SlideShare uma empresa Scribd logo
Equações do 1° Grau
Uma equação que pode ser escrita na forma ax + b = 0, onde a e b são
números reais conhecidos, com a ≠ 0, x representa uma incógnita e o
expoente de x é 1, é chamada de equação do 1° grau a uma
incógnita.
 Os números conhecidos são chamados coeficientes.

  Um valor que pode ser atribuído à incógnita, tal que torne a sentença
  verdadeira é chamado de raiz ou solução da equação.
Forma Geral:         ax + b = 0         a≠0


                                         b
 Solução:       ax = – b        x
                                         a
  Ex.: 1) 2 – 2x = 8       ⇒   – 2x = 8 – 2   ⇒ – 2x = 6 . (– 1)


   ⇒   x=–6/2          ⇒       x=–3


   2) 2x-7 = 4x+15

   Solução : Transpondo, resulta 2x-4x=7+15, isto é,
   -2x = 22. Dividindo por (-2) ( ou seja, multiplicando por   - ½)
   Vem x = -11
Princípios Gerais para solução de equação do 1° grau


1) Numa equação podemos transpor um termo 9 isto é, mudá-lo de um
membro da equação para outro), desde que o multipliquemos por -1.


Em suma, a + b =c → a = c-b.

  Com efeito, a+b=c    a+b+(-b)= c+(-b)
  a+0=c-b

  2) Uma equação não se altera quando se multiplicam ambos os
  membros por um mesmo número diferente.


Em suma, se K ≠ 0, a=b → Ka = Kb
Exercício Resolvidos
 a) 3x [2 ( x 1)] 5x

3x [2 ( x 1)] 5 x    3x [2 x 1] 5 x
  3x 2 x 1 5 x       3x x 5 x    2 1
    x 3 ( 1)   x    3
EXERCÍCIO DE FIXAÇÃO



1)   2x-[1-(x-2)] = 3
2)   x + 1 = 1 - 3x
3)   3x – 3 = 3(x-1)                              x 3   x 2
4)   O valor de x que satisfaz a equação
                                               3x     5
                                                   2     3
a) 1       b)zero    c)43/11    d)4          e)35/11

6) Dada a sentença      x             1
                            2           (4    x) , podemos
   afirmar que:         2             2

a)   É falsa para todo x Є R
b)   É verdadeira somente se x=0
c)   É falsa para todo x Є N
d)   É verdadeira para todo x Є R
e)   É falsa para x=0
Equação tipo “produto” ou “quociente”


 Definição

                                             a
São equações dos tipos a.b =0 (produto) ou        0 (quociente), com {a;b}
está contido em R                            b
  Resolução
Ao resolver equações destes tipos, lembrar-se das duas seguintes equivalências:


      a.b 0                  a 0 ou b 0
        a
                 0          a        0 ou b             0
        b
Exemplo


Resolver a equação
                     ( x 1)(x 3)
                       x³ 2 x 3

       (x    1)( x 3)
                      0    ( x 1)( x 3) 0
        x³    2x 3
       x³    2x 3 0     ( x 1 0 ou x 3 0)
       x³    2x 3 0     ( x 1 ou x 3)
       x³ 2 x 3 0             x 3   V   {3}
Exercício de fixação



1.3x – [2 – (x – 1)] = 5x
2.3(x – 2) – x = 2x – 6
3.2(x – 7) = x – (2 – x)
4.(x² + 1)(x – 1)(x + 1)=0
Equações do 2º grau.

       Professor :Alexandre da Silva Bonifácio
Uma equação pode ser escrita na forma ax² +bx + c = 0 , onde a, b e c
são números reais conhecidos, com a ≠ 0 e x representa uma
incógnita, é chamada de equação do 2º grau a uma incógnita.




     2
ax             bx c                     0          a 0
Exemplos

x x 3      2   2x2 1

 x2 2x2        3x 2 1 0

     x2   3x 3 0             É uma equação
                             do 2º grau
  x2 3x 2 2x2 1

     2                           2
2x        5x    3           2x       5x 3 0
Exemplo

3x2 4x      5x x 2
         1           x2
   2           2
     2           2
  3x 4x       5 x 10 x
           1            x2
       2           2
         3 x 2 4 x 2 5 x 2 10 x 2 x 2
     2         2        2
3x        5x       2x        4 x 10 x 2 0
     6x 2 0                 É uma equação do 1º grau
Exemplos de equações do 2º grau:
                         Equação do 2º grau
                         completa
      2
 2x           4x 3 0     a=2, b=4 e c=3
          2
  4x          5x   0   a=4, b= -5 e c=0
          2
      x       36 0     a=1, b=0 e c= -36
                         Equações do 2º
                         grau
                         incompletas
Resolução de equações do 2º grau incompletas
                      (Revisões do 8º ano)
    Caso b=0 e c≠ 0
Problema 1:
Determina o perímetro de um triângulo retângulo
de catetos 6 cm e 8 cm.

Resolução:
1º) Desenhar o triângulo retângulo
   e equacionar o problema.                       8
                                                             x

    2        2        2
x        6        8                                      6
2º) Resolver a equação do 2º grau incompleta

        x2       62 82
             x2      36 64
                 2
             x       100
             x       100       x        100
             x 10          x       10      -10 não é solução do problema

3º) Verificar se a ou as soluções da equação
   são ou não solução do problema.
4º) Dar resposta ao problema
      R: O perímetro do triângulo é 10cm + 6cm + 8cm = 24cm
Exercício de Fixação


1.Resolva as equações:
a)x²- 4= 0
b) x² = 9
c) 4x² - 25 =0
d)9x² = 16
Resolução de equações do 2º grau incompletas
                (Revisões do 8º ano)
     Caso b≠o e c=0

Problema 2:
Resolver a seguinte equação, aplicando a Lei do
Anulamento do Produto:
                          2
                      x       4x 0
     Recorda:
          Um produto é zero se e só se um dos
     seus fatores for zero. a =0 ou b=0

                              a b 0    a    0     b 0
Resolução:
1º) Fatorar o 1º membro;
                                        2
2º) Aplicar a Lei do                x        4x     0
    Anulamento do
    Produto;                    xx 4                0
3º) Resolver cada uma das   x   0           x 4 0
    equações do 1º grau e
    determinar o                x   0          x        4
    conjunto-solução
                                C .S.        0, 4
Exercício de Fixação


1.Resolva as equações:
a)x²- 2x= 0
b) x² +5x = 0
c) 3x² - x =0
d)- x²+4x = 0
e)-2x² - 7x = 0
Exercício Propostos


a) 3x²-x-2 = 0
b) 6x²-x-1 = 0
c) x²- 5x + 6 = 0
d) 6x²-13x+6 = 0
e) 2x²- 6x = 0
f) 3x²+ 12x = 0
g) x²- 49 = 0

2) A maior raiz da equação -2x²+ 3x + 5 = 0 vale
a) -1    b)1        c)2      d)2,5      e)
Propriedade das raízes


a) Sejam x’ e x’’ as raizes reais da equação ax² + bx + c = 0, com a ≠ 0; sejam
   ainda, S e P a soma e o produto dessas raízes, respectivamente.
  Pode-se demonstrar que:

                                       b
         S        x' x' '
                                       a
                                 c
         P        x '.x ' '
                                 a
b) Obtenção de uma equação a partir das suas raízes


           x² Sx P 0
a) Determinar a soma e o produto das raízes da equação 3x² - 15x - 2 0
Resolução
                                                 -b     ( 15)
Lembrando que a 3, b -15 e c -2, a soma S                         5
                                                  a      3
                c    2
e o produto P
                a  3
                        2
Resposta S 5 e P
                       3
                                                                         1
b) Obter uma equação do 2º grau cujas raízes são 2 e
                                                                         3
Resolução :
De acordo com a teoria apresentad temos :
                                   a,
        1          1            7     2
x² - (2    ) x ( 2. ) 0     x²    x     0
         3         3            3     3
multiplica ndo por 3 toda equação temos
3x ²   7x     2     0
Utilizando as propriedades da soma e produto da raízes, determinar os valores
de m na equação 2x² - 24x + 2m – 1 =0 para que:
a) uma raiz seja o dobro da outra
  resolução :
  Sejam as raizes x1 e x 2 as raízes e x 2            2 x1
  Então :
                           24
    x1    x2
                           2
    x2     2 x1
  substituindo x2 da 2ª equação na 1ª temos :
                                                12
  x1     2 x1     12        3 x1   12      x1
                                                 3
  x1     4 e x2        8
  Portanto :
                   2m 1                     2m 1
  P      x1 .x2                    4. 8
                     2                        2
  2m      1     32.2   2m          1      64    2m   64   1
  2m      65
         65
  m
         2
Exercício de Fixação


a) Para que a soma das raízes da equação (K-2)x² - 3Kx + 1= 0
seja igual ao seu produto devemos ter :

           1              1        1                       3
  a)k        b)k            c)k      d)k       3 e)k
           3              3        3                      3

b) Se m e n são raízes da equação 7x² + 9x + 21=0 então (m + 7)(n + 7) vale:
a)49 b)43 c)37 d)30 e) 30/7

Mais conteúdo relacionado

Mais procurados

Equacoes do 2-_grau
Equacoes do 2-_grauEquacoes do 2-_grau
Equacoes do 2-_grau
Newton Sérgio Lima
 
Matemática 6 9 apresent
Matemática 6 9 apresentMatemática 6 9 apresent
Matemática 6 9 apresent
Roseny90
 
Equações do 2º grau
Equações do 2º grauEquações do 2º grau
Equações do 2º grau
Ninabadgirl
 
Apresentação de equação de 2º grau
Apresentação de equação de 2º  grauApresentação de equação de 2º  grau
Apresentação de equação de 2º grau
antonio carlos doimo
 
As equações do 2º grau 2
As equações do 2º grau 2As equações do 2º grau 2
As equações do 2º grau 2
Angela Costa
 
Equação biquadrada exercicios
Equação biquadrada exerciciosEquação biquadrada exercicios
Equação biquadrada exercicios
Marcia Roberto
 
EquaçãO Do Segundo Grau
EquaçãO Do Segundo GrauEquaçãO Do Segundo Grau
EquaçãO Do Segundo Grau
Bascaras
 
Resumo de aula resolução de equações do 2º grau
Resumo de aula   resolução de equações do 2º grauResumo de aula   resolução de equações do 2º grau
Resumo de aula resolução de equações do 2º grau
SENAI/FATEC - MT
 
Equação 2°grau
Equação 2°grauEquação 2°grau
Equação 2°grau
charleslucas
 
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Zaqueu Oliveira
 
Equações 2º grau - 1ª parte
Equações 2º grau - 1ª parteEquações 2º grau - 1ª parte
Equações 2º grau - 1ª parte
Rui Espadeiro
 
2317 equacao-do-2c2ba-grau-8c2aa-ef
2317 equacao-do-2c2ba-grau-8c2aa-ef2317 equacao-do-2c2ba-grau-8c2aa-ef
2317 equacao-do-2c2ba-grau-8c2aa-ef
elainepalasio
 
Equações do 2º grau fórmula resolvente
Equações do 2º grau   fórmula resolventeEquações do 2º grau   fórmula resolvente
Equações do 2º grau fórmula resolvente
marmorei
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
João Paulo Luna
 
Equações do 2.º grau
Equações do 2.º grauEquações do 2.º grau
Equações do 2.º graualdaalves
 
Teoria equações de 2º grau blog
Teoria   equações de 2º grau blogTeoria   equações de 2º grau blog
Teoria equações de 2º grau blog
tetsu
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
demervalm
 
Equações do 2° grau
Equações do 2° grauEquações do 2° grau
Equações do 2° grau
Derivaldo Oliveira
 
Educogente 9° ano -aula 1 - equação do 2° grau -
Educogente   9° ano -aula 1 - equação do 2° grau -Educogente   9° ano -aula 1 - equação do 2° grau -
Educogente 9° ano -aula 1 - equação do 2° grau -
Patrícia Costa Grigório
 
Equações Do 2º Grau - Profº P.Cesar
Equações Do 2º Grau - Profº P.CesarEquações Do 2º Grau - Profº P.Cesar
Equações Do 2º Grau - Profº P.Cesar
paulocante
 

Mais procurados (20)

Equacoes do 2-_grau
Equacoes do 2-_grauEquacoes do 2-_grau
Equacoes do 2-_grau
 
Matemática 6 9 apresent
Matemática 6 9 apresentMatemática 6 9 apresent
Matemática 6 9 apresent
 
Equações do 2º grau
Equações do 2º grauEquações do 2º grau
Equações do 2º grau
 
Apresentação de equação de 2º grau
Apresentação de equação de 2º  grauApresentação de equação de 2º  grau
Apresentação de equação de 2º grau
 
As equações do 2º grau 2
As equações do 2º grau 2As equações do 2º grau 2
As equações do 2º grau 2
 
Equação biquadrada exercicios
Equação biquadrada exerciciosEquação biquadrada exercicios
Equação biquadrada exercicios
 
EquaçãO Do Segundo Grau
EquaçãO Do Segundo GrauEquaçãO Do Segundo Grau
EquaçãO Do Segundo Grau
 
Resumo de aula resolução de equações do 2º grau
Resumo de aula   resolução de equações do 2º grauResumo de aula   resolução de equações do 2º grau
Resumo de aula resolução de equações do 2º grau
 
Equação 2°grau
Equação 2°grauEquação 2°grau
Equação 2°grau
 
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
Equações do 2ºgrau, Função Polinomial do 1º e 2º grau, Semelhanças, Segmentos...
 
Equações 2º grau - 1ª parte
Equações 2º grau - 1ª parteEquações 2º grau - 1ª parte
Equações 2º grau - 1ª parte
 
2317 equacao-do-2c2ba-grau-8c2aa-ef
2317 equacao-do-2c2ba-grau-8c2aa-ef2317 equacao-do-2c2ba-grau-8c2aa-ef
2317 equacao-do-2c2ba-grau-8c2aa-ef
 
Equações do 2º grau fórmula resolvente
Equações do 2º grau   fórmula resolventeEquações do 2º grau   fórmula resolvente
Equações do 2º grau fórmula resolvente
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
 
Equações do 2.º grau
Equações do 2.º grauEquações do 2.º grau
Equações do 2.º grau
 
Teoria equações de 2º grau blog
Teoria   equações de 2º grau blogTeoria   equações de 2º grau blog
Teoria equações de 2º grau blog
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
 
Equações do 2° grau
Equações do 2° grauEquações do 2° grau
Equações do 2° grau
 
Educogente 9° ano -aula 1 - equação do 2° grau -
Educogente   9° ano -aula 1 - equação do 2° grau -Educogente   9° ano -aula 1 - equação do 2° grau -
Educogente 9° ano -aula 1 - equação do 2° grau -
 
Equações Do 2º Grau - Profº P.Cesar
Equações Do 2º Grau - Profº P.CesarEquações Do 2º Grau - Profº P.Cesar
Equações Do 2º Grau - Profº P.Cesar
 

Destaque

Equacoes do 1 grau
Equacoes do 1 grauEquacoes do 1 grau
Equacoes do 1 grau
estrelaeia
 
Equação do 1º grau
Equação do 1º grauEquação do 1º grau
Equação do 1º grau
ntegraca
 
Lista de Exercicios Sistemas Lineares do 1 grau.
Lista de Exercicios Sistemas Lineares do 1 grau.Lista de Exercicios Sistemas Lineares do 1 grau.
Lista de Exercicios Sistemas Lineares do 1 grau.
Gleidson Luis
 
Matemática - Equação do 1°Grau - www.CentroApoio.com - Vídeo Aulas
Matemática - Equação do 1°Grau - www.CentroApoio.com - Vídeo AulasMatemática - Equação do 1°Grau - www.CentroApoio.com - Vídeo Aulas
Matemática - Equação do 1°Grau - www.CentroApoio.com - Vídeo Aulas
Vídeo Aulas Apoio
 
Slide equaçoes 1 grau
Slide equaçoes 1 grauSlide equaçoes 1 grau
Slide equaçoes 1 grau
estrelaeia
 
Expressoes Algebricas Definitivo
Expressoes Algebricas DefinitivoExpressoes Algebricas Definitivo
Expressoes Algebricas Definitivo
Betão Betão
 
Ensino médio inovador
Ensino médio inovadorEnsino médio inovador
Ensino médio inovador
Lívia Neiva
 
Power point equacao do 2 grau por fatoracao
Power point equacao do 2 grau por fatoracaoPower point equacao do 2 grau por fatoracao
Power point equacao do 2 grau por fatoracao
debyrivoiro
 
Curso de saxofone da escola de música de brasília.
Curso de saxofone da escola de música de brasília.Curso de saxofone da escola de música de brasília.
Curso de saxofone da escola de música de brasília.
Mirtes Arcanjo
 
Sistemas de equações do 1⁰ grau revisão
Sistemas de equações do 1⁰ grau revisãoSistemas de equações do 1⁰ grau revisão
Sistemas de equações do 1⁰ grau revisão
Angela Costa
 
Pesquisa projeto de pesquisa no ensino médio inovador – análise diagnóstica...
Pesquisa   projeto de pesquisa no ensino médio inovador – análise diagnóstica...Pesquisa   projeto de pesquisa no ensino médio inovador – análise diagnóstica...
Pesquisa projeto de pesquisa no ensino médio inovador – análise diagnóstica...
Sérgio Pimentel
 
www.AulasParticulares.Info - Matemática - Probabilidade
www.AulasParticulares.Info - Matemática -  Probabilidadewww.AulasParticulares.Info - Matemática -  Probabilidade
www.AulasParticulares.Info - Matemática - Probabilidade
AulasPartInfo
 
Brilhante Oficial - Mocidade da IEAD-Mauá - Sede
Brilhante Oficial - Mocidade da IEAD-Mauá - SedeBrilhante Oficial - Mocidade da IEAD-Mauá - Sede
Brilhante Oficial - Mocidade da IEAD-Mauá - Sede
Ismael Mariano Vieira
 
Mat utfrs 12. equacoes do 1° e 2° graus
Mat utfrs 12. equacoes do 1° e 2° grausMat utfrs 12. equacoes do 1° e 2° graus
Mat utfrs 12. equacoes do 1° e 2° graus
trigono_metria
 
Sistemas de equações so 1º grau apresentação
Sistemas de equações so 1º grau apresentaçãoSistemas de equações so 1º grau apresentação
Sistemas de equações so 1º grau apresentação
CIEP 456 - E.M. Milcah de Sousa
 
Revolução russa
Revolução russaRevolução russa
Revolução russa
eduardodemiranda
 
Análise combinatória
Análise combinatóriaAnálise combinatória
Análise combinatória
Horacimar Cotrim
 
EQUAÇÃO EXPONENCIAL - Conceito e resolução
EQUAÇÃO EXPONENCIAL - Conceito e resoluçãoEQUAÇÃO EXPONENCIAL - Conceito e resolução
EQUAÇÃO EXPONENCIAL - Conceito e resolução
betontem
 
Razões especiais 05032013
Razões especiais 05032013Razões especiais 05032013
Razões especiais 05032013
Luzimeire Almeida
 
Métodos Iterativos - Gauss-Seidel - @professorenan
Métodos Iterativos - Gauss-Seidel - @professorenanMétodos Iterativos - Gauss-Seidel - @professorenan
Métodos Iterativos - Gauss-Seidel - @professorenan
Renan Gustavo
 

Destaque (20)

Equacoes do 1 grau
Equacoes do 1 grauEquacoes do 1 grau
Equacoes do 1 grau
 
Equação do 1º grau
Equação do 1º grauEquação do 1º grau
Equação do 1º grau
 
Lista de Exercicios Sistemas Lineares do 1 grau.
Lista de Exercicios Sistemas Lineares do 1 grau.Lista de Exercicios Sistemas Lineares do 1 grau.
Lista de Exercicios Sistemas Lineares do 1 grau.
 
Matemática - Equação do 1°Grau - www.CentroApoio.com - Vídeo Aulas
Matemática - Equação do 1°Grau - www.CentroApoio.com - Vídeo AulasMatemática - Equação do 1°Grau - www.CentroApoio.com - Vídeo Aulas
Matemática - Equação do 1°Grau - www.CentroApoio.com - Vídeo Aulas
 
Slide equaçoes 1 grau
Slide equaçoes 1 grauSlide equaçoes 1 grau
Slide equaçoes 1 grau
 
Expressoes Algebricas Definitivo
Expressoes Algebricas DefinitivoExpressoes Algebricas Definitivo
Expressoes Algebricas Definitivo
 
Ensino médio inovador
Ensino médio inovadorEnsino médio inovador
Ensino médio inovador
 
Power point equacao do 2 grau por fatoracao
Power point equacao do 2 grau por fatoracaoPower point equacao do 2 grau por fatoracao
Power point equacao do 2 grau por fatoracao
 
Curso de saxofone da escola de música de brasília.
Curso de saxofone da escola de música de brasília.Curso de saxofone da escola de música de brasília.
Curso de saxofone da escola de música de brasília.
 
Sistemas de equações do 1⁰ grau revisão
Sistemas de equações do 1⁰ grau revisãoSistemas de equações do 1⁰ grau revisão
Sistemas de equações do 1⁰ grau revisão
 
Pesquisa projeto de pesquisa no ensino médio inovador – análise diagnóstica...
Pesquisa   projeto de pesquisa no ensino médio inovador – análise diagnóstica...Pesquisa   projeto de pesquisa no ensino médio inovador – análise diagnóstica...
Pesquisa projeto de pesquisa no ensino médio inovador – análise diagnóstica...
 
www.AulasParticulares.Info - Matemática - Probabilidade
www.AulasParticulares.Info - Matemática -  Probabilidadewww.AulasParticulares.Info - Matemática -  Probabilidade
www.AulasParticulares.Info - Matemática - Probabilidade
 
Brilhante Oficial - Mocidade da IEAD-Mauá - Sede
Brilhante Oficial - Mocidade da IEAD-Mauá - SedeBrilhante Oficial - Mocidade da IEAD-Mauá - Sede
Brilhante Oficial - Mocidade da IEAD-Mauá - Sede
 
Mat utfrs 12. equacoes do 1° e 2° graus
Mat utfrs 12. equacoes do 1° e 2° grausMat utfrs 12. equacoes do 1° e 2° graus
Mat utfrs 12. equacoes do 1° e 2° graus
 
Sistemas de equações so 1º grau apresentação
Sistemas de equações so 1º grau apresentaçãoSistemas de equações so 1º grau apresentação
Sistemas de equações so 1º grau apresentação
 
Revolução russa
Revolução russaRevolução russa
Revolução russa
 
Análise combinatória
Análise combinatóriaAnálise combinatória
Análise combinatória
 
EQUAÇÃO EXPONENCIAL - Conceito e resolução
EQUAÇÃO EXPONENCIAL - Conceito e resoluçãoEQUAÇÃO EXPONENCIAL - Conceito e resolução
EQUAÇÃO EXPONENCIAL - Conceito e resolução
 
Razões especiais 05032013
Razões especiais 05032013Razões especiais 05032013
Razões especiais 05032013
 
Métodos Iterativos - Gauss-Seidel - @professorenan
Métodos Iterativos - Gauss-Seidel - @professorenanMétodos Iterativos - Gauss-Seidel - @professorenan
Métodos Iterativos - Gauss-Seidel - @professorenan
 

Semelhante a Equação do primeiro e segundo grau1

Janepaulla ativ5
Janepaulla ativ5Janepaulla ativ5
Janepaulla ativ5
janepaulla
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
DayzeCampany
 
Equacoes grau
Equacoes  grauEquacoes  grau
Equacoes grau
Thaynan Lima
 
PROVAS EMEF
PROVAS EMEFPROVAS EMEF
PROVAS EMEF
alunosderoberto
 
Provas
ProvasProvas
Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012
Centro Social Marista Ecológica
 
Exercicios
ExerciciosExercicios
Exercicios
nosbier
 
Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012
Mardson Pimenta
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
Robson Nascimento
 
Fisica exercicios resolvidos 011
Fisica exercicios resolvidos  011Fisica exercicios resolvidos  011
Fisica exercicios resolvidos 011
comentada
 
Equações do 2º grau
Equações do 2º grauEquações do 2º grau
Equações do 2º grau
regisinfo
 
CfSd 2016 matematica - 2 v1
CfSd 2016   matematica - 2 v1CfSd 2016   matematica - 2 v1
CfSd 2016 matematica - 2 v1
profNICODEMOS
 
Revisao prevupe-so-exercicios
Revisao prevupe-so-exerciciosRevisao prevupe-so-exercicios
Revisao prevupe-so-exercicios
ld3p
 
Cn2008 2009
Cn2008 2009Cn2008 2009
Cn2008 2009
2marrow
 
Ap matematica
Ap matematicaAp matematica
Ap matematica
marcioluiz2008
 
Matematica 3 exercicios gabarito 12
Matematica 3 exercicios gabarito 12Matematica 3 exercicios gabarito 12
Matematica 3 exercicios gabarito 12
comentada
 
2 lista 1 tri - 9 ano
2 lista   1 tri - 9 ano2 lista   1 tri - 9 ano
2 lista 1 tri - 9 ano
Adriano Capilupe
 
Mat74a
Mat74aMat74a
www.AulasDeMatematicApoio.com - Matemática - Polinômios
www.AulasDeMatematicApoio.com - Matemática -  Polinômioswww.AulasDeMatematicApoio.com - Matemática -  Polinômios
www.AulasDeMatematicApoio.com - Matemática - Polinômios
Aulas De Matemática Apoio
 
Trabalho de recuperação 1 tri - 9ano
Trabalho de recuperação   1 tri - 9anoTrabalho de recuperação   1 tri - 9ano
Trabalho de recuperação 1 tri - 9ano
Adriano Capilupe
 

Semelhante a Equação do primeiro e segundo grau1 (20)

Janepaulla ativ5
Janepaulla ativ5Janepaulla ativ5
Janepaulla ativ5
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
 
Equacoes grau
Equacoes  grauEquacoes  grau
Equacoes grau
 
PROVAS EMEF
PROVAS EMEFPROVAS EMEF
PROVAS EMEF
 
Provas
ProvasProvas
Provas
 
Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012
 
Exercicios
ExerciciosExercicios
Exercicios
 
Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012Prof robsonlistaeq2graurevprova2012
Prof robsonlistaeq2graurevprova2012
 
Equação do 2º grau
Equação do 2º grauEquação do 2º grau
Equação do 2º grau
 
Fisica exercicios resolvidos 011
Fisica exercicios resolvidos  011Fisica exercicios resolvidos  011
Fisica exercicios resolvidos 011
 
Equações do 2º grau
Equações do 2º grauEquações do 2º grau
Equações do 2º grau
 
CfSd 2016 matematica - 2 v1
CfSd 2016   matematica - 2 v1CfSd 2016   matematica - 2 v1
CfSd 2016 matematica - 2 v1
 
Revisao prevupe-so-exercicios
Revisao prevupe-so-exerciciosRevisao prevupe-so-exercicios
Revisao prevupe-so-exercicios
 
Cn2008 2009
Cn2008 2009Cn2008 2009
Cn2008 2009
 
Ap matematica
Ap matematicaAp matematica
Ap matematica
 
Matematica 3 exercicios gabarito 12
Matematica 3 exercicios gabarito 12Matematica 3 exercicios gabarito 12
Matematica 3 exercicios gabarito 12
 
2 lista 1 tri - 9 ano
2 lista   1 tri - 9 ano2 lista   1 tri - 9 ano
2 lista 1 tri - 9 ano
 
Mat74a
Mat74aMat74a
Mat74a
 
www.AulasDeMatematicApoio.com - Matemática - Polinômios
www.AulasDeMatematicApoio.com - Matemática -  Polinômioswww.AulasDeMatematicApoio.com - Matemática -  Polinômios
www.AulasDeMatematicApoio.com - Matemática - Polinômios
 
Trabalho de recuperação 1 tri - 9ano
Trabalho de recuperação   1 tri - 9anoTrabalho de recuperação   1 tri - 9ano
Trabalho de recuperação 1 tri - 9ano
 

Último

Psicologia e Sociologia - Módulo 2 – Sociedade e indivíduo.pptx
Psicologia e Sociologia - Módulo 2 – Sociedade e indivíduo.pptxPsicologia e Sociologia - Módulo 2 – Sociedade e indivíduo.pptx
Psicologia e Sociologia - Módulo 2 – Sociedade e indivíduo.pptx
TiagoLouro8
 
Aula 02 - Introducao a Algoritmos.pptx.pdf
Aula 02 - Introducao a Algoritmos.pptx.pdfAula 02 - Introducao a Algoritmos.pptx.pdf
Aula 02 - Introducao a Algoritmos.pptx.pdf
AntonioAngeloNeves
 
O Profeta Jeremias - A Biografia de Jeremias.pptx4
O Profeta Jeremias - A Biografia de Jeremias.pptx4O Profeta Jeremias - A Biografia de Jeremias.pptx4
O Profeta Jeremias - A Biografia de Jeremias.pptx4
DouglasMoraes54
 
Telepsiquismo Utilize seu poder extrassensorial para atrair prosperidade (Jos...
Telepsiquismo Utilize seu poder extrassensorial para atrair prosperidade (Jos...Telepsiquismo Utilize seu poder extrassensorial para atrair prosperidade (Jos...
Telepsiquismo Utilize seu poder extrassensorial para atrair prosperidade (Jos...
fran0410
 
Cartinhas de solidariedade e esperança.pptx
Cartinhas de solidariedade e esperança.pptxCartinhas de solidariedade e esperança.pptx
Cartinhas de solidariedade e esperança.pptx
Zenir Carmen Bez Trombeta
 
A festa junina é uma tradicional festividade popular que acontece durante o m...
A festa junina é uma tradicional festividade popular que acontece durante o m...A festa junina é uma tradicional festividade popular que acontece durante o m...
A festa junina é uma tradicional festividade popular que acontece durante o m...
ANDRÉA FERREIRA
 
Como montar o mapa conceitual editado.pdf
Como montar o mapa conceitual editado.pdfComo montar o mapa conceitual editado.pdf
Como montar o mapa conceitual editado.pdf
AlineOliveira625820
 
As sequências didáticas: práticas educativas
As sequências didáticas: práticas educativasAs sequências didáticas: práticas educativas
As sequências didáticas: práticas educativas
rloureiro1
 
TUTORIAL PARA LANÇAMENTOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
TUTORIAL PARA LANÇAMENTOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGTUTORIAL PARA LANÇAMENTOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
TUTORIAL PARA LANÇAMENTOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
ProfessoraTatianaT
 
3ª série HIS - PROVA PAULISTA DIA 1 - 1º BIM-24.pdf
3ª série HIS - PROVA PAULISTA DIA 1 - 1º BIM-24.pdf3ª série HIS - PROVA PAULISTA DIA 1 - 1º BIM-24.pdf
3ª série HIS - PROVA PAULISTA DIA 1 - 1º BIM-24.pdf
AdrianoMontagna1
 
MAPAS MENTAIS Conhecimentos Pedagógicos - ATUALIZADO 2024 PROF. Fernanda.pdf
MAPAS MENTAIS Conhecimentos Pedagógicos - ATUALIZADO 2024 PROF. Fernanda.pdfMAPAS MENTAIS Conhecimentos Pedagógicos - ATUALIZADO 2024 PROF. Fernanda.pdf
MAPAS MENTAIS Conhecimentos Pedagógicos - ATUALIZADO 2024 PROF. Fernanda.pdf
GracinhaSantos6
 
Aula de filosofia sobre Sexo, Gênero e sexualidade
Aula de filosofia sobre Sexo, Gênero e sexualidadeAula de filosofia sobre Sexo, Gênero e sexualidade
Aula de filosofia sobre Sexo, Gênero e sexualidade
AlessandraRibas7
 
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptxPP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
LuizHenriquedeAlmeid6
 
FUNCAO EQUAÇÃO DO 2° GRAU SLIDES AULA 1.ppt
FUNCAO EQUAÇÃO DO 2° GRAU SLIDES AULA 1.pptFUNCAO EQUAÇÃO DO 2° GRAU SLIDES AULA 1.ppt
FUNCAO EQUAÇÃO DO 2° GRAU SLIDES AULA 1.ppt
MarceloMonteiro213738
 
Tabela Funções Orgânicas.pdfnsknsknksnksn nkasn
Tabela Funções Orgânicas.pdfnsknsknksnksn nkasnTabela Funções Orgânicas.pdfnsknsknksnksn nkasn
Tabela Funções Orgânicas.pdfnsknsknksnksn nkasn
CarlosJean21
 
Loteria - Adição, subtração, multiplicação e divisão.
Loteria - Adição,  subtração,  multiplicação e divisão.Loteria - Adição,  subtração,  multiplicação e divisão.
Loteria - Adição, subtração, multiplicação e divisão.
Mary Alvarenga
 
-Rudolf-Laban-e-a-teoria-do-movimento.ppt
-Rudolf-Laban-e-a-teoria-do-movimento.ppt-Rudolf-Laban-e-a-teoria-do-movimento.ppt
-Rudolf-Laban-e-a-teoria-do-movimento.ppt
fagnerlopes11
 
Aula04A-Potencia em CA eletricidade USP.pdf
Aula04A-Potencia em CA eletricidade USP.pdfAula04A-Potencia em CA eletricidade USP.pdf
Aula04A-Potencia em CA eletricidade USP.pdf
vitorreissouzasilva
 
REGULAMENTO DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...
REGULAMENTO  DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...REGULAMENTO  DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...
REGULAMENTO DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...
Eró Cunha
 
Aula 1 - Ordem Mundial Aula de Geografia
Aula 1 - Ordem Mundial Aula de GeografiaAula 1 - Ordem Mundial Aula de Geografia
Aula 1 - Ordem Mundial Aula de Geografia
WELTONROBERTOFREITAS
 

Último (20)

Psicologia e Sociologia - Módulo 2 – Sociedade e indivíduo.pptx
Psicologia e Sociologia - Módulo 2 – Sociedade e indivíduo.pptxPsicologia e Sociologia - Módulo 2 – Sociedade e indivíduo.pptx
Psicologia e Sociologia - Módulo 2 – Sociedade e indivíduo.pptx
 
Aula 02 - Introducao a Algoritmos.pptx.pdf
Aula 02 - Introducao a Algoritmos.pptx.pdfAula 02 - Introducao a Algoritmos.pptx.pdf
Aula 02 - Introducao a Algoritmos.pptx.pdf
 
O Profeta Jeremias - A Biografia de Jeremias.pptx4
O Profeta Jeremias - A Biografia de Jeremias.pptx4O Profeta Jeremias - A Biografia de Jeremias.pptx4
O Profeta Jeremias - A Biografia de Jeremias.pptx4
 
Telepsiquismo Utilize seu poder extrassensorial para atrair prosperidade (Jos...
Telepsiquismo Utilize seu poder extrassensorial para atrair prosperidade (Jos...Telepsiquismo Utilize seu poder extrassensorial para atrair prosperidade (Jos...
Telepsiquismo Utilize seu poder extrassensorial para atrair prosperidade (Jos...
 
Cartinhas de solidariedade e esperança.pptx
Cartinhas de solidariedade e esperança.pptxCartinhas de solidariedade e esperança.pptx
Cartinhas de solidariedade e esperança.pptx
 
A festa junina é uma tradicional festividade popular que acontece durante o m...
A festa junina é uma tradicional festividade popular que acontece durante o m...A festa junina é uma tradicional festividade popular que acontece durante o m...
A festa junina é uma tradicional festividade popular que acontece durante o m...
 
Como montar o mapa conceitual editado.pdf
Como montar o mapa conceitual editado.pdfComo montar o mapa conceitual editado.pdf
Como montar o mapa conceitual editado.pdf
 
As sequências didáticas: práticas educativas
As sequências didáticas: práticas educativasAs sequências didáticas: práticas educativas
As sequências didáticas: práticas educativas
 
TUTORIAL PARA LANÇAMENTOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
TUTORIAL PARA LANÇAMENTOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGTUTORIAL PARA LANÇAMENTOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
TUTORIAL PARA LANÇAMENTOGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGG
 
3ª série HIS - PROVA PAULISTA DIA 1 - 1º BIM-24.pdf
3ª série HIS - PROVA PAULISTA DIA 1 - 1º BIM-24.pdf3ª série HIS - PROVA PAULISTA DIA 1 - 1º BIM-24.pdf
3ª série HIS - PROVA PAULISTA DIA 1 - 1º BIM-24.pdf
 
MAPAS MENTAIS Conhecimentos Pedagógicos - ATUALIZADO 2024 PROF. Fernanda.pdf
MAPAS MENTAIS Conhecimentos Pedagógicos - ATUALIZADO 2024 PROF. Fernanda.pdfMAPAS MENTAIS Conhecimentos Pedagógicos - ATUALIZADO 2024 PROF. Fernanda.pdf
MAPAS MENTAIS Conhecimentos Pedagógicos - ATUALIZADO 2024 PROF. Fernanda.pdf
 
Aula de filosofia sobre Sexo, Gênero e sexualidade
Aula de filosofia sobre Sexo, Gênero e sexualidadeAula de filosofia sobre Sexo, Gênero e sexualidade
Aula de filosofia sobre Sexo, Gênero e sexualidade
 
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptxPP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
PP Slides Lição 11, Betel, Ordenança para exercer a fé, 2Tr24.pptx
 
FUNCAO EQUAÇÃO DO 2° GRAU SLIDES AULA 1.ppt
FUNCAO EQUAÇÃO DO 2° GRAU SLIDES AULA 1.pptFUNCAO EQUAÇÃO DO 2° GRAU SLIDES AULA 1.ppt
FUNCAO EQUAÇÃO DO 2° GRAU SLIDES AULA 1.ppt
 
Tabela Funções Orgânicas.pdfnsknsknksnksn nkasn
Tabela Funções Orgânicas.pdfnsknsknksnksn nkasnTabela Funções Orgânicas.pdfnsknsknksnksn nkasn
Tabela Funções Orgânicas.pdfnsknsknksnksn nkasn
 
Loteria - Adição, subtração, multiplicação e divisão.
Loteria - Adição,  subtração,  multiplicação e divisão.Loteria - Adição,  subtração,  multiplicação e divisão.
Loteria - Adição, subtração, multiplicação e divisão.
 
-Rudolf-Laban-e-a-teoria-do-movimento.ppt
-Rudolf-Laban-e-a-teoria-do-movimento.ppt-Rudolf-Laban-e-a-teoria-do-movimento.ppt
-Rudolf-Laban-e-a-teoria-do-movimento.ppt
 
Aula04A-Potencia em CA eletricidade USP.pdf
Aula04A-Potencia em CA eletricidade USP.pdfAula04A-Potencia em CA eletricidade USP.pdf
Aula04A-Potencia em CA eletricidade USP.pdf
 
REGULAMENTO DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...
REGULAMENTO  DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...REGULAMENTO  DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...
REGULAMENTO DO CONCURSO DESENHOS AFRO/2024 - 14ª edição - CEIRI /UREI (ficha...
 
Aula 1 - Ordem Mundial Aula de Geografia
Aula 1 - Ordem Mundial Aula de GeografiaAula 1 - Ordem Mundial Aula de Geografia
Aula 1 - Ordem Mundial Aula de Geografia
 

Equação do primeiro e segundo grau1

  • 1. Equações do 1° Grau Uma equação que pode ser escrita na forma ax + b = 0, onde a e b são números reais conhecidos, com a ≠ 0, x representa uma incógnita e o expoente de x é 1, é chamada de equação do 1° grau a uma incógnita. Os números conhecidos são chamados coeficientes. Um valor que pode ser atribuído à incógnita, tal que torne a sentença verdadeira é chamado de raiz ou solução da equação.
  • 2. Forma Geral: ax + b = 0 a≠0 b Solução: ax = – b x a Ex.: 1) 2 – 2x = 8 ⇒ – 2x = 8 – 2 ⇒ – 2x = 6 . (– 1) ⇒ x=–6/2 ⇒ x=–3 2) 2x-7 = 4x+15 Solução : Transpondo, resulta 2x-4x=7+15, isto é, -2x = 22. Dividindo por (-2) ( ou seja, multiplicando por - ½) Vem x = -11
  • 3. Princípios Gerais para solução de equação do 1° grau 1) Numa equação podemos transpor um termo 9 isto é, mudá-lo de um membro da equação para outro), desde que o multipliquemos por -1. Em suma, a + b =c → a = c-b. Com efeito, a+b=c a+b+(-b)= c+(-b) a+0=c-b 2) Uma equação não se altera quando se multiplicam ambos os membros por um mesmo número diferente. Em suma, se K ≠ 0, a=b → Ka = Kb
  • 4. Exercício Resolvidos a) 3x [2 ( x 1)] 5x 3x [2 ( x 1)] 5 x 3x [2 x 1] 5 x 3x 2 x 1 5 x 3x x 5 x 2 1 x 3 ( 1) x 3
  • 5. EXERCÍCIO DE FIXAÇÃO 1) 2x-[1-(x-2)] = 3 2) x + 1 = 1 - 3x 3) 3x – 3 = 3(x-1) x 3 x 2 4) O valor de x que satisfaz a equação 3x 5 2 3 a) 1 b)zero c)43/11 d)4 e)35/11 6) Dada a sentença x 1 2 (4 x) , podemos afirmar que: 2 2 a) É falsa para todo x Є R b) É verdadeira somente se x=0 c) É falsa para todo x Є N d) É verdadeira para todo x Є R e) É falsa para x=0
  • 6. Equação tipo “produto” ou “quociente” Definição a São equações dos tipos a.b =0 (produto) ou 0 (quociente), com {a;b} está contido em R b Resolução Ao resolver equações destes tipos, lembrar-se das duas seguintes equivalências: a.b 0 a 0 ou b 0 a 0 a 0 ou b 0 b
  • 7. Exemplo Resolver a equação ( x 1)(x 3) x³ 2 x 3 (x 1)( x 3) 0 ( x 1)( x 3) 0 x³ 2x 3 x³ 2x 3 0 ( x 1 0 ou x 3 0) x³ 2x 3 0 ( x 1 ou x 3) x³ 2 x 3 0 x 3 V {3}
  • 8. Exercício de fixação 1.3x – [2 – (x – 1)] = 5x 2.3(x – 2) – x = 2x – 6 3.2(x – 7) = x – (2 – x) 4.(x² + 1)(x – 1)(x + 1)=0
  • 9. Equações do 2º grau. Professor :Alexandre da Silva Bonifácio
  • 10. Uma equação pode ser escrita na forma ax² +bx + c = 0 , onde a, b e c são números reais conhecidos, com a ≠ 0 e x representa uma incógnita, é chamada de equação do 2º grau a uma incógnita. 2 ax bx c 0 a 0
  • 11. Exemplos x x 3 2 2x2 1 x2 2x2 3x 2 1 0 x2 3x 3 0 É uma equação do 2º grau x2 3x 2 2x2 1 2 2 2x 5x 3 2x 5x 3 0
  • 12. Exemplo 3x2 4x 5x x 2 1 x2 2 2 2 2 3x 4x 5 x 10 x 1 x2 2 2 3 x 2 4 x 2 5 x 2 10 x 2 x 2 2 2 2 3x 5x 2x 4 x 10 x 2 0 6x 2 0 É uma equação do 1º grau
  • 13. Exemplos de equações do 2º grau: Equação do 2º grau completa 2 2x 4x 3 0 a=2, b=4 e c=3 2 4x 5x 0 a=4, b= -5 e c=0 2 x 36 0 a=1, b=0 e c= -36 Equações do 2º grau incompletas
  • 14. Resolução de equações do 2º grau incompletas (Revisões do 8º ano) Caso b=0 e c≠ 0 Problema 1: Determina o perímetro de um triângulo retângulo de catetos 6 cm e 8 cm. Resolução: 1º) Desenhar o triângulo retângulo e equacionar o problema. 8 x 2 2 2 x 6 8 6
  • 15. 2º) Resolver a equação do 2º grau incompleta x2 62 82 x2 36 64 2 x 100 x 100 x 100 x 10 x 10 -10 não é solução do problema 3º) Verificar se a ou as soluções da equação são ou não solução do problema. 4º) Dar resposta ao problema R: O perímetro do triângulo é 10cm + 6cm + 8cm = 24cm
  • 16. Exercício de Fixação 1.Resolva as equações: a)x²- 4= 0 b) x² = 9 c) 4x² - 25 =0 d)9x² = 16
  • 17. Resolução de equações do 2º grau incompletas (Revisões do 8º ano) Caso b≠o e c=0 Problema 2: Resolver a seguinte equação, aplicando a Lei do Anulamento do Produto: 2 x 4x 0 Recorda: Um produto é zero se e só se um dos seus fatores for zero. a =0 ou b=0 a b 0 a 0 b 0
  • 18. Resolução: 1º) Fatorar o 1º membro; 2 2º) Aplicar a Lei do x 4x 0 Anulamento do Produto; xx 4 0 3º) Resolver cada uma das x 0 x 4 0 equações do 1º grau e determinar o x 0 x 4 conjunto-solução C .S. 0, 4
  • 19. Exercício de Fixação 1.Resolva as equações: a)x²- 2x= 0 b) x² +5x = 0 c) 3x² - x =0 d)- x²+4x = 0 e)-2x² - 7x = 0
  • 20. Exercício Propostos a) 3x²-x-2 = 0 b) 6x²-x-1 = 0 c) x²- 5x + 6 = 0 d) 6x²-13x+6 = 0 e) 2x²- 6x = 0 f) 3x²+ 12x = 0 g) x²- 49 = 0 2) A maior raiz da equação -2x²+ 3x + 5 = 0 vale a) -1 b)1 c)2 d)2,5 e)
  • 21. Propriedade das raízes a) Sejam x’ e x’’ as raizes reais da equação ax² + bx + c = 0, com a ≠ 0; sejam ainda, S e P a soma e o produto dessas raízes, respectivamente. Pode-se demonstrar que: b S x' x' ' a c P x '.x ' ' a b) Obtenção de uma equação a partir das suas raízes x² Sx P 0
  • 22. a) Determinar a soma e o produto das raízes da equação 3x² - 15x - 2 0 Resolução -b ( 15) Lembrando que a 3, b -15 e c -2, a soma S 5 a 3 c 2 e o produto P a 3 2 Resposta S 5 e P 3 1 b) Obter uma equação do 2º grau cujas raízes são 2 e 3 Resolução : De acordo com a teoria apresentad temos : a, 1 1 7 2 x² - (2 ) x ( 2. ) 0 x² x 0 3 3 3 3 multiplica ndo por 3 toda equação temos 3x ² 7x 2 0
  • 23. Utilizando as propriedades da soma e produto da raízes, determinar os valores de m na equação 2x² - 24x + 2m – 1 =0 para que: a) uma raiz seja o dobro da outra resolução : Sejam as raizes x1 e x 2 as raízes e x 2 2 x1 Então : 24 x1 x2 2 x2 2 x1 substituindo x2 da 2ª equação na 1ª temos : 12 x1 2 x1 12 3 x1 12 x1 3 x1 4 e x2 8 Portanto : 2m 1 2m 1 P x1 .x2 4. 8 2 2 2m 1 32.2 2m 1 64 2m 64 1 2m 65 65 m 2
  • 24. Exercício de Fixação a) Para que a soma das raízes da equação (K-2)x² - 3Kx + 1= 0 seja igual ao seu produto devemos ter : 1 1 1 3 a)k b)k c)k d)k 3 e)k 3 3 3 3 b) Se m e n são raízes da equação 7x² + 9x + 21=0 então (m + 7)(n + 7) vale: a)49 b)43 c)37 d)30 e) 30/7