SlideShare uma empresa Scribd logo
1 de 11
BLOG CÁLCULO BÁSICO
www.calculobasico.blogspot.com.br
- Prova de Matemática do Colégio Militar do Rio de Janeiro – Prova 2011 -
Resolução da Prova
por
Prof.: Thieres Machado
aulastm@bol.com.br
Solução:
5 2 5 2 5 2 3 3 10
2 5 102 5 10 10
−
− = − = = = .
Solução:
Vamos modelar esta situação para a linguagem Matemática, sendo x a
medida procurada. Veja:
Sabemos que os dois triângulos formados, um pelo poste e outro pelo homem com os raios
do sol e suas sombras são semelhantes, pois possuem um ângulo reto e o ângulo de inclinação dos
raios do sol é o mesmo, logo os lados homólogos são proporcionais, bem como os aumentos e
diminuições em seus lados, isto é, neste caso, se a sombra do poste diminui um determinado
valor, proporcionalmente a sombra do homem também diminuirá. E daí, podemos escrever a
proporção:
100 40
100x 1200 x 12cm
30 x
= ⇔ = ⇔ = .
Solução:
Para encontrarmos a medida do ângulo interno de um polígono regular,
usamos a relação
180.(n 2)
n
−
e para a medida do ângulo externo, também de
um polígono regular, usamos
360
n
, onde n representa o número de lados.
Portanto, do enunciado, temos:
180.(n 2)
n
−
-
360
n
= 144 180n 360 360 144n n 20⇔ − − = ⇔ = .
Solução:
Sejam a, b, c as medidas da hipotenusa e dos catetos, respectivamente. Do
enunciado temos:
a + b + c = 30 ( I )
a2
+ b2
+ c2
= 338 ( II )
b2
+ c2
= a2
( III ) Teorema de Pitágoras
Substituindo (III) em (II): 2 2
a a 338 a 13cm+ = ⇔ = . Substituindo o valor de
a = 13, em (III) e (I):
2 2
b c 169
b c 17
 + =

+ =
, fazendo a devida substituição, encontramos a equação na
incógnita c: 2 2
2c 34c 120 0 c 17c 60 0 c 12 ou c = 5− + = ⇔ − + = ⇔ = .
Para c = 12, b = 5 e para c = 5, b = 12. Portanto, o módulo da diferença será:
12 5 7cm ou 5 12 7cm− = − = .
Solução:
( )
( ) ( )
( )( )
( ) ( )
( )( )
( ) ( )
x x a a x ax a
x a x a2a 2ax a x a
x a x x a x x a a x a a x a x x a
a
x a x a x a x a x a x a
+ + −
+ − +− + + = + =
+ + − − − − +
− −
− + − − + −
( ) ( )
( ) ( )
( )
( ) ( )
( ) ( )
( ) ( )
( )
( ) ( )
( ) ( )
( ) ( )
( )
( ) ( )
( ) ( )
( ) ( )
x x a a x a 2a x a x x a a x a 2a x a
x x a a x a a x a x x a x x a a x a x x a a x a
x x a a x a 2a x a x x a a x a
1.
x x a a x a x x a a x a x x a a x a
+ + − − + + − −
= + = + =
+ − − − − + + − − − + − −  
+ + − − + − −
= − = =
+ − − + − − + − −
Solução:
3
2 2 2
3 3 6 8 6 8
11 1 2 2 4 2 3
8
2 5 33 5
8 84 4
2 35 3
1
ab6 6 8 24 248
3 3 4 12 12b
a
a b b a b a 1 1 1
a 1b a a b a b ab a ab
b ab a b ba a a b
b a ab b b a
1 1 1 1 1 1 1 1
a a b a b a b ab
− −
−− −
−
−
× ×
× = × = = =
= × = × = × = × = ⋅
Solução:
Lembrando que (a + b + c)2
= a2
+ b2
+ c2
+ 2( ab + ac + bc), vamos antes simplificar a
expressão dada.
(3a + b – 2c)2
– (2a – 3c)2
+ 5(c – a)(a + c) + b(2a – b) =
= 9a2
+ b2
+ 4c2
+ 2(3ab - 6ac – 2bc) – 4a2
+ 12ac – 9c2
+ 5c2
– 5a2
+ 2ab – b2
=
= 6ab – 12ac – 4bc + 12ac + 2ab = 8ab – 4bc a 7/18,b 5/8,c 2/9 7 5 5 2 25
8 4
18 8 8 9 18
= = =
→ ⋅ ⋅ − ⋅ ⋅ = ⋅
Solução:
Para obter a área do triângulo, precisamos antes saber sua dimensões, vamos então descobrir as
coordenadas do ponto c. Sabendo que f é uma função afim, sua lei é da forma: f(x) = ax + b ou y =
ax + b, com a, b∈ℝ e a 0≠ . Temos uma reta e b é a ordenada do ponto de interseção da reta com o
eixo vertical, isto é, o ponto de interseção da reta (gráfico de f) com o eixo vertical é c = (0,b) .
Utilizando os pontos (3,1) e (-2,-9) e y = ax + b:
resolvendo
3a b 1
a 2 e b = -5.
2a b 9
+ =
→ =
+ = −
Podemos escrever a lei da função f: f(x) = 2x - 5. Logo, c = (0,-5) e no triângulo retângulo ABC,
AB = 3, BC = 6.
Área de ABC = (3.6)/2 = 9 u.a.
(0,-5)
Prof. Thieres Machado
Professor de cursos preparatórios, com experiência em concursos públicos em geral.
Para aulas particulares ou em grupo envie um e-mail para:
aulastm@bol.com.br ou pelo tel.: (21) 9155-0291
BLOG CÁLCULO BÁSICO
Matemática para concursos
www.calculobasico.blogspot.com.br
Solução:
O que vem a ser capacidade, neste caso? Bem, capacidade é o quociente entre a quantidade de
envelopes distribuídos e o tempo gasto para distribuí-las.
Sendo C a capacidade total, Q quantidade total de envelopes e T o tempo total, temos C = Q/T.
Sejam CM, QM e TM as grandezas relacionadas a Marcelo e CJ, QJ e TJ as grandezas relacionadas a Jean.
Do enunciado, temos:
TJ = 110% do TM, então TJ = 1,1TM.
CM = 80% da CJ, então CM = 0,8CJ.
QM + QJ = 380, então QJ = 380 - QM.
J J MM
M J M
M J J
Q 0,8Q TQ
C 0,8C 0,8 Q
T T T
= → = ⋅ ⇔ = , agora fazendo as substituições em QJ e TJ, temos:
( )M MJ M
M M M M M
J M
0,8 380 Q T0,8Q T
Q Q 1,1Q 0,8Q 304 Q 160 cartas.
T 1,1T
−
= → = ⇔ + = ⇔ =
QJ = 380 - 160, então QJ = 220 envelopes.
Observando as alternativas, temos que a letra A é a correta, Jean distribui 220 envelopes.
Solução:
Como os retângulos são congruentes entre si, temos que todos possuem as mesmas dimensões. Seja x a
medida do comprimento e y a medida da largura de cada retângulo.
Na figura temos:
2x = 3y (relação entre as medidas do lados da figura).
4x + 5y = 176
3y
2.2x 5y 176 6y 5y 176 y 16cm, logo x = 24cm.
=
⇔ + = ⇔ + = ⇔ =
Área = 16.24 = 384 cm2
.
Solução:
Já sabemos encontrar a medida do ângulo interno de um polígono regular (veja questão/solução nº.3). O
ângulo interno (ai) do pentágono vale:
( )
i
180 5 2
a 108 .
5
−
= = ° Agora, veja a figura abaixo. No triângulo ADE, ˆˆADE DAE 36= = ° , pois o
triângulo ADE é isósceles com AE = DE. Portanto, o ângulo ˆBAD 108 36 72= °− ° = ° e sendo o ângulo
BÂD um ângulo de segmento, isto é, seu vértice está na circunferência e um de seus lados é tangente e o
outro secante à circunferência, sua medida é metade da medida do ângulo central correspondente. Sendo
AÔD o ângulo central, temos:
ˆAOD ˆ72 AOD 144 .
2
° = ⇔ = °
Seja x a medida do arco menor AD e por uma regra de três simples direta, pois o comprimento da
circunferência ( 2 rπ ) equivale a uma volta completa (360°), vamos determinar a medida procurada:
2 r 360 2 .5.144
x x 4 cm.
x 144 360
π π
π
− − − − ° °
→ = ⇔ =
− − − − ° °
Solução:
Sejam S, E e G o número de provas corrigidas pelos professores Sobral, Euler e Gil,
respectivamente. Do enunciado, temos:
E 60% de S, então E = 0,6.S.
G = 45% de E, então G = 0,45.E.
=
Das duas relações acima, podemos escrever uma terceira:
G 0,45.E 0,45.0,6.S, então G = 0,27.S.= =
Ainda, do enunciado:
S + E + G = 561 S 0,6S 0,27S 561 S 300.→ + + = ⇔ = Logo, E = 180 e G = 81.
Portanto, a resposta correta é a letra C, Gil corrigiu 81 provas.
Solução:
Em primeiro lugar, vamos verificar as restrições para esta equação.
x2
- 6x + 6 0≥ , fazendo x2
- 6x + 6 = 0 resolvendo
x 3 3→ = ± . Fazendo o estudo do sinal:
+ + + - - - - - - + + + temos que: x ;x 3 3 ou x 3+ 3∈ ≤ − ≥ℝ .
3 3− 3 3+
Agora, vamos resolver a equação dada fazendo uso de uma substituição, mas antes observe que:
2 2 2
x 6x 6 x 6x 9 6 9 x 6x 9 3.− + = − + + − = − + −
2 2 2 2
x 6x 9 4 x 6x 6 x 6x 9 4 x 6x 9 3− + = − + ⇔ − + = − + − . Fazendo x2
- 6x + 9 = y, vem:
( )
2
2 2
y 4 y 3 y 4 y 3 y 16y 48 0 y 12 ou y = 4.= − ⇔ = − ⇔ − + = ⇔ = Verificando:
para y = 12 12 4 12 3 (verdadeiro)→ = − e y = 4 4 4 4 3 (verdadeiro)→ = − . “Voltando”,
isto é, encontrando os valores das raízes em x:
Para y = 12, temos 2 2
x 6x 9 12 x 6x 3 0 x 3 3 (inteiros).− + = ⇔ − − = ⇔ = ± ∉ℤ
Para y = 4, temos 2
x 6x 5 0 x 5 ou x = 1.− + = ⇔ = Ambos os valores pertencem ao intervalo
verificado para a restrição.
Soma das raízes inteiras = 5 + 1 = 6.
Completando os quadrados
Solução:
Sejam x, y, z, w as quantias que os irmãos possuem no momento presente. Do
enunciado, temos:
x + y + z + w = 71 ( I )
x + 4 = y - 3 =
z
2
= 2w (valor final da importância de cada irmão), então
x = 2w - 4; y = 2w + 3 e z = 4w, agora, substituindo essas relações em ( I ),
vem que:
2w + 2w + 3 + 4w + w = 71 w 8⇔ = . Portanto, o valor final da importância
de cada um dos irmãos será: x + 4 = y - 3 =
z
2
= 2w = 2.8 = 16 reais.
Solução:
Sejam M, E e A a quantidade de oficiais presentes na reunião da Marinha, Exército e
Aeronáutica, respectivamente.
Do enunciado, temos que como saíram os oficiais da Aeronáutica, restam os oficiais da
Marinha e Exército (M + E):
M = 40% de (M + E), então M =
2
(M E)
5
+
3M
5M 2M 2E E
2
⇔ − = ⇔ = .
Do contrário, retiraram os oficiais da Marinha, restam os oficiais da Aeronáutica e Exército
(E + A):
E = 90% de (E + A), então E =
9
(E A)
10
+ , substituindo o valor de E encontrado acima:
E =
9
(E A)
10
+
:3
:3
3M 9 3M 30M 27M 18A A 3 1
A 3M 18A
2 10 2 20 20 M 18 6
+ 
→ = + ⇔ = ⇔ = ⇔ = = 
 
.
Solução:
Observe que: Área CDEF = Área ABCD - (Área ABE + Área FCB)
No triângulo ABE, por Pitágoras, temos que BE = 5 . Veja que AD é paralelo a BC e BE é transversal
aos lados AD e BC, portanto formam ângulos alternos internos, isto é, ˆ ˆAEB CBE≡ , além do mais,
ˆ ˆBAE BFC (retos)≡ , logo os triângulos ABE e FCB são semelhantes (possuem dois ângulos
correspondentes congruentes) e daí:
AE BE 1 5 2 5
BF
BF BC BF 2 5
= → = ⇔ = .
No triângulo FCB, por Pitágoras, temos que FC =
4 5
5
. Portanto, Área FCB =
2 5 4 5
45 5
2 5
×
= . Logo,
Área CDEF = 4 -
4 11
1
5 5
 
+ = 
 
cm2
.
Solução:
Sejam a, b algarismos e N um número inteiro. Temos, idade de Paulo = ab = 10a + b e
idade de Rebecca = ba = 10b + a.
Do enunciado:
(ab)2
- (ba)2
= N2
2 2
2 2 2 2 2
(ab ba).(ab ba) N (10a b 10b a).(10a b 10b a) N
(11a 11b).(9a 9b) N 11.9.(a b)(a b) N 9.11.(a b ) N
+ − = ⇔ + + + + − − = ⇔
⇔ + − = ⇔ + − = ⇔ − = ⇔
⇔ 32
.11.(a2
- b2
) = N2
.
Observação: No problema proposto acima, lembre-se que a, b são algarismos e podem assumir qualquer
valor, observando a restrições do enunciado, dos algarismos do sistema decimal, isto é, 0, 1, 2, 3, 4, 5, 6, 7, 8
ou 9 (no caso acima 5 e 6) e o quadrado de um número inteiro diferente de zero é sempre um número inteiro
positivo.
Observe que N2
é um quadrado perfeito, portanto os expoentes dos fatores primos devem ser pares.
Como temos dois fatores definidos (3 e 11) e o fator 3 tem expoente par, devemos voltar nossa atenção
para o fator 11, para que tenhamos expoente par para o fator 11, (a2
- b2
) deve ser igual a 11 ou uma
potência de base 11 com expoente ímpar, mas verifique que uma potência de base 11 e expoente maior
do que 1 não satisfará as alternativas ou/e o enunciado, portanto (a2
- b2
) = 11 e daí, podemos escrever:
(a2
- b2
) = 11 ( ) ( )a b . a b 11⇔ + − = , neste caso, a = 6 e b = 5. Assim, idade de Paulo = 65 anos e idade
de Rebecca = 56.
Soma das idades = 65 + 56 = 121.
Solução:
Preço (R$) Unidades Receita (R$)
150 270 40500
140 300 42000
130 330 42900
120 360 43200
110 390 42900
100 400 40000
. . .
. . .
. . .
Veja que, na tabela construída acima, a receita máxima é de R$ 43200, após a
receita tende a diminuir.
Prof. Thieres Machado
Professor de colégios, cursos preparatórios, com experiência em concursos públicos, militares, vestibulares,
escolas técnicas, reforço escolar, etc.
Para aulas particulares ou em grupo envie um e-mail para:
aulastm@bol.com.br ou pelo tel.: (21) 9155-0291
BLOG CÁLCULO BÁSICO
Matemática para concursos
www.calculobasico.blogspot.com.br
Solução:
1 1 1 1 1 1
1 . 1 . 1 . ... . 1 . 1 . ... . 1
2 3 4 2n 2n 1 200
3 2 5 4 2n 1 2n 199 198 201 201
2 3 4 5 2n 2n 1 198 199 200 200
           
+ − + + − + =           
+           
+
= ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅ = ⋅
+
Solução:
Seja x a medida do ângulo. Do enunciado, temos:
( )
( )
( )
( )
90 x
3. 180 2x 125 . Resolvendo esta equação:
4
90 x 90 x
3. 180 2x 125 540 6x 125 x 70 .
4 4
°−
° − + = °
°− °−
° − + = ° ⇔ ° − + = ° ⇔ = °
Dois ângulos são replementares quando sua soma é igual a 360°. Portanto, o
replemento de um ângulo x é: 360° - x.
Replemento de 70° = 360° - 70° = 290°.

Mais conteúdo relacionado

Mais procurados

Lista de Exercícios - Teorema de Tales
Lista de Exercícios - Teorema de TalesLista de Exercícios - Teorema de Tales
Lista de Exercícios - Teorema de TalesEverton Moraes
 
9 º ano função de 1º grau e teorema de tales exercícios
9 º ano função de 1º grau e teorema de tales exercícios9 º ano função de 1º grau e teorema de tales exercícios
9 º ano função de 1º grau e teorema de tales exercíciosAndréia Rodrigues
 
Lista 01 exercícios de função do 1º grau
Lista 01 exercícios de função do 1º grauLista 01 exercícios de função do 1º grau
Lista 01 exercícios de função do 1º grauManoel Silva
 
1ª lista de exercícios análise de gráficos e porcentagem
1ª lista de exercícios   análise de gráficos e porcentagem1ª lista de exercícios   análise de gráficos e porcentagem
1ª lista de exercícios análise de gráficos e porcentagemlualvares
 
Exercicios de-radiciacao
Exercicios de-radiciacaoExercicios de-radiciacao
Exercicios de-radiciacaoRonaldoii
 
GINCANA MATEMÁTICA(ÁREA DE FIGURAS PLANAS) 6º ao 9º ano)
GINCANA MATEMÁTICA(ÁREA DE FIGURAS PLANAS) 6º ao 9º ano)GINCANA MATEMÁTICA(ÁREA DE FIGURAS PLANAS) 6º ao 9º ano)
GINCANA MATEMÁTICA(ÁREA DE FIGURAS PLANAS) 6º ao 9º ano)Edimar Santos
 
Mat utfrs 17. teorema de tales exercicios
Mat utfrs 17. teorema de tales exerciciosMat utfrs 17. teorema de tales exercicios
Mat utfrs 17. teorema de tales exerciciostrigono_metria
 
Aula 02 polígonos - exercicios
Aula 02   polígonos - exerciciosAula 02   polígonos - exercicios
Aula 02 polígonos - exerciciosJeane Carvalho
 
Exercícios do Teorema de Pitágoras
Exercícios do Teorema de PitágorasExercícios do Teorema de Pitágoras
Exercícios do Teorema de PitágorasAjudar Pessoas
 
Exercícios função de 2° grau 2p
Exercícios função de 2° grau 2pExercícios função de 2° grau 2p
Exercícios função de 2° grau 2pJean Silveira
 
Exercicios e problemas conjuntos final
Exercicios e problemas conjuntos finalExercicios e problemas conjuntos final
Exercicios e problemas conjuntos finalkaruusso
 
Trigonometria Triangulo Retangulo
Trigonometria Triangulo RetanguloTrigonometria Triangulo Retangulo
Trigonometria Triangulo Retangulotioheraclito
 
Miniteste do 8º e 9º ano
Miniteste do 8º e 9º anoMiniteste do 8º e 9º ano
Miniteste do 8º e 9º anoalunosderoberto
 
Exercícios área figuras planas e radicais
Exercícios área figuras planas e radicaisExercícios área figuras planas e radicais
Exercícios área figuras planas e radicaiskarfrio
 
Lista de exercícios de porcentagem
Lista de exercícios de porcentagemLista de exercícios de porcentagem
Lista de exercícios de porcentagemPriscila Lourenço
 
1 exercícios de potenciação
1  exercícios de potenciação1  exercícios de potenciação
1 exercícios de potenciaçãoThiago Garcia
 
Questões média mediana e moda
Questões média mediana e modaQuestões média mediana e moda
Questões média mediana e modaKeyla Christianne
 

Mais procurados (20)

Lista de Exercícios - Teorema de Tales
Lista de Exercícios - Teorema de TalesLista de Exercícios - Teorema de Tales
Lista de Exercícios - Teorema de Tales
 
9 º ano função de 1º grau e teorema de tales exercícios
9 º ano função de 1º grau e teorema de tales exercícios9 º ano função de 1º grau e teorema de tales exercícios
9 º ano função de 1º grau e teorema de tales exercícios
 
Lista 01 exercícios de função do 1º grau
Lista 01 exercícios de função do 1º grauLista 01 exercícios de função do 1º grau
Lista 01 exercícios de função do 1º grau
 
1ª lista de exercícios análise de gráficos e porcentagem
1ª lista de exercícios   análise de gráficos e porcentagem1ª lista de exercícios   análise de gráficos e porcentagem
1ª lista de exercícios análise de gráficos e porcentagem
 
Funcao exponencial
Funcao exponencialFuncao exponencial
Funcao exponencial
 
Exercicios de-radiciacao
Exercicios de-radiciacaoExercicios de-radiciacao
Exercicios de-radiciacao
 
GINCANA MATEMÁTICA(ÁREA DE FIGURAS PLANAS) 6º ao 9º ano)
GINCANA MATEMÁTICA(ÁREA DE FIGURAS PLANAS) 6º ao 9º ano)GINCANA MATEMÁTICA(ÁREA DE FIGURAS PLANAS) 6º ao 9º ano)
GINCANA MATEMÁTICA(ÁREA DE FIGURAS PLANAS) 6º ao 9º ano)
 
Mat utfrs 17. teorema de tales exercicios
Mat utfrs 17. teorema de tales exerciciosMat utfrs 17. teorema de tales exercicios
Mat utfrs 17. teorema de tales exercicios
 
Aula 02 polígonos - exercicios
Aula 02   polígonos - exerciciosAula 02   polígonos - exercicios
Aula 02 polígonos - exercicios
 
Exercícios do Teorema de Pitágoras
Exercícios do Teorema de PitágorasExercícios do Teorema de Pitágoras
Exercícios do Teorema de Pitágoras
 
Exercícios função de 2° grau 2p
Exercícios função de 2° grau 2pExercícios função de 2° grau 2p
Exercícios função de 2° grau 2p
 
Exercicios e problemas conjuntos final
Exercicios e problemas conjuntos finalExercicios e problemas conjuntos final
Exercicios e problemas conjuntos final
 
Trigonometria Triangulo Retangulo
Trigonometria Triangulo RetanguloTrigonometria Triangulo Retangulo
Trigonometria Triangulo Retangulo
 
Plano cartesiano animado
Plano cartesiano animadoPlano cartesiano animado
Plano cartesiano animado
 
Função 1 grau
Função 1 grauFunção 1 grau
Função 1 grau
 
Miniteste do 8º e 9º ano
Miniteste do 8º e 9º anoMiniteste do 8º e 9º ano
Miniteste do 8º e 9º ano
 
Exercícios área figuras planas e radicais
Exercícios área figuras planas e radicaisExercícios área figuras planas e radicais
Exercícios área figuras planas e radicais
 
Lista de exercícios de porcentagem
Lista de exercícios de porcentagemLista de exercícios de porcentagem
Lista de exercícios de porcentagem
 
1 exercícios de potenciação
1  exercícios de potenciação1  exercícios de potenciação
1 exercícios de potenciação
 
Questões média mediana e moda
Questões média mediana e modaQuestões média mediana e moda
Questões média mediana e moda
 

Destaque

Prova de matemática Colégio Militar 2012 6ºano
Prova de matemática Colégio Militar 2012   6ºanoProva de matemática Colégio Militar 2012   6ºano
Prova de matemática Colégio Militar 2012 6ºanoElias de Lima Neto
 
Prova do 1ºano colégio militar de fortaleza 2005 2006
Prova do 1ºano colégio militar de fortaleza 2005 2006Prova do 1ºano colégio militar de fortaleza 2005 2006
Prova do 1ºano colégio militar de fortaleza 2005 2006Eliasdelimaneto Educação
 
Matemática semelhança de triângulos ns gabarito
Matemática   semelhança de triângulos ns gabaritoMatemática   semelhança de triângulos ns gabarito
Matemática semelhança de triângulos ns gabaritoeduardo madureira
 
Prova de português Colégio Militar de fortaleza 2012 6ºano
Prova de português Colégio Militar de fortaleza 2012  6ºanoProva de português Colégio Militar de fortaleza 2012  6ºano
Prova de português Colégio Militar de fortaleza 2012 6ºanoElias de Lima Neto
 
Lista de exercícios de matemática para concurso de ingresso no 6º ano
Lista de exercícios de matemática para concurso de ingresso no 6º anoLista de exercícios de matemática para concurso de ingresso no 6º ano
Lista de exercícios de matemática para concurso de ingresso no 6º anoCape Cursos Preparatórios
 
Plano de aula 7º ano - sólidos
Plano de aula   7º ano - sólidosPlano de aula   7º ano - sólidos
Plano de aula 7º ano - sólidosFlavia Menezes
 
Exercícios resolvidos de geometria plana triângulos retângulos - celso brasil
Exercícios resolvidos de geometria plana   triângulos retângulos - celso brasilExercícios resolvidos de geometria plana   triângulos retângulos - celso brasil
Exercícios resolvidos de geometria plana triângulos retângulos - celso brasilCelso do Rozário Brasil Gonçalves
 
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)Hélio Rocha
 
Ap geometria plana resolvidos
Ap geometria plana resolvidosAp geometria plana resolvidos
Ap geometria plana resolvidostrigono_metrico
 
Perguntas do passa ou repassa
Perguntas do passa ou repassaPerguntas do passa ou repassa
Perguntas do passa ou repassaSan Carvalho
 

Destaque (13)

Prova de matemática Colégio Militar 2012 6ºano
Prova de matemática Colégio Militar 2012   6ºanoProva de matemática Colégio Militar 2012   6ºano
Prova de matemática Colégio Militar 2012 6ºano
 
Prova do 1ºano colégio militar de fortaleza 2005 2006
Prova do 1ºano colégio militar de fortaleza 2005 2006Prova do 1ºano colégio militar de fortaleza 2005 2006
Prova do 1ºano colégio militar de fortaleza 2005 2006
 
Plano 2012 mat_7ª série b
Plano 2012 mat_7ª série bPlano 2012 mat_7ª série b
Plano 2012 mat_7ª série b
 
Matemática semelhança de triângulos ns gabarito
Matemática   semelhança de triângulos ns gabaritoMatemática   semelhança de triângulos ns gabarito
Matemática semelhança de triângulos ns gabarito
 
Prova de português Colégio Militar de fortaleza 2012 6ºano
Prova de português Colégio Militar de fortaleza 2012  6ºanoProva de português Colégio Militar de fortaleza 2012  6ºano
Prova de português Colégio Militar de fortaleza 2012 6ºano
 
Lista de exercícios de matemática para concurso de ingresso no 6º ano
Lista de exercícios de matemática para concurso de ingresso no 6º anoLista de exercícios de matemática para concurso de ingresso no 6º ano
Lista de exercícios de matemática para concurso de ingresso no 6º ano
 
Plano de aula 7º ano - sólidos
Plano de aula   7º ano - sólidosPlano de aula   7º ano - sólidos
Plano de aula 7º ano - sólidos
 
Exercícios resolvidos de geometria plana triângulos retângulos - celso brasil
Exercícios resolvidos de geometria plana   triângulos retângulos - celso brasilExercícios resolvidos de geometria plana   triângulos retângulos - celso brasil
Exercícios resolvidos de geometria plana triângulos retângulos - celso brasil
 
Soma dos ângulos internos de um triângulo gabarito
Soma dos ângulos internos de um triângulo gabaritoSoma dos ângulos internos de um triângulo gabarito
Soma dos ângulos internos de um triângulo gabarito
 
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
 
Ap geometria plana resolvidos
Ap geometria plana resolvidosAp geometria plana resolvidos
Ap geometria plana resolvidos
 
Perguntas do passa ou repassa
Perguntas do passa ou repassaPerguntas do passa ou repassa
Perguntas do passa ou repassa
 
Apostila de geometria plana exercícios resolvidos - crbrasil
Apostila de geometria plana   exercícios resolvidos - crbrasilApostila de geometria plana   exercícios resolvidos - crbrasil
Apostila de geometria plana exercícios resolvidos - crbrasil
 

Semelhante a Prova do Colégio Militar do Rio de Janeiro, COMENTADA

Gabarito 1ª Fase - Nível 3 - 2012
Gabarito 1ª Fase - Nível 3 - 2012Gabarito 1ª Fase - Nível 3 - 2012
Gabarito 1ª Fase - Nível 3 - 2012oim_matematica
 
Ita2008 3dia
Ita2008 3diaIta2008 3dia
Ita2008 3diacavip
 
Prova de Matemática fuzileiro naval 2011
Prova de Matemática fuzileiro naval 2011Prova de Matemática fuzileiro naval 2011
Prova de Matemática fuzileiro naval 2011thieresaulas
 
Solucoes comentadas matematica_uerj_univ
Solucoes comentadas matematica_uerj_univSolucoes comentadas matematica_uerj_univ
Solucoes comentadas matematica_uerj_univOswaldo Stanziola
 
Cesgranrio petrobras final
Cesgranrio   petrobras finalCesgranrio   petrobras final
Cesgranrio petrobras finalArthur Lima
 
Resolução prova matematica naval 2008 2009
Resolução prova matematica naval 2008   2009Resolução prova matematica naval 2008   2009
Resolução prova matematica naval 2008 2009cavip
 
Cesgranrio petrobras engenheiro petroleo 2018
Cesgranrio petrobras engenheiro petroleo 2018Cesgranrio petrobras engenheiro petroleo 2018
Cesgranrio petrobras engenheiro petroleo 2018Arthur Lima
 
geometriaplana exercciosresolvidos-crbrasil-140305081241-phpapp02
geometriaplana exercciosresolvidos-crbrasil-140305081241-phpapp02geometriaplana exercciosresolvidos-crbrasil-140305081241-phpapp02
geometriaplana exercciosresolvidos-crbrasil-140305081241-phpapp02Madjard de Sousa
 
Simave proeb 2011 para 3º ano
Simave proeb 2011 para 3º anoSimave proeb 2011 para 3º ano
Simave proeb 2011 para 3º anoIdelma
 

Semelhante a Prova do Colégio Militar do Rio de Janeiro, COMENTADA (20)

387 matemática ime 2010
387 matemática ime 2010387 matemática ime 2010
387 matemática ime 2010
 
Gabarito 1ª Fase - Nível 3 - 2012
Gabarito 1ª Fase - Nível 3 - 2012Gabarito 1ª Fase - Nível 3 - 2012
Gabarito 1ª Fase - Nível 3 - 2012
 
Ita02m
Ita02mIta02m
Ita02m
 
Geometria analitica
Geometria analiticaGeometria analitica
Geometria analitica
 
Ita2008 3dia
Ita2008 3diaIta2008 3dia
Ita2008 3dia
 
Prova de Matemática fuzileiro naval 2011
Prova de Matemática fuzileiro naval 2011Prova de Matemática fuzileiro naval 2011
Prova de Matemática fuzileiro naval 2011
 
Solucoes comentadas matematica_uerj_univ
Solucoes comentadas matematica_uerj_univSolucoes comentadas matematica_uerj_univ
Solucoes comentadas matematica_uerj_univ
 
Cesgranrio petrobras final
Cesgranrio   petrobras finalCesgranrio   petrobras final
Cesgranrio petrobras final
 
Gab complexo formatrigonometrica2010
Gab complexo formatrigonometrica2010Gab complexo formatrigonometrica2010
Gab complexo formatrigonometrica2010
 
Revisao udesc
Revisao udescRevisao udesc
Revisao udesc
 
Resolução prova matematica naval 2008 2009
Resolução prova matematica naval 2008   2009Resolução prova matematica naval 2008   2009
Resolução prova matematica naval 2008 2009
 
Fatec1 mat
Fatec1 matFatec1 mat
Fatec1 mat
 
22022014
2202201422022014
22022014
 
2011matemática
2011matemática2011matemática
2011matemática
 
Cesgranrio petrobras engenheiro petroleo 2018
Cesgranrio petrobras engenheiro petroleo 2018Cesgranrio petrobras engenheiro petroleo 2018
Cesgranrio petrobras engenheiro petroleo 2018
 
10052014
1005201410052014
10052014
 
geometriaplana exercciosresolvidos-crbrasil-140305081241-phpapp02
geometriaplana exercciosresolvidos-crbrasil-140305081241-phpapp02geometriaplana exercciosresolvidos-crbrasil-140305081241-phpapp02
geometriaplana exercciosresolvidos-crbrasil-140305081241-phpapp02
 
Potenciação
Potenciação Potenciação
Potenciação
 
Sf1n3 2018
Sf1n3 2018Sf1n3 2018
Sf1n3 2018
 
Simave proeb 2011 para 3º ano
Simave proeb 2011 para 3º anoSimave proeb 2011 para 3º ano
Simave proeb 2011 para 3º ano
 

Mais de thieresaulas

Prova, Questões do Concurso para Soldado da Polícia Militar do Espírito Santo
Prova, Questões do Concurso para Soldado da Polícia Militar do Espírito SantoProva, Questões do Concurso para Soldado da Polícia Militar do Espírito Santo
Prova, Questões do Concurso para Soldado da Polícia Militar do Espírito Santothieresaulas
 
Resolução EsSA 2013-14
Resolução EsSA 2013-14Resolução EsSA 2013-14
Resolução EsSA 2013-14thieresaulas
 
Exercícios: TRIÂNGULOS
Exercícios: TRIÂNGULOSExercícios: TRIÂNGULOS
Exercícios: TRIÂNGULOSthieresaulas
 
Apostila de Geometria Espacial - Prismas
Apostila de Geometria Espacial - PrismasApostila de Geometria Espacial - Prismas
Apostila de Geometria Espacial - Prismasthieresaulas
 
Exercícios: noções de conjuntos e conjuntos numéricos
Exercícios: noções de conjuntos e conjuntos numéricosExercícios: noções de conjuntos e conjuntos numéricos
Exercícios: noções de conjuntos e conjuntos numéricosthieresaulas
 
Testes de Raciocínio Lógico: "suficiência lógica"
Testes de Raciocínio Lógico: "suficiência lógica"Testes de Raciocínio Lógico: "suficiência lógica"
Testes de Raciocínio Lógico: "suficiência lógica"thieresaulas
 
Vestibular UERJ 2013 - 1º exame de qualificação
Vestibular UERJ 2013 - 1º exame de qualificaçãoVestibular UERJ 2013 - 1º exame de qualificação
Vestibular UERJ 2013 - 1º exame de qualificaçãothieresaulas
 
Vestibular Matemática cederj 2012.2
Vestibular Matemática cederj 2012.2Vestibular Matemática cederj 2012.2
Vestibular Matemática cederj 2012.2thieresaulas
 
Simulado de Matemática
Simulado de MatemáticaSimulado de Matemática
Simulado de Matemáticathieresaulas
 
Exercícios de Análise Combinatória
Exercícios de Análise CombinatóriaExercícios de Análise Combinatória
Exercícios de Análise Combinatóriathieresaulas
 
Exercícios de progressões: Aritmética e Geométrica
Exercícios de progressões: Aritmética e GeométricaExercícios de progressões: Aritmética e Geométrica
Exercícios de progressões: Aritmética e Geométricathieresaulas
 
Potências - Vestibular
Potências - VestibularPotências - Vestibular
Potências - Vestibularthieresaulas
 
Exercícios para concurso - V1
Exercícios para concurso - V1Exercícios para concurso - V1
Exercícios para concurso - V1thieresaulas
 

Mais de thieresaulas (14)

Prova, Questões do Concurso para Soldado da Polícia Militar do Espírito Santo
Prova, Questões do Concurso para Soldado da Polícia Militar do Espírito SantoProva, Questões do Concurso para Soldado da Polícia Militar do Espírito Santo
Prova, Questões do Concurso para Soldado da Polícia Militar do Espírito Santo
 
Resolução EsSA 2013-14
Resolução EsSA 2013-14Resolução EsSA 2013-14
Resolução EsSA 2013-14
 
Exercícios: TRIÂNGULOS
Exercícios: TRIÂNGULOSExercícios: TRIÂNGULOS
Exercícios: TRIÂNGULOS
 
Apostila de Geometria Espacial - Prismas
Apostila de Geometria Espacial - PrismasApostila de Geometria Espacial - Prismas
Apostila de Geometria Espacial - Prismas
 
Exercícios: noções de conjuntos e conjuntos numéricos
Exercícios: noções de conjuntos e conjuntos numéricosExercícios: noções de conjuntos e conjuntos numéricos
Exercícios: noções de conjuntos e conjuntos numéricos
 
Testes de Raciocínio Lógico: "suficiência lógica"
Testes de Raciocínio Lógico: "suficiência lógica"Testes de Raciocínio Lógico: "suficiência lógica"
Testes de Raciocínio Lógico: "suficiência lógica"
 
Vestibular UERJ 2013 - 1º exame de qualificação
Vestibular UERJ 2013 - 1º exame de qualificaçãoVestibular UERJ 2013 - 1º exame de qualificação
Vestibular UERJ 2013 - 1º exame de qualificação
 
Vestibular Matemática cederj 2012.2
Vestibular Matemática cederj 2012.2Vestibular Matemática cederj 2012.2
Vestibular Matemática cederj 2012.2
 
Simulado de Matemática
Simulado de MatemáticaSimulado de Matemática
Simulado de Matemática
 
Exercícios de Análise Combinatória
Exercícios de Análise CombinatóriaExercícios de Análise Combinatória
Exercícios de Análise Combinatória
 
Exercícios de progressões: Aritmética e Geométrica
Exercícios de progressões: Aritmética e GeométricaExercícios de progressões: Aritmética e Geométrica
Exercícios de progressões: Aritmética e Geométrica
 
Porcentagem
Porcentagem  Porcentagem
Porcentagem
 
Potências - Vestibular
Potências - VestibularPotências - Vestibular
Potências - Vestibular
 
Exercícios para concurso - V1
Exercícios para concurso - V1Exercícios para concurso - V1
Exercícios para concurso - V1
 

Último

5. EJEMPLOS DE ESTRUCTURASQUINTO GRADO.pptx
5. EJEMPLOS DE ESTRUCTURASQUINTO GRADO.pptx5. EJEMPLOS DE ESTRUCTURASQUINTO GRADO.pptx
5. EJEMPLOS DE ESTRUCTURASQUINTO GRADO.pptxnelsontobontrujillo
 
"Nós Propomos! Escola Secundária em Pedrógão Grande"
"Nós Propomos! Escola Secundária em Pedrógão Grande""Nós Propomos! Escola Secundária em Pedrógão Grande"
"Nós Propomos! Escola Secundária em Pedrógão Grande"Ilda Bicacro
 
Gramática - Texto - análise e construção de sentido - Moderna.pdf
Gramática - Texto - análise e construção de sentido - Moderna.pdfGramática - Texto - análise e construção de sentido - Moderna.pdf
Gramática - Texto - análise e construção de sentido - Moderna.pdfKelly Mendes
 
Power Point sobre as etapas do Desenvolvimento infantil
Power Point sobre as etapas do Desenvolvimento infantilPower Point sobre as etapas do Desenvolvimento infantil
Power Point sobre as etapas do Desenvolvimento infantilMariaHelena293800
 
QUESTÃO 4 Os estudos das competências pessoais é de extrema importância, pr...
QUESTÃO 4   Os estudos das competências pessoais é de extrema importância, pr...QUESTÃO 4   Os estudos das competências pessoais é de extrema importância, pr...
QUESTÃO 4 Os estudos das competências pessoais é de extrema importância, pr...azulassessoria9
 
Nós Propomos! Sertã 2024 - Geografia C - 12º ano
Nós Propomos! Sertã 2024 - Geografia C - 12º anoNós Propomos! Sertã 2024 - Geografia C - 12º ano
Nós Propomos! Sertã 2024 - Geografia C - 12º anoIlda Bicacro
 
Slides Lição 7, CPAD, O Perigo Da Murmuração, 2Tr24.pptx
Slides Lição 7, CPAD, O Perigo Da Murmuração, 2Tr24.pptxSlides Lição 7, CPAD, O Perigo Da Murmuração, 2Tr24.pptx
Slides Lição 7, CPAD, O Perigo Da Murmuração, 2Tr24.pptxLuizHenriquedeAlmeid6
 
Alemanha vs União Soviética - Livro de Adolf Hitler
Alemanha vs União Soviética - Livro de Adolf HitlerAlemanha vs União Soviética - Livro de Adolf Hitler
Alemanha vs União Soviética - Livro de Adolf Hitlerhabiwo1978
 
Dados espaciais em R - 2023 - UFABC - Geoprocessamento
Dados espaciais em R - 2023 - UFABC - GeoprocessamentoDados espaciais em R - 2023 - UFABC - Geoprocessamento
Dados espaciais em R - 2023 - UFABC - GeoprocessamentoVitor Vieira Vasconcelos
 
EBPAL_Serta_Caminhos do Lixo final 9ºD (1).pptx
EBPAL_Serta_Caminhos do Lixo final 9ºD (1).pptxEBPAL_Serta_Caminhos do Lixo final 9ºD (1).pptx
EBPAL_Serta_Caminhos do Lixo final 9ºD (1).pptxIlda Bicacro
 
UFCD_8291_Preparação e confeção de peixes e mariscos_índice.pdf
UFCD_8291_Preparação e confeção de peixes e mariscos_índice.pdfUFCD_8291_Preparação e confeção de peixes e mariscos_índice.pdf
UFCD_8291_Preparação e confeção de peixes e mariscos_índice.pdfManuais Formação
 
Slides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptx
Slides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptxSlides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptx
Slides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptxLuizHenriquedeAlmeid6
 
SQL Parte 1 - Criação de Banco de Dados.pdf
SQL Parte 1 - Criação de Banco de Dados.pdfSQL Parte 1 - Criação de Banco de Dados.pdf
SQL Parte 1 - Criação de Banco de Dados.pdfAndersonW5
 
Proposta de redação Soneto de texto do gênero poema para a,usos do 9 ano do e...
Proposta de redação Soneto de texto do gênero poema para a,usos do 9 ano do e...Proposta de redação Soneto de texto do gênero poema para a,usos do 9 ano do e...
Proposta de redação Soneto de texto do gênero poema para a,usos do 9 ano do e...marioeugenio8
 
Regulamento do Festival de Teatro Negro - FESTIAFRO 2024 - 10ª edição - CEI...
Regulamento do Festival de Teatro Negro -  FESTIAFRO 2024 - 10ª edição -  CEI...Regulamento do Festival de Teatro Negro -  FESTIAFRO 2024 - 10ª edição -  CEI...
Regulamento do Festival de Teatro Negro - FESTIAFRO 2024 - 10ª edição - CEI...Eró Cunha
 
As teorias de Lamarck e Darwin para alunos de 8ano.ppt
As teorias de Lamarck e Darwin para alunos de 8ano.pptAs teorias de Lamarck e Darwin para alunos de 8ano.ppt
As teorias de Lamarck e Darwin para alunos de 8ano.pptorlando dias da silva
 
Currículo Professor Pablo Ortellado - Universidade de São Paulo
Currículo Professor Pablo Ortellado - Universidade de São PauloCurrículo Professor Pablo Ortellado - Universidade de São Paulo
Currículo Professor Pablo Ortellado - Universidade de São Pauloririg29454
 
FUNDAMENTOS DA PSICOPEDAGOGIA - material
FUNDAMENTOS DA PSICOPEDAGOGIA - materialFUNDAMENTOS DA PSICOPEDAGOGIA - material
FUNDAMENTOS DA PSICOPEDAGOGIA - materialDouglasVasconcelosMa
 

Último (20)

Poema - Maio Laranja
Poema - Maio Laranja Poema - Maio Laranja
Poema - Maio Laranja
 
5. EJEMPLOS DE ESTRUCTURASQUINTO GRADO.pptx
5. EJEMPLOS DE ESTRUCTURASQUINTO GRADO.pptx5. EJEMPLOS DE ESTRUCTURASQUINTO GRADO.pptx
5. EJEMPLOS DE ESTRUCTURASQUINTO GRADO.pptx
 
"Nós Propomos! Escola Secundária em Pedrógão Grande"
"Nós Propomos! Escola Secundária em Pedrógão Grande""Nós Propomos! Escola Secundária em Pedrógão Grande"
"Nós Propomos! Escola Secundária em Pedrógão Grande"
 
Gramática - Texto - análise e construção de sentido - Moderna.pdf
Gramática - Texto - análise e construção de sentido - Moderna.pdfGramática - Texto - análise e construção de sentido - Moderna.pdf
Gramática - Texto - análise e construção de sentido - Moderna.pdf
 
Power Point sobre as etapas do Desenvolvimento infantil
Power Point sobre as etapas do Desenvolvimento infantilPower Point sobre as etapas do Desenvolvimento infantil
Power Point sobre as etapas do Desenvolvimento infantil
 
QUESTÃO 4 Os estudos das competências pessoais é de extrema importância, pr...
QUESTÃO 4   Os estudos das competências pessoais é de extrema importância, pr...QUESTÃO 4   Os estudos das competências pessoais é de extrema importância, pr...
QUESTÃO 4 Os estudos das competências pessoais é de extrema importância, pr...
 
Nós Propomos! Sertã 2024 - Geografia C - 12º ano
Nós Propomos! Sertã 2024 - Geografia C - 12º anoNós Propomos! Sertã 2024 - Geografia C - 12º ano
Nós Propomos! Sertã 2024 - Geografia C - 12º ano
 
Slides Lição 7, CPAD, O Perigo Da Murmuração, 2Tr24.pptx
Slides Lição 7, CPAD, O Perigo Da Murmuração, 2Tr24.pptxSlides Lição 7, CPAD, O Perigo Da Murmuração, 2Tr24.pptx
Slides Lição 7, CPAD, O Perigo Da Murmuração, 2Tr24.pptx
 
Alemanha vs União Soviética - Livro de Adolf Hitler
Alemanha vs União Soviética - Livro de Adolf HitlerAlemanha vs União Soviética - Livro de Adolf Hitler
Alemanha vs União Soviética - Livro de Adolf Hitler
 
Dados espaciais em R - 2023 - UFABC - Geoprocessamento
Dados espaciais em R - 2023 - UFABC - GeoprocessamentoDados espaciais em R - 2023 - UFABC - Geoprocessamento
Dados espaciais em R - 2023 - UFABC - Geoprocessamento
 
EBPAL_Serta_Caminhos do Lixo final 9ºD (1).pptx
EBPAL_Serta_Caminhos do Lixo final 9ºD (1).pptxEBPAL_Serta_Caminhos do Lixo final 9ºD (1).pptx
EBPAL_Serta_Caminhos do Lixo final 9ºD (1).pptx
 
UFCD_8291_Preparação e confeção de peixes e mariscos_índice.pdf
UFCD_8291_Preparação e confeção de peixes e mariscos_índice.pdfUFCD_8291_Preparação e confeção de peixes e mariscos_índice.pdf
UFCD_8291_Preparação e confeção de peixes e mariscos_índice.pdf
 
Slides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptx
Slides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptxSlides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptx
Slides Lição 07, Central Gospel, As Duas Testemunhas Do Final Dos Tempos.pptx
 
SQL Parte 1 - Criação de Banco de Dados.pdf
SQL Parte 1 - Criação de Banco de Dados.pdfSQL Parte 1 - Criação de Banco de Dados.pdf
SQL Parte 1 - Criação de Banco de Dados.pdf
 
Proposta de redação Soneto de texto do gênero poema para a,usos do 9 ano do e...
Proposta de redação Soneto de texto do gênero poema para a,usos do 9 ano do e...Proposta de redação Soneto de texto do gênero poema para a,usos do 9 ano do e...
Proposta de redação Soneto de texto do gênero poema para a,usos do 9 ano do e...
 
Regulamento do Festival de Teatro Negro - FESTIAFRO 2024 - 10ª edição - CEI...
Regulamento do Festival de Teatro Negro -  FESTIAFRO 2024 - 10ª edição -  CEI...Regulamento do Festival de Teatro Negro -  FESTIAFRO 2024 - 10ª edição -  CEI...
Regulamento do Festival de Teatro Negro - FESTIAFRO 2024 - 10ª edição - CEI...
 
Poema - Aedes Aegypt.
Poema - Aedes Aegypt.Poema - Aedes Aegypt.
Poema - Aedes Aegypt.
 
As teorias de Lamarck e Darwin para alunos de 8ano.ppt
As teorias de Lamarck e Darwin para alunos de 8ano.pptAs teorias de Lamarck e Darwin para alunos de 8ano.ppt
As teorias de Lamarck e Darwin para alunos de 8ano.ppt
 
Currículo Professor Pablo Ortellado - Universidade de São Paulo
Currículo Professor Pablo Ortellado - Universidade de São PauloCurrículo Professor Pablo Ortellado - Universidade de São Paulo
Currículo Professor Pablo Ortellado - Universidade de São Paulo
 
FUNDAMENTOS DA PSICOPEDAGOGIA - material
FUNDAMENTOS DA PSICOPEDAGOGIA - materialFUNDAMENTOS DA PSICOPEDAGOGIA - material
FUNDAMENTOS DA PSICOPEDAGOGIA - material
 

Prova do Colégio Militar do Rio de Janeiro, COMENTADA

  • 1. BLOG CÁLCULO BÁSICO www.calculobasico.blogspot.com.br - Prova de Matemática do Colégio Militar do Rio de Janeiro – Prova 2011 - Resolução da Prova por Prof.: Thieres Machado aulastm@bol.com.br Solução: 5 2 5 2 5 2 3 3 10 2 5 102 5 10 10 − − = − = = = . Solução: Vamos modelar esta situação para a linguagem Matemática, sendo x a medida procurada. Veja: Sabemos que os dois triângulos formados, um pelo poste e outro pelo homem com os raios do sol e suas sombras são semelhantes, pois possuem um ângulo reto e o ângulo de inclinação dos raios do sol é o mesmo, logo os lados homólogos são proporcionais, bem como os aumentos e diminuições em seus lados, isto é, neste caso, se a sombra do poste diminui um determinado valor, proporcionalmente a sombra do homem também diminuirá. E daí, podemos escrever a proporção: 100 40 100x 1200 x 12cm 30 x = ⇔ = ⇔ = .
  • 2. Solução: Para encontrarmos a medida do ângulo interno de um polígono regular, usamos a relação 180.(n 2) n − e para a medida do ângulo externo, também de um polígono regular, usamos 360 n , onde n representa o número de lados. Portanto, do enunciado, temos: 180.(n 2) n − - 360 n = 144 180n 360 360 144n n 20⇔ − − = ⇔ = . Solução: Sejam a, b, c as medidas da hipotenusa e dos catetos, respectivamente. Do enunciado temos: a + b + c = 30 ( I ) a2 + b2 + c2 = 338 ( II ) b2 + c2 = a2 ( III ) Teorema de Pitágoras Substituindo (III) em (II): 2 2 a a 338 a 13cm+ = ⇔ = . Substituindo o valor de a = 13, em (III) e (I): 2 2 b c 169 b c 17  + =  + = , fazendo a devida substituição, encontramos a equação na incógnita c: 2 2 2c 34c 120 0 c 17c 60 0 c 12 ou c = 5− + = ⇔ − + = ⇔ = . Para c = 12, b = 5 e para c = 5, b = 12. Portanto, o módulo da diferença será: 12 5 7cm ou 5 12 7cm− = − = .
  • 3. Solução: ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) x x a a x ax a x a x a2a 2ax a x a x a x x a x x a a x a a x a x x a a x a x a x a x a x a x a + + − + − +− + + = + = + + − − − − + − − − + − − + − ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) x x a a x a 2a x a x x a a x a 2a x a x x a a x a a x a x x a x x a a x a x x a a x a x x a a x a 2a x a x x a a x a 1. x x a a x a x x a a x a x x a a x a + + − − + + − − = + = + = + − − − − + + − − − + − −   + + − − + − − = − = = + − − + − − + − − Solução: 3 2 2 2 3 3 6 8 6 8 11 1 2 2 4 2 3 8 2 5 33 5 8 84 4 2 35 3 1 ab6 6 8 24 248 3 3 4 12 12b a a b b a b a 1 1 1 a 1b a a b a b ab a ab b ab a b ba a a b b a ab b b a 1 1 1 1 1 1 1 1 a a b a b a b ab − − −− − − − × × × = × = = = = × = × = × = × = ⋅
  • 4. Solução: Lembrando que (a + b + c)2 = a2 + b2 + c2 + 2( ab + ac + bc), vamos antes simplificar a expressão dada. (3a + b – 2c)2 – (2a – 3c)2 + 5(c – a)(a + c) + b(2a – b) = = 9a2 + b2 + 4c2 + 2(3ab - 6ac – 2bc) – 4a2 + 12ac – 9c2 + 5c2 – 5a2 + 2ab – b2 = = 6ab – 12ac – 4bc + 12ac + 2ab = 8ab – 4bc a 7/18,b 5/8,c 2/9 7 5 5 2 25 8 4 18 8 8 9 18 = = = → ⋅ ⋅ − ⋅ ⋅ = ⋅ Solução: Para obter a área do triângulo, precisamos antes saber sua dimensões, vamos então descobrir as coordenadas do ponto c. Sabendo que f é uma função afim, sua lei é da forma: f(x) = ax + b ou y = ax + b, com a, b∈ℝ e a 0≠ . Temos uma reta e b é a ordenada do ponto de interseção da reta com o eixo vertical, isto é, o ponto de interseção da reta (gráfico de f) com o eixo vertical é c = (0,b) . Utilizando os pontos (3,1) e (-2,-9) e y = ax + b: resolvendo 3a b 1 a 2 e b = -5. 2a b 9 + = → = + = − Podemos escrever a lei da função f: f(x) = 2x - 5. Logo, c = (0,-5) e no triângulo retângulo ABC, AB = 3, BC = 6. Área de ABC = (3.6)/2 = 9 u.a. (0,-5)
  • 5. Prof. Thieres Machado Professor de cursos preparatórios, com experiência em concursos públicos em geral. Para aulas particulares ou em grupo envie um e-mail para: aulastm@bol.com.br ou pelo tel.: (21) 9155-0291 BLOG CÁLCULO BÁSICO Matemática para concursos www.calculobasico.blogspot.com.br Solução: O que vem a ser capacidade, neste caso? Bem, capacidade é o quociente entre a quantidade de envelopes distribuídos e o tempo gasto para distribuí-las. Sendo C a capacidade total, Q quantidade total de envelopes e T o tempo total, temos C = Q/T. Sejam CM, QM e TM as grandezas relacionadas a Marcelo e CJ, QJ e TJ as grandezas relacionadas a Jean. Do enunciado, temos: TJ = 110% do TM, então TJ = 1,1TM. CM = 80% da CJ, então CM = 0,8CJ. QM + QJ = 380, então QJ = 380 - QM. J J MM M J M M J J Q 0,8Q TQ C 0,8C 0,8 Q T T T = → = ⋅ ⇔ = , agora fazendo as substituições em QJ e TJ, temos: ( )M MJ M M M M M M J M 0,8 380 Q T0,8Q T Q Q 1,1Q 0,8Q 304 Q 160 cartas. T 1,1T − = → = ⇔ + = ⇔ = QJ = 380 - 160, então QJ = 220 envelopes. Observando as alternativas, temos que a letra A é a correta, Jean distribui 220 envelopes.
  • 6. Solução: Como os retângulos são congruentes entre si, temos que todos possuem as mesmas dimensões. Seja x a medida do comprimento e y a medida da largura de cada retângulo. Na figura temos: 2x = 3y (relação entre as medidas do lados da figura). 4x + 5y = 176 3y 2.2x 5y 176 6y 5y 176 y 16cm, logo x = 24cm. = ⇔ + = ⇔ + = ⇔ = Área = 16.24 = 384 cm2 . Solução: Já sabemos encontrar a medida do ângulo interno de um polígono regular (veja questão/solução nº.3). O ângulo interno (ai) do pentágono vale: ( ) i 180 5 2 a 108 . 5 − = = ° Agora, veja a figura abaixo. No triângulo ADE, ˆˆADE DAE 36= = ° , pois o triângulo ADE é isósceles com AE = DE. Portanto, o ângulo ˆBAD 108 36 72= °− ° = ° e sendo o ângulo BÂD um ângulo de segmento, isto é, seu vértice está na circunferência e um de seus lados é tangente e o outro secante à circunferência, sua medida é metade da medida do ângulo central correspondente. Sendo AÔD o ângulo central, temos: ˆAOD ˆ72 AOD 144 . 2 ° = ⇔ = ° Seja x a medida do arco menor AD e por uma regra de três simples direta, pois o comprimento da circunferência ( 2 rπ ) equivale a uma volta completa (360°), vamos determinar a medida procurada: 2 r 360 2 .5.144 x x 4 cm. x 144 360 π π π − − − − ° ° → = ⇔ = − − − − ° °
  • 7. Solução: Sejam S, E e G o número de provas corrigidas pelos professores Sobral, Euler e Gil, respectivamente. Do enunciado, temos: E 60% de S, então E = 0,6.S. G = 45% de E, então G = 0,45.E. = Das duas relações acima, podemos escrever uma terceira: G 0,45.E 0,45.0,6.S, então G = 0,27.S.= = Ainda, do enunciado: S + E + G = 561 S 0,6S 0,27S 561 S 300.→ + + = ⇔ = Logo, E = 180 e G = 81. Portanto, a resposta correta é a letra C, Gil corrigiu 81 provas. Solução: Em primeiro lugar, vamos verificar as restrições para esta equação. x2 - 6x + 6 0≥ , fazendo x2 - 6x + 6 = 0 resolvendo x 3 3→ = ± . Fazendo o estudo do sinal: + + + - - - - - - + + + temos que: x ;x 3 3 ou x 3+ 3∈ ≤ − ≥ℝ . 3 3− 3 3+ Agora, vamos resolver a equação dada fazendo uso de uma substituição, mas antes observe que: 2 2 2 x 6x 6 x 6x 9 6 9 x 6x 9 3.− + = − + + − = − + − 2 2 2 2 x 6x 9 4 x 6x 6 x 6x 9 4 x 6x 9 3− + = − + ⇔ − + = − + − . Fazendo x2 - 6x + 9 = y, vem: ( ) 2 2 2 y 4 y 3 y 4 y 3 y 16y 48 0 y 12 ou y = 4.= − ⇔ = − ⇔ − + = ⇔ = Verificando: para y = 12 12 4 12 3 (verdadeiro)→ = − e y = 4 4 4 4 3 (verdadeiro)→ = − . “Voltando”, isto é, encontrando os valores das raízes em x: Para y = 12, temos 2 2 x 6x 9 12 x 6x 3 0 x 3 3 (inteiros).− + = ⇔ − − = ⇔ = ± ∉ℤ Para y = 4, temos 2 x 6x 5 0 x 5 ou x = 1.− + = ⇔ = Ambos os valores pertencem ao intervalo verificado para a restrição. Soma das raízes inteiras = 5 + 1 = 6. Completando os quadrados
  • 8. Solução: Sejam x, y, z, w as quantias que os irmãos possuem no momento presente. Do enunciado, temos: x + y + z + w = 71 ( I ) x + 4 = y - 3 = z 2 = 2w (valor final da importância de cada irmão), então x = 2w - 4; y = 2w + 3 e z = 4w, agora, substituindo essas relações em ( I ), vem que: 2w + 2w + 3 + 4w + w = 71 w 8⇔ = . Portanto, o valor final da importância de cada um dos irmãos será: x + 4 = y - 3 = z 2 = 2w = 2.8 = 16 reais. Solução: Sejam M, E e A a quantidade de oficiais presentes na reunião da Marinha, Exército e Aeronáutica, respectivamente. Do enunciado, temos que como saíram os oficiais da Aeronáutica, restam os oficiais da Marinha e Exército (M + E): M = 40% de (M + E), então M = 2 (M E) 5 + 3M 5M 2M 2E E 2 ⇔ − = ⇔ = . Do contrário, retiraram os oficiais da Marinha, restam os oficiais da Aeronáutica e Exército (E + A): E = 90% de (E + A), então E = 9 (E A) 10 + , substituindo o valor de E encontrado acima: E = 9 (E A) 10 + :3 :3 3M 9 3M 30M 27M 18A A 3 1 A 3M 18A 2 10 2 20 20 M 18 6 +  → = + ⇔ = ⇔ = ⇔ = =    .
  • 9. Solução: Observe que: Área CDEF = Área ABCD - (Área ABE + Área FCB) No triângulo ABE, por Pitágoras, temos que BE = 5 . Veja que AD é paralelo a BC e BE é transversal aos lados AD e BC, portanto formam ângulos alternos internos, isto é, ˆ ˆAEB CBE≡ , além do mais, ˆ ˆBAE BFC (retos)≡ , logo os triângulos ABE e FCB são semelhantes (possuem dois ângulos correspondentes congruentes) e daí: AE BE 1 5 2 5 BF BF BC BF 2 5 = → = ⇔ = . No triângulo FCB, por Pitágoras, temos que FC = 4 5 5 . Portanto, Área FCB = 2 5 4 5 45 5 2 5 × = . Logo, Área CDEF = 4 - 4 11 1 5 5   + =    cm2 . Solução: Sejam a, b algarismos e N um número inteiro. Temos, idade de Paulo = ab = 10a + b e idade de Rebecca = ba = 10b + a. Do enunciado: (ab)2 - (ba)2 = N2 2 2 2 2 2 2 2 (ab ba).(ab ba) N (10a b 10b a).(10a b 10b a) N (11a 11b).(9a 9b) N 11.9.(a b)(a b) N 9.11.(a b ) N + − = ⇔ + + + + − − = ⇔ ⇔ + − = ⇔ + − = ⇔ − = ⇔ ⇔ 32 .11.(a2 - b2 ) = N2 .
  • 10. Observação: No problema proposto acima, lembre-se que a, b são algarismos e podem assumir qualquer valor, observando a restrições do enunciado, dos algarismos do sistema decimal, isto é, 0, 1, 2, 3, 4, 5, 6, 7, 8 ou 9 (no caso acima 5 e 6) e o quadrado de um número inteiro diferente de zero é sempre um número inteiro positivo. Observe que N2 é um quadrado perfeito, portanto os expoentes dos fatores primos devem ser pares. Como temos dois fatores definidos (3 e 11) e o fator 3 tem expoente par, devemos voltar nossa atenção para o fator 11, para que tenhamos expoente par para o fator 11, (a2 - b2 ) deve ser igual a 11 ou uma potência de base 11 com expoente ímpar, mas verifique que uma potência de base 11 e expoente maior do que 1 não satisfará as alternativas ou/e o enunciado, portanto (a2 - b2 ) = 11 e daí, podemos escrever: (a2 - b2 ) = 11 ( ) ( )a b . a b 11⇔ + − = , neste caso, a = 6 e b = 5. Assim, idade de Paulo = 65 anos e idade de Rebecca = 56. Soma das idades = 65 + 56 = 121. Solução: Preço (R$) Unidades Receita (R$) 150 270 40500 140 300 42000 130 330 42900 120 360 43200 110 390 42900 100 400 40000 . . . . . . . . . Veja que, na tabela construída acima, a receita máxima é de R$ 43200, após a receita tende a diminuir.
  • 11. Prof. Thieres Machado Professor de colégios, cursos preparatórios, com experiência em concursos públicos, militares, vestibulares, escolas técnicas, reforço escolar, etc. Para aulas particulares ou em grupo envie um e-mail para: aulastm@bol.com.br ou pelo tel.: (21) 9155-0291 BLOG CÁLCULO BÁSICO Matemática para concursos www.calculobasico.blogspot.com.br Solução: 1 1 1 1 1 1 1 . 1 . 1 . ... . 1 . 1 . ... . 1 2 3 4 2n 2n 1 200 3 2 5 4 2n 1 2n 199 198 201 201 2 3 4 5 2n 2n 1 198 199 200 200             + − + + − + =            +            + = ⋅ ⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅ ⋅⋅⋅ ⋅ ⋅ ⋅ = ⋅ + Solução: Seja x a medida do ângulo. Do enunciado, temos: ( ) ( ) ( ) ( ) 90 x 3. 180 2x 125 . Resolvendo esta equação: 4 90 x 90 x 3. 180 2x 125 540 6x 125 x 70 . 4 4 °− ° − + = ° °− °− ° − + = ° ⇔ ° − + = ° ⇔ = ° Dois ângulos são replementares quando sua soma é igual a 360°. Portanto, o replemento de um ângulo x é: 360° - x. Replemento de 70° = 360° - 70° = 290°.