EXERCÍCIOS- Equação de 2º grau
9º Ano Professora Rosana Quirino
1- Para quais valores de m a equação 0139x2
 mx tem duas soluções reais e
iguais?
2- Para quais valores de m a equação 3x² + 6x +m = 0 não admite nenhuma raiz
real?
3- A equação 2x2
+ kx + 2 = 0 possui 2 raízes reais iguais, qual o valor de k?
4- A equação x² + 4x +a =0 não possui raízes, qual o valor de a?
5- Para que valores de m a equação mx² + 2(m -1)x + (m + 5) = 0 possui raízes reais
distintas?
6- Considerando a equação 0242x2
 x faça o que se pede:
a) Quais são os coeficientes numéricos da equação?
b)Qual o valor do discriminante dessa equação?
c) Quais são as raízes dessa equação?
7- Use a fórmula de Bháskara e resolva:
a) x² - 5x + 6 = 0
b) x² - 8x + 12 = 0
c) x² - 4x - 5 = 0
d) -x² + x + 12 = 0
e) -x² + 6x - 5 = 0
f) 6x² + x - 1 = 0
g)2x² - 7x = 15
h) 4x² + 9 = 12x
i) x² + 9 = 4x
j) 4x² - x + 1 = x + 3x²
k)4 + x ( x - 4) = x
l) x ( x + 3) – 40 = 0
m) ( x + 3)² = 1
n) ( x - 5)² = 1
8-Na figura esta representado um
trapézio isósceles (ABCD) de área
216 m2
, de acordo com a figura,
determine o valor de x.
o)( 2x - 4)² = 0
q) xx 14429x2

r) 22
2325x xxx 
s)   22
262x xx 
t)    22
131x4  x
u)
3
2
3
x2
 x
v)
 
3
2
4
3x 

xx
x)
   
3
12
6
511
2
1xx 2




 xxx
9-O quadrado e o triângulo das figuras abaixo tem a mesma área. Nessas
condições:
a) Qual a medida x do lado do quadrado?
b) Qual é 0 perímetro do quadrado? Qual é a área do triângulo?
10) O retângulo da figura abaixo tem 140 cm2
de área. Nessas condições:
a) Qual é o perímetro desse retângulo?
b) Qual a área de um quadrado cujo lado tem a mesma medida do menor lado
desse retângulo?
GABARITO
1) m = ±2 7)
a) 1 e 6 i) Ø
b) 2 e 6 j)1
c)-1 e 5 k)1 e 4
d) -3 e 4 l) -8 e 5
e) 1 e 5 m) -4 e-2
f) - , n) 4 e 6
g)5 e o)2
p) 1 e 3 h)
q) r) Ø
s) 1 e 2
3) k = ± 4
4) a > 4
5) m <
6) a) a =1,b =-2 e c = -24
b)
c) 6 e -4
8) x = 16
9)
a) x = 2
b) 8 cm
c) 4 cm2
10)
a) 48 cm
b) 64 cm2

Exercicios equação de 2º grau

  • 1.
    EXERCÍCIOS- Equação de2º grau 9º Ano Professora Rosana Quirino 1- Para quais valores de m a equação 0139x2  mx tem duas soluções reais e iguais? 2- Para quais valores de m a equação 3x² + 6x +m = 0 não admite nenhuma raiz real? 3- A equação 2x2 + kx + 2 = 0 possui 2 raízes reais iguais, qual o valor de k? 4- A equação x² + 4x +a =0 não possui raízes, qual o valor de a? 5- Para que valores de m a equação mx² + 2(m -1)x + (m + 5) = 0 possui raízes reais distintas? 6- Considerando a equação 0242x2  x faça o que se pede: a) Quais são os coeficientes numéricos da equação? b)Qual o valor do discriminante dessa equação? c) Quais são as raízes dessa equação? 7- Use a fórmula de Bháskara e resolva: a) x² - 5x + 6 = 0 b) x² - 8x + 12 = 0 c) x² - 4x - 5 = 0 d) -x² + x + 12 = 0 e) -x² + 6x - 5 = 0 f) 6x² + x - 1 = 0 g)2x² - 7x = 15 h) 4x² + 9 = 12x i) x² + 9 = 4x j) 4x² - x + 1 = x + 3x² k)4 + x ( x - 4) = x l) x ( x + 3) – 40 = 0 m) ( x + 3)² = 1 n) ( x - 5)² = 1 8-Na figura esta representado um trapézio isósceles (ABCD) de área 216 m2 , de acordo com a figura, determine o valor de x. o)( 2x - 4)² = 0 q) xx 14429x2  r) 22 2325x xxx  s)   22 262x xx  t)    22 131x4  x u) 3 2 3 x2  x v)   3 2 4 3x   xx x)     3 12 6 511 2 1xx 2      xxx
  • 2.
    9-O quadrado eo triângulo das figuras abaixo tem a mesma área. Nessas condições: a) Qual a medida x do lado do quadrado? b) Qual é 0 perímetro do quadrado? Qual é a área do triângulo? 10) O retângulo da figura abaixo tem 140 cm2 de área. Nessas condições: a) Qual é o perímetro desse retângulo? b) Qual a área de um quadrado cujo lado tem a mesma medida do menor lado desse retângulo? GABARITO 1) m = ±2 7) a) 1 e 6 i) Ø b) 2 e 6 j)1 c)-1 e 5 k)1 e 4 d) -3 e 4 l) -8 e 5 e) 1 e 5 m) -4 e-2 f) - , n) 4 e 6 g)5 e o)2 p) 1 e 3 h) q) r) Ø s) 1 e 2 3) k = ± 4 4) a > 4 5) m < 6) a) a =1,b =-2 e c = -24 b) c) 6 e -4 8) x = 16 9) a) x = 2 b) 8 cm c) 4 cm2 10) a) 48 cm b) 64 cm2