
Alessandra Dias
 

Mais procurados (20)

2ª Lista de Matematica 9º ano - SESC ESCOLA
2ª Lista de Matematica 9º ano - SESC ESCOLA2ª Lista de Matematica 9º ano - SESC ESCOLA
2ª Lista de Matematica 9º ano - SESC ESCOLA
 
Produtos notáveis
Produtos notáveisProdutos notáveis
Produtos notáveis
 
Lista 3 equacoes_1_grau
Lista 3 equacoes_1_grauLista 3 equacoes_1_grau
Lista 3 equacoes_1_grau
 
I lista de exercícios frações algébricas para publicação
I lista de exercícios   frações algébricas para publicaçãoI lista de exercícios   frações algébricas para publicação
I lista de exercícios frações algébricas para publicação
 
Exercícios produtos notáveis
Exercícios produtos notáveisExercícios produtos notáveis
Exercícios produtos notáveis
 
Exercicios exp-algebricas (1)
Exercicios exp-algebricas (1)Exercicios exp-algebricas (1)
Exercicios exp-algebricas (1)
 
Mat pa pg exercicios gabarito
Mat pa  pg exercicios gabaritoMat pa  pg exercicios gabarito
Mat pa pg exercicios gabarito
 
Microsoft word exercicio matemática com gabarito equações do 2º grau
Microsoft word   exercicio matemática com  gabarito equações do 2º grauMicrosoft word   exercicio matemática com  gabarito equações do 2º grau
Microsoft word exercicio matemática com gabarito equações do 2º grau
 
Mat exercicios deteminantes 2 e 3 ordem
Mat exercicios deteminantes  2 e 3 ordemMat exercicios deteminantes  2 e 3 ordem
Mat exercicios deteminantes 2 e 3 ordem
 
SIMULADO - RADICIAÇÃO
SIMULADO - RADICIAÇÃOSIMULADO - RADICIAÇÃO
SIMULADO - RADICIAÇÃO
 
Lista exercicios 7º ano 1º bimestre
Lista exercicios 7º ano 1º bimestreLista exercicios 7º ano 1º bimestre
Lista exercicios 7º ano 1º bimestre
 
Mat utfrs 10. produtos notaveis e fatoracao exercicios
Mat utfrs 10. produtos notaveis e fatoracao exerciciosMat utfrs 10. produtos notaveis e fatoracao exercicios
Mat utfrs 10. produtos notaveis e fatoracao exercicios
 
Lista (5) de exercícios adição e subtração 2 parte (gabaritada)
Lista (5) de exercícios adição e subtração 2 parte (gabaritada)Lista (5) de exercícios adição e subtração 2 parte (gabaritada)
Lista (5) de exercícios adição e subtração 2 parte (gabaritada)
 
ExercíCio De FatoraçãO Com Gabarito 50 Questoes. Antonio Carlos
ExercíCio De FatoraçãO Com Gabarito 50 Questoes. Antonio CarlosExercíCio De FatoraçãO Com Gabarito 50 Questoes. Antonio Carlos
ExercíCio De FatoraçãO Com Gabarito 50 Questoes. Antonio Carlos
 
L ista de exercícios operacoes com monômios
L ista de exercícios   operacoes com monômiosL ista de exercícios   operacoes com monômios
L ista de exercícios operacoes com monômios
 
Matemática – produtos notáveis 02 2013
Matemática – produtos notáveis 02  2013Matemática – produtos notáveis 02  2013
Matemática – produtos notáveis 02 2013
 
Exercicios Resolvidos Equacao 2 Grau 0
Exercicios Resolvidos Equacao 2 Grau 0Exercicios Resolvidos Equacao 2 Grau 0
Exercicios Resolvidos Equacao 2 Grau 0
 
Exercícios função de 2° grau 2p
Exercícios função de 2° grau 2pExercícios função de 2° grau 2p
Exercícios função de 2° grau 2p
 
9° ano equações do 2° grau incompletas
9° ano equações do 2° grau incompletas9° ano equações do 2° grau incompletas
9° ano equações do 2° grau incompletas
 
Lista de exercícios 8º ano - 3ª etapa - produto notável
Lista de exercícios   8º ano - 3ª etapa - produto notávelLista de exercícios   8º ano - 3ª etapa - produto notável
Lista de exercícios 8º ano - 3ª etapa - produto notável
 

Semelhante a Mat fatoracao algebrica exercicios resolvidos

Apostila nivelamento calculo
Apostila nivelamento calculoApostila nivelamento calculo
Apostila nivelamento calculo
Rondinelli Oliveira
 
Apostilanivelamentocal 120531061351-phpapp02
Apostilanivelamentocal 120531061351-phpapp02Apostilanivelamentocal 120531061351-phpapp02
Apostilanivelamentocal 120531061351-phpapp02
Ezsilvasilva Silva
 
Apostila nivelamento cal
Apostila nivelamento calApostila nivelamento cal
Apostila nivelamento cal
André Piazza
 
Resolução I - Polinômios e números complexos
Resolução I - Polinômios e números complexosResolução I - Polinômios e números complexos
Resolução I - Polinômios e números complexos
FeefelipeeRS
 
Apostila nivelamento
Apostila nivelamentoApostila nivelamento
Apostila nivelamento
Thiago Valentim
 
Apostila nivelamento cal
Apostila nivelamento calApostila nivelamento cal
Apostila nivelamento cal
Senita Folquenim
 
Fisica exercicios resolvidos 011
Fisica exercicios resolvidos  011Fisica exercicios resolvidos  011
Fisica exercicios resolvidos 011
comentada
 
Mat em geometria sol vol6 cap1
Mat em geometria sol vol6 cap1Mat em geometria sol vol6 cap1
Mat em geometria sol vol6 cap1
trigono_metrico
 
Gabarito 1ª Fase - Nível 3 - 2012
Gabarito 1ª Fase - Nível 3 - 2012Gabarito 1ª Fase - Nível 3 - 2012
Gabarito 1ª Fase - Nível 3 - 2012
oim_matematica
 
Mat73a
Mat73aMat73a
Técnicas de-fatoração
Técnicas de-fatoraçãoTécnicas de-fatoração
Técnicas de-fatoração
Raphael Oliveira Santos
 
Remember 08
Remember 08Remember 08
Remember 08
resolvidos
 
Polinomios 7 serie_matematica
Polinomios 7 serie_matematicaPolinomios 7 serie_matematica
Polinomios 7 serie_matematica
alexandregross
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
jwfb
 
Ufba12mat2
Ufba12mat2Ufba12mat2
Mat funcao polinomial 2 grau
Mat funcao polinomial 2 grauMat funcao polinomial 2 grau
Mat funcao polinomial 2 grau
trigono_metria
 
Equação do primeiro e segundo grau1
Equação do primeiro e segundo grau1Equação do primeiro e segundo grau1
Equação do primeiro e segundo grau1
Alexandre Bonifácio
 
Prova do Colégio Militar do Rio de Janeiro, COMENTADA
Prova do Colégio Militar do Rio de Janeiro, COMENTADAProva do Colégio Militar do Rio de Janeiro, COMENTADA
Prova do Colégio Militar do Rio de Janeiro, COMENTADA
thieresaulas
 
00 introdução à cálculos
00 introdução à cálculos00 introdução à cálculos
00 introdução à cálculos
Regina Pereira
 
EquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
EquaçãO Do 2º Grau Autor Antonio Carlos C BarrosoEquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
EquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
Antonio Carneiro
 

Semelhante a Mat fatoracao algebrica exercicios resolvidos (20)

Apostila nivelamento calculo
Apostila nivelamento calculoApostila nivelamento calculo
Apostila nivelamento calculo
 
Apostilanivelamentocal 120531061351-phpapp02
Apostilanivelamentocal 120531061351-phpapp02Apostilanivelamentocal 120531061351-phpapp02
Apostilanivelamentocal 120531061351-phpapp02
 
Apostila nivelamento cal
Apostila nivelamento calApostila nivelamento cal
Apostila nivelamento cal
 
Resolução I - Polinômios e números complexos
Resolução I - Polinômios e números complexosResolução I - Polinômios e números complexos
Resolução I - Polinômios e números complexos
 
Apostila nivelamento
Apostila nivelamentoApostila nivelamento
Apostila nivelamento
 
Apostila nivelamento cal
Apostila nivelamento calApostila nivelamento cal
Apostila nivelamento cal
 
Fisica exercicios resolvidos 011
Fisica exercicios resolvidos  011Fisica exercicios resolvidos  011
Fisica exercicios resolvidos 011
 
Mat em geometria sol vol6 cap1
Mat em geometria sol vol6 cap1Mat em geometria sol vol6 cap1
Mat em geometria sol vol6 cap1
 
Gabarito 1ª Fase - Nível 3 - 2012
Gabarito 1ª Fase - Nível 3 - 2012Gabarito 1ª Fase - Nível 3 - 2012
Gabarito 1ª Fase - Nível 3 - 2012
 
Mat73a
Mat73aMat73a
Mat73a
 
Técnicas de-fatoração
Técnicas de-fatoraçãoTécnicas de-fatoração
Técnicas de-fatoração
 
Remember 08
Remember 08Remember 08
Remember 08
 
Polinomios 7 serie_matematica
Polinomios 7 serie_matematicaPolinomios 7 serie_matematica
Polinomios 7 serie_matematica
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
 
Ufba12mat2
Ufba12mat2Ufba12mat2
Ufba12mat2
 
Mat funcao polinomial 2 grau
Mat funcao polinomial 2 grauMat funcao polinomial 2 grau
Mat funcao polinomial 2 grau
 
Equação do primeiro e segundo grau1
Equação do primeiro e segundo grau1Equação do primeiro e segundo grau1
Equação do primeiro e segundo grau1
 
Prova do Colégio Militar do Rio de Janeiro, COMENTADA
Prova do Colégio Militar do Rio de Janeiro, COMENTADAProva do Colégio Militar do Rio de Janeiro, COMENTADA
Prova do Colégio Militar do Rio de Janeiro, COMENTADA
 
00 introdução à cálculos
00 introdução à cálculos00 introdução à cálculos
00 introdução à cálculos
 
EquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
EquaçãO Do 2º Grau Autor Antonio Carlos C BarrosoEquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
EquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
 

Mais de trigono_metria

Mat utfrs 03. potenciacao
Mat utfrs 03. potenciacaoMat utfrs 03. potenciacao
Mat utfrs 03. potenciacao
trigono_metria
 
Mat divisores de um numero
Mat divisores de um numeroMat divisores de um numero
Mat divisores de um numero
trigono_metria
 
Mat areas e volumes
Mat areas e volumesMat areas e volumes
Mat areas e volumes
trigono_metria
 
Mat expressoes algebricas
Mat expressoes algebricasMat expressoes algebricas
Mat expressoes algebricas
trigono_metria
 
Mat numeros decimais parte ii
Mat numeros decimais parte iiMat numeros decimais parte ii
Mat numeros decimais parte ii
trigono_metria
 
Mat equacao do segundo grau parte i
Mat equacao do segundo grau   parte iMat equacao do segundo grau   parte i
Mat equacao do segundo grau parte i
trigono_metria
 
Mat razoes e proporcoes 002
Mat razoes e proporcoes  002Mat razoes e proporcoes  002
Mat razoes e proporcoes 002
trigono_metria
 
Mat sc conicas
Mat sc conicasMat sc conicas
Mat sc conicas
trigono_metria
 
Mat utfrs 22. poligonos exercicios
Mat utfrs 22. poligonos exerciciosMat utfrs 22. poligonos exercicios
Mat utfrs 22. poligonos exerciciostrigono_metria
 
Mat conjuntos numericos
Mat conjuntos numericosMat conjuntos numericos
Mat conjuntos numericos
trigono_metria
 
Mat leitura numero decimal
Mat leitura numero decimalMat leitura numero decimal
Mat leitura numero decimal
trigono_metria
 
Mat numeros racionais
Mat numeros racionaisMat numeros racionais
Mat numeros racionais
trigono_metria
 
Mat divisibilidade
Mat divisibilidadeMat divisibilidade
Mat divisibilidade
trigono_metria
 
Mat equacoes do 1 grau 004
Mat equacoes do 1 grau  004Mat equacoes do 1 grau  004
Mat equacoes do 1 grau 004
trigono_metria
 
Mat utfrs 05. radiciacao
Mat utfrs 05. radiciacaoMat utfrs 05. radiciacao
Mat utfrs 05. radiciacao
trigono_metria
 
Mat derivadas
Mat derivadasMat derivadas
Mat derivadas
trigono_metria
 
Mat equacoes do 1 grau 001
Mat equacoes do 1 grau  001Mat equacoes do 1 grau  001
Mat equacoes do 1 grau 001
trigono_metria
 
Mat equacao do primeiro grau resolvidos 002
Mat equacao do primeiro grau resolvidos  002Mat equacao do primeiro grau resolvidos  002
Mat equacao do primeiro grau resolvidos 002
trigono_metria
 
Trigonometria radianos graus
Trigonometria radianos grausTrigonometria radianos graus
Trigonometria radianos graus
trigono_metria
 
Mat utfrs 06. razao e proporcao exercicios
Mat utfrs 06. razao e proporcao exerciciosMat utfrs 06. razao e proporcao exercicios
Mat utfrs 06. razao e proporcao exercicios
trigono_metria
 

Mais de trigono_metria (20)

Mat utfrs 03. potenciacao
Mat utfrs 03. potenciacaoMat utfrs 03. potenciacao
Mat utfrs 03. potenciacao
 
Mat divisores de um numero
Mat divisores de um numeroMat divisores de um numero
Mat divisores de um numero
 
Mat areas e volumes
Mat areas e volumesMat areas e volumes
Mat areas e volumes
 
Mat expressoes algebricas
Mat expressoes algebricasMat expressoes algebricas
Mat expressoes algebricas
 
Mat numeros decimais parte ii
Mat numeros decimais parte iiMat numeros decimais parte ii
Mat numeros decimais parte ii
 
Mat equacao do segundo grau parte i
Mat equacao do segundo grau   parte iMat equacao do segundo grau   parte i
Mat equacao do segundo grau parte i
 
Mat razoes e proporcoes 002
Mat razoes e proporcoes  002Mat razoes e proporcoes  002
Mat razoes e proporcoes 002
 
Mat sc conicas
Mat sc conicasMat sc conicas
Mat sc conicas
 
Mat utfrs 22. poligonos exercicios
Mat utfrs 22. poligonos exerciciosMat utfrs 22. poligonos exercicios
Mat utfrs 22. poligonos exercicios
 
Mat conjuntos numericos
Mat conjuntos numericosMat conjuntos numericos
Mat conjuntos numericos
 
Mat leitura numero decimal
Mat leitura numero decimalMat leitura numero decimal
Mat leitura numero decimal
 
Mat numeros racionais
Mat numeros racionaisMat numeros racionais
Mat numeros racionais
 
Mat divisibilidade
Mat divisibilidadeMat divisibilidade
Mat divisibilidade
 
Mat equacoes do 1 grau 004
Mat equacoes do 1 grau  004Mat equacoes do 1 grau  004
Mat equacoes do 1 grau 004
 
Mat utfrs 05. radiciacao
Mat utfrs 05. radiciacaoMat utfrs 05. radiciacao
Mat utfrs 05. radiciacao
 
Mat derivadas
Mat derivadasMat derivadas
Mat derivadas
 
Mat equacoes do 1 grau 001
Mat equacoes do 1 grau  001Mat equacoes do 1 grau  001
Mat equacoes do 1 grau 001
 
Mat equacao do primeiro grau resolvidos 002
Mat equacao do primeiro grau resolvidos  002Mat equacao do primeiro grau resolvidos  002
Mat equacao do primeiro grau resolvidos 002
 
Trigonometria radianos graus
Trigonometria radianos grausTrigonometria radianos graus
Trigonometria radianos graus
 
Mat utfrs 06. razao e proporcao exercicios
Mat utfrs 06. razao e proporcao exerciciosMat utfrs 06. razao e proporcao exercicios
Mat utfrs 06. razao e proporcao exercicios
 

Último

OS elementos de uma boa Redação para o ENEM.pdf
OS elementos de uma boa Redação para o ENEM.pdfOS elementos de uma boa Redação para o ENEM.pdf
OS elementos de uma boa Redação para o ENEM.pdf
AmiltonAparecido1
 
GÊNERO TEXTUAL - POEMA.pptx
GÊNERO      TEXTUAL     -     POEMA.pptxGÊNERO      TEXTUAL     -     POEMA.pptx
GÊNERO TEXTUAL - POEMA.pptx
Marlene Cunhada
 
Estrutura Pedagógica - Laboratório de Educação a Distância.ppt
Estrutura Pedagógica - Laboratório de Educação a Distância.pptEstrutura Pedagógica - Laboratório de Educação a Distância.ppt
Estrutura Pedagógica - Laboratório de Educação a Distância.ppt
livrosjovert
 
A Evolução da história da Física - Albert Einstein
A Evolução da história da Física - Albert EinsteinA Evolução da história da Física - Albert Einstein
A Evolução da história da Física - Albert Einstein
WelberMerlinCardoso
 
A QUESTÃO ANTROPOLÓGICA: O QUE SOMOS OU QUEM SOMOS.pdf
A QUESTÃO ANTROPOLÓGICA: O QUE SOMOS OU QUEM SOMOS.pdfA QUESTÃO ANTROPOLÓGICA: O QUE SOMOS OU QUEM SOMOS.pdf
A QUESTÃO ANTROPOLÓGICA: O QUE SOMOS OU QUEM SOMOS.pdf
AurelianoFerreirades2
 
Slides Lição 11, Central Gospel, Os Mortos Em CRISTO, 2Tr24.pptx
Slides Lição 11, Central Gospel, Os Mortos Em CRISTO, 2Tr24.pptxSlides Lição 11, Central Gospel, Os Mortos Em CRISTO, 2Tr24.pptx
Slides Lição 11, Central Gospel, Os Mortos Em CRISTO, 2Tr24.pptx
LuizHenriquedeAlmeid6
 
Famílias Que Contribuíram Para O Crescimento Do Assaré
Famílias Que Contribuíram Para O Crescimento Do AssaréFamílias Que Contribuíram Para O Crescimento Do Assaré
Famílias Que Contribuíram Para O Crescimento Do Assaré
profesfrancleite
 
7133lllllllllllllllllllllllllllll67.pptx
7133lllllllllllllllllllllllllllll67.pptx7133lllllllllllllllllllllllllllll67.pptx
7133lllllllllllllllllllllllllllll67.pptx
LEANDROSPANHOL1
 
347018542-PAULINA-CHIZIANE-Balada-de-Amor-ao-Vento-pdf.pdf
347018542-PAULINA-CHIZIANE-Balada-de-Amor-ao-Vento-pdf.pdf347018542-PAULINA-CHIZIANE-Balada-de-Amor-ao-Vento-pdf.pdf
347018542-PAULINA-CHIZIANE-Balada-de-Amor-ao-Vento-pdf.pdf
AntnioManuelAgdoma
 
Redação e Leitura_7º ano_58_Produção de cordel .pptx
Redação e Leitura_7º ano_58_Produção de cordel .pptxRedação e Leitura_7º ano_58_Produção de cordel .pptx
Redação e Leitura_7º ano_58_Produção de cordel .pptx
DECIOMAURINARAMOS
 
Slides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptx
Slides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptxSlides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptx
Slides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptx
LuizHenriquedeAlmeid6
 
UFCD_3546_Prevenção e primeiros socorros_geriatria.pdf
UFCD_3546_Prevenção e primeiros socorros_geriatria.pdfUFCD_3546_Prevenção e primeiros socorros_geriatria.pdf
UFCD_3546_Prevenção e primeiros socorros_geriatria.pdf
Manuais Formação
 
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptxTreinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
MarcosPaulo777883
 
D20 - Descritores SAEB de Língua Portuguesa
D20 - Descritores SAEB de Língua PortuguesaD20 - Descritores SAEB de Língua Portuguesa
D20 - Descritores SAEB de Língua Portuguesa
eaiprofpolly
 
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptxPP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
LuizHenriquedeAlmeid6
 
Atividade letra da música - Espalhe Amor, Anavitória.
Atividade letra da música - Espalhe  Amor, Anavitória.Atividade letra da música - Espalhe  Amor, Anavitória.
Atividade letra da música - Espalhe Amor, Anavitória.
Mary Alvarenga
 
karl marx biografia resumida com suas obras e história de vida
karl marx biografia resumida com suas obras e história de vidakarl marx biografia resumida com suas obras e história de vida
karl marx biografia resumida com suas obras e história de vida
KleginaldoPaz2
 
Leis de Mendel - as ervilhas e a maneira simples de entender.ppt
Leis de Mendel - as ervilhas e a maneira simples de entender.pptLeis de Mendel - as ervilhas e a maneira simples de entender.ppt
Leis de Mendel - as ervilhas e a maneira simples de entender.ppt
PatriciaZanoli
 
Fernão Lopes. pptx
Fernão Lopes.                       pptxFernão Lopes.                       pptx
Fernão Lopes. pptx
TomasSousa7
 
UFCD_10145_Enquadramento do setor farmacêutico_indice.pdf
UFCD_10145_Enquadramento do setor farmacêutico_indice.pdfUFCD_10145_Enquadramento do setor farmacêutico_indice.pdf
UFCD_10145_Enquadramento do setor farmacêutico_indice.pdf
Manuais Formação
 

Último (20)

OS elementos de uma boa Redação para o ENEM.pdf
OS elementos de uma boa Redação para o ENEM.pdfOS elementos de uma boa Redação para o ENEM.pdf
OS elementos de uma boa Redação para o ENEM.pdf
 
GÊNERO TEXTUAL - POEMA.pptx
GÊNERO      TEXTUAL     -     POEMA.pptxGÊNERO      TEXTUAL     -     POEMA.pptx
GÊNERO TEXTUAL - POEMA.pptx
 
Estrutura Pedagógica - Laboratório de Educação a Distância.ppt
Estrutura Pedagógica - Laboratório de Educação a Distância.pptEstrutura Pedagógica - Laboratório de Educação a Distância.ppt
Estrutura Pedagógica - Laboratório de Educação a Distância.ppt
 
A Evolução da história da Física - Albert Einstein
A Evolução da história da Física - Albert EinsteinA Evolução da história da Física - Albert Einstein
A Evolução da história da Física - Albert Einstein
 
A QUESTÃO ANTROPOLÓGICA: O QUE SOMOS OU QUEM SOMOS.pdf
A QUESTÃO ANTROPOLÓGICA: O QUE SOMOS OU QUEM SOMOS.pdfA QUESTÃO ANTROPOLÓGICA: O QUE SOMOS OU QUEM SOMOS.pdf
A QUESTÃO ANTROPOLÓGICA: O QUE SOMOS OU QUEM SOMOS.pdf
 
Slides Lição 11, Central Gospel, Os Mortos Em CRISTO, 2Tr24.pptx
Slides Lição 11, Central Gospel, Os Mortos Em CRISTO, 2Tr24.pptxSlides Lição 11, Central Gospel, Os Mortos Em CRISTO, 2Tr24.pptx
Slides Lição 11, Central Gospel, Os Mortos Em CRISTO, 2Tr24.pptx
 
Famílias Que Contribuíram Para O Crescimento Do Assaré
Famílias Que Contribuíram Para O Crescimento Do AssaréFamílias Que Contribuíram Para O Crescimento Do Assaré
Famílias Que Contribuíram Para O Crescimento Do Assaré
 
7133lllllllllllllllllllllllllllll67.pptx
7133lllllllllllllllllllllllllllll67.pptx7133lllllllllllllllllllllllllllll67.pptx
7133lllllllllllllllllllllllllllll67.pptx
 
347018542-PAULINA-CHIZIANE-Balada-de-Amor-ao-Vento-pdf.pdf
347018542-PAULINA-CHIZIANE-Balada-de-Amor-ao-Vento-pdf.pdf347018542-PAULINA-CHIZIANE-Balada-de-Amor-ao-Vento-pdf.pdf
347018542-PAULINA-CHIZIANE-Balada-de-Amor-ao-Vento-pdf.pdf
 
Redação e Leitura_7º ano_58_Produção de cordel .pptx
Redação e Leitura_7º ano_58_Produção de cordel .pptxRedação e Leitura_7º ano_58_Produção de cordel .pptx
Redação e Leitura_7º ano_58_Produção de cordel .pptx
 
Slides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptx
Slides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptxSlides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptx
Slides Lição 11, CPAD, A Realidade Bíblica do Inferno, 2Tr24.pptx
 
UFCD_3546_Prevenção e primeiros socorros_geriatria.pdf
UFCD_3546_Prevenção e primeiros socorros_geriatria.pdfUFCD_3546_Prevenção e primeiros socorros_geriatria.pdf
UFCD_3546_Prevenção e primeiros socorros_geriatria.pdf
 
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptxTreinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
Treinamento NR 38 - CORPO PRINCIPAL da NORMA.pptx
 
D20 - Descritores SAEB de Língua Portuguesa
D20 - Descritores SAEB de Língua PortuguesaD20 - Descritores SAEB de Língua Portuguesa
D20 - Descritores SAEB de Língua Portuguesa
 
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptxPP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
 
Atividade letra da música - Espalhe Amor, Anavitória.
Atividade letra da música - Espalhe  Amor, Anavitória.Atividade letra da música - Espalhe  Amor, Anavitória.
Atividade letra da música - Espalhe Amor, Anavitória.
 
karl marx biografia resumida com suas obras e história de vida
karl marx biografia resumida com suas obras e história de vidakarl marx biografia resumida com suas obras e história de vida
karl marx biografia resumida com suas obras e história de vida
 
Leis de Mendel - as ervilhas e a maneira simples de entender.ppt
Leis de Mendel - as ervilhas e a maneira simples de entender.pptLeis de Mendel - as ervilhas e a maneira simples de entender.ppt
Leis de Mendel - as ervilhas e a maneira simples de entender.ppt
 
Fernão Lopes. pptx
Fernão Lopes.                       pptxFernão Lopes.                       pptx
Fernão Lopes. pptx
 
UFCD_10145_Enquadramento do setor farmacêutico_indice.pdf
UFCD_10145_Enquadramento do setor farmacêutico_indice.pdfUFCD_10145_Enquadramento do setor farmacêutico_indice.pdf
UFCD_10145_Enquadramento do setor farmacêutico_indice.pdf
 

Mat fatoracao algebrica exercicios resolvidos

  • 1. Exercícios Resolvidos de Fatoração Algébrica Exemplo 19) Fatore c2 - 2bc - a2 + b2 2 2 2 2 2 2 Reagrupando o polinômio, teremos : b - 2bc + c - a = (b - 2bc + c ) - a 2 2 2 O trinômio b - 2bc + c pode ser fatorado como : (b - c) 2 2 E dessa forma, teremos a diferença de dois quadrados (b - c) - a , e finalmente, teremos : 2 2 (b - c) - a = (b - c + a) (b - c - a) 8 4 Exemplo 20) Fatore: 5m + 10m - 15 Percebemos que o fator 5 pode ser evidenciado, Assim: 8 4 8 4 5m + 10m - 15 = 5(m + 2m - 3) 8 4 O trinômio m + 2m - 3 não é um trinômio quadrado perfeito, mas poderá ser um trinômio de Stevin. E realmente o é, pois os números 3 e -1, têm por soma 2 e por produto - 3, e a soma aparece multiplicada pela raiz quadrada m4 8 de m . 8 4 8 4 4 4 Dessa forma, teremos : 5m + 10m - 15 = 5(m + 2m - 3) = 5(m + 3) (m - 1) 4 2 2 2 8 4 4 2 E como (m - 1) = (m + 1) (m - 1) , e como (m - 1) (m + 1)(m - 1) teremos : 5m + 10m - 15 = 5(m + 3)(m + 1)(m + 1)(m - 1) 2 Exemplo 21) Fatore: (x - y) + 2(y - x) - 24 2 2 Antes de mais nada, lembremos que (x - y) = (y - x) ( verifique se isso é verdade ) 2 Com isso podemos escrever a expressão dada como : (y - x) + 2(y - x) - 24 Para facilitar o reconhecimento do caso de fatoração, chamemos o binômio (y - x) de A, então : 2 2 (y - x) + 2(y - x) - 24 = A + 2A - 24 O trinômio não é quadrado perfeito, mas parece ser de Stevin. Verificando, percebemos que os números - 4 e + 6 têm por soma + 2 e por produto - 24 e a soma + 2 aparece multiplicada pela raiz 2 quadrada A de A . 2 2 E assim : A + 2A - 24 = (A + 6) (A - 4) e como A = y - x, finalmente teremos: (x - y) + 2(y - x) - 24 = (y - x + 6) (y - x - 4) 6 6 Exemplo 22) Fatore x - y 1ª Resolução: Considerando uma diferença de dois cubos Como ambos são termos cúbicos, essa diferença poderá ser fatorada. 6 2 2 2 A raiz cúbica de x6 é x2 e a raiz cúbica de y é y . Assim já temos o nosso primeiro fator x - y 2 4 2 2 2 2 A partir dele montaremos o nosso segundo fator. O quadrado de x é x ; o produto entre x e y é x y e o quadrado do 2 4 segundo é y é y . E dessa forma, teremos: 6 6 2 2 4 2 2 4 2 2 x - y = (x - y ) ( x + x y + y ). Como a diferença de quadrados (x - y ) ainda pode ser fatorado, teremos :
  • 2. 6 6 4 2 2 4 x - y = (x + y) (x - y) ( x + x y + y ). 4 2 2 4 Se escrevermos o trinômio ( x + x y + y ) de uma outra forma, perceberemos que ele também poderá ser fatorado. Vejamos : 4 2 2 4 4 2 2 4 2 2 2 2 2 2 2 x + x y + y = x + 2x y + y - x y = (x + y ) - x y , que é uma diferença de dois quadrados. 2 2 2 2 2 2 2 2 2 2 2 2 2 Assim : (x + y ) - x y = ( x + y + xy) ( x + y - xy) = ( x - xy + y ) ( x + xy + y ). E finalmente : 6 6 2 2 2 2 x - y = (x + y) (x - y) ( x - xy + y ) ( x + xy + y ) 2ª Resolução: Considerando uma diferença de dois quadrados. Como ambos são quadrados, temos uma diferença de dois quadrados. 6 3 6 3 A raiz quadrada de x é x e a raiz quadrada de y é y . 3 3 3 3 Assim já temos o nosso primeiro fator (x + y ) e o segundo fator (x - y ). Assim, teremos : x6 - y6 = (x3 + y3) (x3 - y3) . 3 3 3 3 Como a soma e a diferença de dois cubos (x + y ) e (x - y ) ainda podem ser fatorados, teremos : 6 6 3 3 3 3 2 2 2 2 x - y = (x + y ) (x - y ) = (x + y) ( x - xy + y ) (x - y) ( x + xy + y ) , ou ainda : 6 6 2 2 2 2 x - y = (x + y) (x - y) ( x - xy + y ) ( x + xy + y ) OBSERVAÇÃO MUITO IMPORTANTE Sempre que fatoramos uma expressão algébrica ou quando efetuamos um produto notável devemos utilizar o sinal de identidade que é uma ampliação do conceito de igualdade. Vamos entender melhor essa diferenciação: Quando afirmamos que 3x + 4 = 19, sabemos que apenas o valor de x = 5 tornará verdadeira essa sentença. Nesse caso utilizaremos o sinal de igualdade. Quando afirmamos que 2(x + 3) = 2x + 6, percebemos que qualquer valor de x, torna essa sentença verdadeira. Nesse caso devemos utilizar o sinal de identidade . E escrevermos : Assim o correto seria utilizarmos o sinal de identidade para todos os casos de produtos notáveis e, também, de fatoração. Assim, por exemplo : Fatoração Algébrica - Exercícios Propostos I - Fatore colocando em evidência
  • 3. II - Fatore os trinômios quadrados perfeitos III - Fatore as diferenças entre quadrados IV - Fatore os trinômios de Stevin V - Fatore as Somas ou diferenças entre dois cubos VI - Fatore por agrupamento VII - Fatore as expressões algébricas Resposta dos Exercícios Propostos de Fatoração Algébrica