SlideShare uma empresa Scribd logo
MEDIDAS DE DISPERSÃO
Medidas de tendência central fornecem um
resumo parcial das informações de um conjunto
de dados. A necessidade de uma medida de
variação é aparente, para que nos permita, por
exemplo, comparar conjuntos diferentes de
valores. Algumas característica desta medida
devem ser atendidos como veremos a seguir.
MEDIDAS DE DISPERSÃO
Amostragem A: 8, 8, 9, 10, 11, 12, 12
Média 10; Mediana 10 e Bimodal (8, 12)
Amostragem B: 5, 6, 8, 10, 12, 14, 15
Média 10; Mediana 10 e sem Moda
Amostragem C: 1, 2, 5, 10, 15, 18, 19
Média 10; Mediana 10 e sem Moda
As medidas de tendência central pouco ou nada informam a
respeito da dispersão dos dados
O conceito de medida de dispersão é relativamente difícil. O
quanto informativo é dizer que as três amostragens possuem
dispersão 4, 10 e 18 (Y7-Y1)?
MEDIDAS DE DISPERSÃO
Amostragem D: 8, 9, 10, 10, 10, 11, 12
Média 10; Mediana 10 e Modal 10
Amostragem E: 5, 7, 9, 10, 11, 13, 15
Média 10; Mediana 10 e sem Moda
Amostragem F:1, 5, 8, 10, 12, 15, 19
Média 9; Mediana 10 e sem Moda
Estes três conjuntos de dados também possuem dispersão
máxima igual a 4, 10 e 18, respectivamente. As amostras A, B
e C apresentam um maior número de observações mais
distantes da média, enquanto nas amostras D, E e F ocorre um
maior número de observações concentradas em torno da
média. Torna-se interessante que haja uma definição a qual
use todas as observações e que seja um pequeno valor quando
as observações se aproximam da média e grande quando estas
são espaçadas.
MEDIDAS DE DISPERSÃO
Por fim considere os dados destas duas
amostras:
Amostra A: 5, 6, 8, 10, 12, 14, 15
Amostra B: 105, 106, 108, 110, 112, 114, 115
A dispersão (Y7-Y1) é igual nas duas amostra
e, portanto, independe do tamanho dos
números.
MEDIDAS DE DISPERÇÃO
O critério geralmente utilizado é aquele que mede a concentração dos
dados em torno da média, e algumas medidas são as mais usadas: desvio
médio, variância, desvio padrão e Coeficiente de Variação.
Ex: 3, 4, 5, 6, 7 (média 5), os desvios xi-x, são: -2, -1, 0, 1 ,2.
1, 3, 5, 7, 9 (média 5), os desvios xi-x, são: -4, -2, 0, 2, 4.
É fácil observar que a soma dos desvios é igual a zero, o que torna
inviável esta medida. As opções são:
a)Considerar o total dos desvios em valor absoluto (módulo) ou,
b)Considerar o total dos quadrados dos desvios. Assim teríamos:
Para a amostra: 3, 4, 5, 6, 7
= 2 + 1 + 0 + 1 + 2 = 6 (a)
2
= 4 + 1 + 0 + 1 + 4 = 10 (b)
xixn
i
i −∑=
5
1
( )xixn
i
i −∑=
5
1
DESVIO MÉDIO
O desvio médio (DM) refere-se à média dos desvio em valor
absoluto, como na fórmula a seguir, aplicada a amostra 3, 4, 5,
6, 7.
DM(x) = /n , usando o exemplo anterior DM(x) = 6/5 = 1,2
Para a amostra 1, 3, 5, 7, 9 teríamos:
DM(x) = /n , DM(x) = 12/5 = 2.4
Baseado nos dados, pode-se dizer que a primeira amostra é mais
homogênea.
xixn
i
i −∑=
5
1
xixn
i
−∑=
5
1
1
VARIÂNCIA
A medida que contempla os aspectos apresentados e que é mais utilizada é
a Variância. A variância é representada por dois símbolos: σ2
(letra grega
sigma) para população e s2
para uma amostra. As fórmulas para a
variância da população e da amostra são apresentadas abaixo.
População: σ2
= 2
/n
Amostra: s2
= 2
/n-1,
O denominador n-1 tem o propósito de tornar a variância da amostra a
estimativa da variância da população. N-1 é conhecido como grau de
liberdade e refere-se ao número de somas independentes lineares numa
soma de quadrados.
A variância é uma medida que expressa um desvio quadrático médio. A
unidade da variância é portanto o quadrado dos dados originais. Ex: para
dados expressos em centímetros a variância será expressa em centímetros
quadrados.
( )µ−∑=
k
i
i ixn
1
( )xixn
k
i
i −∑=1
VARIÂNCIA
Para as amostras 3, 4, 5, 6, 7 e
1, 3, 5, 7, 9
As variâncias seriam:
S1
2
= (3-5)2
+ (4-5)2
+(5-5)2
+ (6-5)2
+ (7-5)2
/4 S1
2
=2,5
S2
2
= (1-5)2
+(3-5)2
+(5-5)2
+(7-5)2
+(9-5)2
/4 S2
2
=10
A amostra 3, 4, 5, 6, 7 é mais homogênea.
VARIÂNCIA
Média = (0*4)+(1*5)+(2*7)+(3*3)+(5*1))/20=1,65
DM(x) = 4*(0-1,65) + 5* (1-1,65) + 7* (2-1,65) + 3* (3-1,65) + 1* (5-1,65)/20 = 0,98
Variância S2
= 4*(-1,65)2
+ 5* (-0,65)2
+ 7* (0,35)2
+ 3* (1,35)2
+ 1* (3,35)2
/19 = 1,6
DESVIO PADRÃO
Sendo a variância uma medida que expressa um desvio quadrático médio, esta
pode causar alguns problemas de interpretação. Para evitar isto, costuma-se usar o
desvio padrão, que é definido como a raiz quadrada positiva da variância. Desta
forma, tem-se uma medida de variabilidade expressa na mesma unidade dos
valores do conjunto de dados. O desvio padrão (σ, para população e s para
amostras) pode ser calculado através das seguintes fórmulas:
σ= e s =
O DESVIO PADRÃO DAS AMOSTRAS 3, 4, 5, 6, 7 e 1, 3, 5, 7, 9 seria:
S1= =1,58
S2= =3,16
( )
∑
−k i
n
xin
1
2
µ ( )
∑ −
−k i
n
xxin
1
2
1
5,2
10
COEFICIENTE DE VARIAÇÃO
A variação ou dispersão real, determinada a partir do desvio
padrão, ou qualquer outra medida de dispersão, é denominada
dispersão absoluta. Entretanto, uma variação ou dispersão de
10 cm, na medida de uma distância de 1.000 m, é
inteiramente diferente, quanto ao efeito, da mesma variação
em uma distância de 20 cm. A medida desse efeito é
proporcionada pela dispersão relativa, definida por:
Dispersão relativa = Dispersão absoluta/média
Se a dispersão absoluta é o desvio padrão s e a média é a
aritmética, a dispersão relativa é denominada Coeficiente de
Variação ou de Dispersão.
CV= −
x
s
100∗
COEFICIENTE DE VARIAÇÃO
O coeficiente de variação é geralmente expresso em
percentagem. O C.V. é independente das unidades
adotadas. Por essa razão, é vantajosa para a
comparação de distribuições cujas unidades podem
ser diferentes. Uma desvantagem do C.V. é que ele
deixa de ser útil quando a média esta próximo de
zero.
Baixa dispersão: CV ≤ 15%
Média dispersão: CV 15-30%
Alta dispersão: CV ≥ 30%
ERRO PADRÃO DA MÉDIA
(Sx)
Quando se obtém uma amostra aleatória de tamanho
n, estima-se a média populacional. É bastante
intuitivo supor que se uma nova amostra aleatória for
realizada a estimativa obtida será diferente daquela
primeira. Desta forma, reconhece-se que as médias
amostrais estão sujeitas à variação e formam
populações de médias amostrais, quando todas as
possíveis amostras são retiradas de uma população.
O erro padrão analisa a variabilidade de uma
média
Erro padrão
Fornece um mecanismo de medir a precisão com que a média
populacional foi estimada
n
S
Sx =
Exercícios
Dada a tabela abaixo, calcule:
Desvio médio, Variância, Desvio padrão, Coeficiente
de variação e erro padrão da média
33 35 35 39 41 41 42 45 47 48
50 52 53 54 55 55 57 59 60 60
61 64 65 65 65 66 66 66 67 68
69 71 73 73 74 74 76 77 77 78
80 81 84 85 85 88 89 91 94 97

Mais conteúdo relacionado

Mais procurados

Estatística
EstatísticaEstatística
Estatística
aldaalves
 
Exercicios resolvidos
Exercicios resolvidosExercicios resolvidos
Exercicios resolvidos
Concursando Persistente
 
Distribuição de frequencia
Distribuição de frequenciaDistribuição de frequencia
Distribuição de frequencia
Asafe Salomao
 
Metais propriedades mecânicas
Metais   propriedades mecânicasMetais   propriedades mecânicas
Metais propriedades mecânicas
damartini
 
Estatística Descritiva
Estatística DescritivaEstatística Descritiva
Estatística Descritiva
Mércia Regina da Silva
 
Constituição atómica da matéria
Constituição atómica da matériaConstituição atómica da matéria
Constituição atómica da matéria
Gustavo de Azevedo
 
Estrutura cristalina
Estrutura cristalinaEstrutura cristalina
Estrutura cristalina
Guilherme Cuzzuol
 
Materiais cerâmicos
Materiais cerâmicosMateriais cerâmicos
Materiais cerâmicos
Lívio Bruno
 
Slide: Tales de mileto
Slide: Tales de miletoSlide: Tales de mileto
Slide: Tales de mileto
Lucas Dias
 
Tintas e vernizes
Tintas e vernizesTintas e vernizes
Tintas e vernizes
Eloá Neto
 
4 capacidade de_suporte_cbr
4 capacidade de_suporte_cbr4 capacidade de_suporte_cbr
4 capacidade de_suporte_cbr
Adilson Leão
 
Aula de distribuição de frequencia
Aula de distribuição de frequenciaAula de distribuição de frequencia
Aula de distribuição de frequencia
Linduart Tavares
 
Relatório permeabilidade 2017-1
Relatório   permeabilidade 2017-1Relatório   permeabilidade 2017-1
Relatório permeabilidade 2017-1
Tiago Teles
 
Flow table e ica
Flow table e icaFlow table e ica
Flow table e ica
Rafael Fernandes
 
Relatório aceleração da gravidade queda livre
Relatório aceleração da gravidade   queda livreRelatório aceleração da gravidade   queda livre
Relatório aceleração da gravidade queda livre
Thaís Franco
 
Exemplo de um projeto de estrutura de madeira para cobertura - Projeto PDF
Exemplo de um projeto de estrutura de madeira para cobertura - Projeto PDFExemplo de um projeto de estrutura de madeira para cobertura - Projeto PDF
Exemplo de um projeto de estrutura de madeira para cobertura - Projeto PDF
teixeiracosta
 
Relatório 2ª lei de newton turma t5
Relatório 2ª lei de newton   turma t5Relatório 2ª lei de newton   turma t5
Relatório 2ª lei de newton turma t5
Roberto Leao
 
Slides de estatística aplicada
Slides de estatística aplicadaSlides de estatística aplicada
Slides de estatística aplicada
Enio José Bolognini
 
Probabilidade e Estatística - Aula 02
Probabilidade e Estatística - Aula 02Probabilidade e Estatística - Aula 02
Probabilidade e Estatística - Aula 02
Augusto Junior
 
6 propriedades mecanicas (1)
6  propriedades mecanicas (1)6  propriedades mecanicas (1)
6 propriedades mecanicas (1)
Carla Faria
 

Mais procurados (20)

Estatística
EstatísticaEstatística
Estatística
 
Exercicios resolvidos
Exercicios resolvidosExercicios resolvidos
Exercicios resolvidos
 
Distribuição de frequencia
Distribuição de frequenciaDistribuição de frequencia
Distribuição de frequencia
 
Metais propriedades mecânicas
Metais   propriedades mecânicasMetais   propriedades mecânicas
Metais propriedades mecânicas
 
Estatística Descritiva
Estatística DescritivaEstatística Descritiva
Estatística Descritiva
 
Constituição atómica da matéria
Constituição atómica da matériaConstituição atómica da matéria
Constituição atómica da matéria
 
Estrutura cristalina
Estrutura cristalinaEstrutura cristalina
Estrutura cristalina
 
Materiais cerâmicos
Materiais cerâmicosMateriais cerâmicos
Materiais cerâmicos
 
Slide: Tales de mileto
Slide: Tales de miletoSlide: Tales de mileto
Slide: Tales de mileto
 
Tintas e vernizes
Tintas e vernizesTintas e vernizes
Tintas e vernizes
 
4 capacidade de_suporte_cbr
4 capacidade de_suporte_cbr4 capacidade de_suporte_cbr
4 capacidade de_suporte_cbr
 
Aula de distribuição de frequencia
Aula de distribuição de frequenciaAula de distribuição de frequencia
Aula de distribuição de frequencia
 
Relatório permeabilidade 2017-1
Relatório   permeabilidade 2017-1Relatório   permeabilidade 2017-1
Relatório permeabilidade 2017-1
 
Flow table e ica
Flow table e icaFlow table e ica
Flow table e ica
 
Relatório aceleração da gravidade queda livre
Relatório aceleração da gravidade   queda livreRelatório aceleração da gravidade   queda livre
Relatório aceleração da gravidade queda livre
 
Exemplo de um projeto de estrutura de madeira para cobertura - Projeto PDF
Exemplo de um projeto de estrutura de madeira para cobertura - Projeto PDFExemplo de um projeto de estrutura de madeira para cobertura - Projeto PDF
Exemplo de um projeto de estrutura de madeira para cobertura - Projeto PDF
 
Relatório 2ª lei de newton turma t5
Relatório 2ª lei de newton   turma t5Relatório 2ª lei de newton   turma t5
Relatório 2ª lei de newton turma t5
 
Slides de estatística aplicada
Slides de estatística aplicadaSlides de estatística aplicada
Slides de estatística aplicada
 
Probabilidade e Estatística - Aula 02
Probabilidade e Estatística - Aula 02Probabilidade e Estatística - Aula 02
Probabilidade e Estatística - Aula 02
 
6 propriedades mecanicas (1)
6  propriedades mecanicas (1)6  propriedades mecanicas (1)
6 propriedades mecanicas (1)
 

Destaque

Zero de função
Zero de funçãoZero de função
Zero de função
Herlan Ribeiro de Souza
 
Funções trigonométricas
Funções trigonométricasFunções trigonométricas
Funções trigonométricas
Herlan Ribeiro de Souza
 
Formação de Educadores: Uma Perspectiva Multidimensional
Formação de Educadores: Uma Perspectiva MultidimensionalFormação de Educadores: Uma Perspectiva Multidimensional
Formação de Educadores: Uma Perspectiva Multidimensional
Herlan Ribeiro de Souza
 
Coordenadas cartesianas
Coordenadas cartesianasCoordenadas cartesianas
Coordenadas cartesianas
Herlan Ribeiro de Souza
 
A geometria e a natureza
A geometria e a naturezaA geometria e a natureza
A geometria e a natureza
Herlan Ribeiro de Souza
 
A etnomatemática e a modelagem como possibilidades
A etnomatemática e a modelagem como possibilidadesA etnomatemática e a modelagem como possibilidades
A etnomatemática e a modelagem como possibilidades
Herlan Ribeiro de Souza
 
Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
Herlan Ribeiro de Souza
 
Educação matemática
Educação matemáticaEducação matemática
Educação matemática
Herlan Ribeiro de Souza
 
Função polinomial
Função polinomialFunção polinomial
Função polinomial
Herlan Ribeiro de Souza
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
Herlan Ribeiro de Souza
 
Cálculo numérico
Cálculo numéricoCálculo numérico
Cálculo numérico
Herlan Ribeiro de Souza
 
Equações diferenciais ordinárias
Equações diferenciais ordináriasEquações diferenciais ordinárias
Equações diferenciais ordinárias
Herlan Ribeiro de Souza
 
Sistemas lineares
Sistemas linearesSistemas lineares
Sistemas lineares
Herlan Ribeiro de Souza
 
Compreensão e produção de texto escrito
Compreensão e produção de texto escritoCompreensão e produção de texto escrito
Compreensão e produção de texto escrito
Herlan Ribeiro de Souza
 
Planejamento
PlanejamentoPlanejamento
Arte e tecnologia na escola
Arte e tecnologia na escolaArte e tecnologia na escola
Arte e tecnologia na escola
Herlan Ribeiro de Souza
 
Fonética
FonéticaFonética
II Torneio de Poker CRSSC
II Torneio de Poker CRSSCII Torneio de Poker CRSSC
II Torneio de Poker CRSSC
Joana Forte
 
Livro didático na história da educação brasileira
Livro didático na história da educação brasileiraLivro didático na história da educação brasileira
Livro didático na história da educação brasileira
Herlan Ribeiro de Souza
 

Destaque (20)

Zero de função
Zero de funçãoZero de função
Zero de função
 
Funções trigonométricas
Funções trigonométricasFunções trigonométricas
Funções trigonométricas
 
Formação de Educadores: Uma Perspectiva Multidimensional
Formação de Educadores: Uma Perspectiva MultidimensionalFormação de Educadores: Uma Perspectiva Multidimensional
Formação de Educadores: Uma Perspectiva Multidimensional
 
Coordenadas cartesianas
Coordenadas cartesianasCoordenadas cartesianas
Coordenadas cartesianas
 
A geometria e a natureza
A geometria e a naturezaA geometria e a natureza
A geometria e a natureza
 
A etnomatemática e a modelagem como possibilidades
A etnomatemática e a modelagem como possibilidadesA etnomatemática e a modelagem como possibilidades
A etnomatemática e a modelagem como possibilidades
 
Função do 1º grau
Função do 1º grauFunção do 1º grau
Função do 1º grau
 
Tabela pitagórica
Tabela pitagóricaTabela pitagórica
Tabela pitagórica
 
Educação matemática
Educação matemáticaEducação matemática
Educação matemática
 
Função polinomial
Função polinomialFunção polinomial
Função polinomial
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
 
Cálculo numérico
Cálculo numéricoCálculo numérico
Cálculo numérico
 
Equações diferenciais ordinárias
Equações diferenciais ordináriasEquações diferenciais ordinárias
Equações diferenciais ordinárias
 
Sistemas lineares
Sistemas linearesSistemas lineares
Sistemas lineares
 
Compreensão e produção de texto escrito
Compreensão e produção de texto escritoCompreensão e produção de texto escrito
Compreensão e produção de texto escrito
 
Planejamento
PlanejamentoPlanejamento
Planejamento
 
Arte e tecnologia na escola
Arte e tecnologia na escolaArte e tecnologia na escola
Arte e tecnologia na escola
 
Fonética
FonéticaFonética
Fonética
 
II Torneio de Poker CRSSC
II Torneio de Poker CRSSCII Torneio de Poker CRSSC
II Torneio de Poker CRSSC
 
Livro didático na história da educação brasileira
Livro didático na história da educação brasileiraLivro didático na história da educação brasileira
Livro didático na história da educação brasileira
 

Semelhante a Estatística básica

Medidas de dispersão desviomédio, desvio-padrão e variância.pptx
Medidas de dispersão desviomédio, desvio-padrão e variância.pptxMedidas de dispersão desviomédio, desvio-padrão e variância.pptx
Medidas de dispersão desviomédio, desvio-padrão e variância.pptx
Valquíria Santos
 
Raciocinio logico.pptx
Raciocinio logico.pptxRaciocinio logico.pptx
Raciocinio logico.pptx
IagoBernard1
 
Probabilidade e Estatística - Aula 03
Probabilidade e Estatística - Aula 03Probabilidade e Estatística - Aula 03
Probabilidade e Estatística - Aula 03
Augusto Junior
 
Distribuição normal
Distribuição normalDistribuição normal
Princípios de Estatística Inferencial - I
Princípios de Estatística Inferencial - IPrincípios de Estatística Inferencial - I
Princípios de Estatística Inferencial - I
Federal University of Bahia
 
Aula 07 de estatística
Aula 07 de estatísticaAula 07 de estatística
Aula 07 de estatística
josivaldopassos
 
Confianca Noemi
Confianca NoemiConfianca Noemi
Confianca Noemi
Marco Silva
 
Atps estatistica
Atps estatisticaAtps estatistica
Atps estatistica
alcemirholanda
 
Aula 07 de estatística
Aula 07 de estatísticaAula 07 de estatística
Aula 07 de estatística
josivaldopassos
 
Aula 02 - Análise de dados e probabilidade.pptx
Aula 02 - Análise de dados e probabilidade.pptxAula 02 - Análise de dados e probabilidade.pptx
Aula 02 - Análise de dados e probabilidade.pptx
Joel Júnior
 
Bioestatística
 Bioestatística Bioestatística
Bioestatística
felipethoaldo
 
Estatística e probabilidade - 7 Medidas de Variabilidade
Estatística e probabilidade - 7 Medidas de VariabilidadeEstatística e probabilidade - 7 Medidas de Variabilidade
Estatística e probabilidade - 7 Medidas de Variabilidade
Ranilson Paiva
 
Distribuição Normal
Distribuição NormalDistribuição Normal
Distribuição Normal
Universidade Paulista
 
Desvio padrao e erro padrao
Desvio padrao e erro padraoDesvio padrao e erro padrao
Desvio padrao e erro padrao
thayse cavalcante
 
topico 2_Medidas descritivas.pdf
topico 2_Medidas descritivas.pdftopico 2_Medidas descritivas.pdf
topico 2_Medidas descritivas.pdf
GilvanaCoelhoPenedo1
 
Bioestatística
BioestatísticaBioestatística
Bioestatística
Gilmar Giraldelli
 
econometria
 econometria econometria
econometria
Robertta Karoline
 
Apostila regressao linear
Apostila regressao linearApostila regressao linear
Apostila regressao linear
coelhojmm
 
Doc estatistica _687118434
Doc estatistica _687118434Doc estatistica _687118434
Doc estatistica _687118434
Eliabe Denes
 
A distribuição normal
A distribuição normalA distribuição normal
A distribuição normal
Liliane Ennes
 

Semelhante a Estatística básica (20)

Medidas de dispersão desviomédio, desvio-padrão e variância.pptx
Medidas de dispersão desviomédio, desvio-padrão e variância.pptxMedidas de dispersão desviomédio, desvio-padrão e variância.pptx
Medidas de dispersão desviomédio, desvio-padrão e variância.pptx
 
Raciocinio logico.pptx
Raciocinio logico.pptxRaciocinio logico.pptx
Raciocinio logico.pptx
 
Probabilidade e Estatística - Aula 03
Probabilidade e Estatística - Aula 03Probabilidade e Estatística - Aula 03
Probabilidade e Estatística - Aula 03
 
Distribuição normal
Distribuição normalDistribuição normal
Distribuição normal
 
Princípios de Estatística Inferencial - I
Princípios de Estatística Inferencial - IPrincípios de Estatística Inferencial - I
Princípios de Estatística Inferencial - I
 
Aula 07 de estatística
Aula 07 de estatísticaAula 07 de estatística
Aula 07 de estatística
 
Confianca Noemi
Confianca NoemiConfianca Noemi
Confianca Noemi
 
Atps estatistica
Atps estatisticaAtps estatistica
Atps estatistica
 
Aula 07 de estatística
Aula 07 de estatísticaAula 07 de estatística
Aula 07 de estatística
 
Aula 02 - Análise de dados e probabilidade.pptx
Aula 02 - Análise de dados e probabilidade.pptxAula 02 - Análise de dados e probabilidade.pptx
Aula 02 - Análise de dados e probabilidade.pptx
 
Bioestatística
 Bioestatística Bioestatística
Bioestatística
 
Estatística e probabilidade - 7 Medidas de Variabilidade
Estatística e probabilidade - 7 Medidas de VariabilidadeEstatística e probabilidade - 7 Medidas de Variabilidade
Estatística e probabilidade - 7 Medidas de Variabilidade
 
Distribuição Normal
Distribuição NormalDistribuição Normal
Distribuição Normal
 
Desvio padrao e erro padrao
Desvio padrao e erro padraoDesvio padrao e erro padrao
Desvio padrao e erro padrao
 
topico 2_Medidas descritivas.pdf
topico 2_Medidas descritivas.pdftopico 2_Medidas descritivas.pdf
topico 2_Medidas descritivas.pdf
 
Bioestatística
BioestatísticaBioestatística
Bioestatística
 
econometria
 econometria econometria
econometria
 
Apostila regressao linear
Apostila regressao linearApostila regressao linear
Apostila regressao linear
 
Doc estatistica _687118434
Doc estatistica _687118434Doc estatistica _687118434
Doc estatistica _687118434
 
A distribuição normal
A distribuição normalA distribuição normal
A distribuição normal
 

Mais de Herlan Ribeiro de Souza

Pré-Projeto: Etnomatemática e a Cubagem de Madeira no Município de Jacundá
Pré-Projeto:  Etnomatemática e a Cubagem de Madeira no Município de JacundáPré-Projeto:  Etnomatemática e a Cubagem de Madeira no Município de Jacundá
Pré-Projeto: Etnomatemática e a Cubagem de Madeira no Município de Jacundá
Herlan Ribeiro de Souza
 
A chegada dos portugueses ao brasil
A chegada dos portugueses ao brasilA chegada dos portugueses ao brasil
A chegada dos portugueses ao brasil
Herlan Ribeiro de Souza
 
A água
A águaA água
Olimpíada brasileira de matemática das escolas públicas 2015
Olimpíada brasileira de matemática das escolas públicas 2015Olimpíada brasileira de matemática das escolas públicas 2015
Olimpíada brasileira de matemática das escolas públicas 2015
Herlan Ribeiro de Souza
 
Palestra cap rogério pm
Palestra cap rogério pmPalestra cap rogério pm
Palestra cap rogério pm
Herlan Ribeiro de Souza
 
Projeto: Lúdico e o Tradicional
Projeto: Lúdico e o TradicionalProjeto: Lúdico e o Tradicional
Projeto: Lúdico e o Tradicional
Herlan Ribeiro de Souza
 
Curriculo Herlan Ribeiro de Souza
Curriculo Herlan Ribeiro de SouzaCurriculo Herlan Ribeiro de Souza
Curriculo Herlan Ribeiro de Souza
Herlan Ribeiro de Souza
 
Obmep 2014
Obmep 2014Obmep 2014
Lei orgânica do Município de Jacundá
Lei orgânica do Município de JacundáLei orgânica do Município de Jacundá
Lei orgânica do Município de Jacundá
Herlan Ribeiro de Souza
 
Plano de ação lie 2014
Plano de ação lie 2014Plano de ação lie 2014
Plano de ação lie 2014
Herlan Ribeiro de Souza
 
Razão áurea
Razão áureaRazão áurea
Geometria plana
Geometria planaGeometria plana
Geometria plana
Herlan Ribeiro de Souza
 
Projeto Proinfo
Projeto ProinfoProjeto Proinfo
Projeto Proinfo
Herlan Ribeiro de Souza
 
Fundamentos da educação
Fundamentos da educaçãoFundamentos da educação
Fundamentos da educação
Herlan Ribeiro de Souza
 
Teoria do texto literário
Teoria do texto literárioTeoria do texto literário
Teoria do texto literário
Herlan Ribeiro de Souza
 

Mais de Herlan Ribeiro de Souza (15)

Pré-Projeto: Etnomatemática e a Cubagem de Madeira no Município de Jacundá
Pré-Projeto:  Etnomatemática e a Cubagem de Madeira no Município de JacundáPré-Projeto:  Etnomatemática e a Cubagem de Madeira no Município de Jacundá
Pré-Projeto: Etnomatemática e a Cubagem de Madeira no Município de Jacundá
 
A chegada dos portugueses ao brasil
A chegada dos portugueses ao brasilA chegada dos portugueses ao brasil
A chegada dos portugueses ao brasil
 
A água
A águaA água
A água
 
Olimpíada brasileira de matemática das escolas públicas 2015
Olimpíada brasileira de matemática das escolas públicas 2015Olimpíada brasileira de matemática das escolas públicas 2015
Olimpíada brasileira de matemática das escolas públicas 2015
 
Palestra cap rogério pm
Palestra cap rogério pmPalestra cap rogério pm
Palestra cap rogério pm
 
Projeto: Lúdico e o Tradicional
Projeto: Lúdico e o TradicionalProjeto: Lúdico e o Tradicional
Projeto: Lúdico e o Tradicional
 
Curriculo Herlan Ribeiro de Souza
Curriculo Herlan Ribeiro de SouzaCurriculo Herlan Ribeiro de Souza
Curriculo Herlan Ribeiro de Souza
 
Obmep 2014
Obmep 2014Obmep 2014
Obmep 2014
 
Lei orgânica do Município de Jacundá
Lei orgânica do Município de JacundáLei orgânica do Município de Jacundá
Lei orgânica do Município de Jacundá
 
Plano de ação lie 2014
Plano de ação lie 2014Plano de ação lie 2014
Plano de ação lie 2014
 
Razão áurea
Razão áureaRazão áurea
Razão áurea
 
Geometria plana
Geometria planaGeometria plana
Geometria plana
 
Projeto Proinfo
Projeto ProinfoProjeto Proinfo
Projeto Proinfo
 
Fundamentos da educação
Fundamentos da educaçãoFundamentos da educação
Fundamentos da educação
 
Teoria do texto literário
Teoria do texto literárioTeoria do texto literário
Teoria do texto literário
 

Último

Matemática para Concursos - Teoria dos Conjuntos
Matemática para Concursos - Teoria dos ConjuntosMatemática para Concursos - Teoria dos Conjuntos
Matemática para Concursos - Teoria dos Conjuntos
Instituto Walter Alencar
 
Escola de Especialistas de Aeronáutica (EEAR).pdf
Escola de Especialistas de Aeronáutica (EEAR).pdfEscola de Especialistas de Aeronáutica (EEAR).pdf
Escola de Especialistas de Aeronáutica (EEAR).pdf
Falcão Brasil
 
Noite Alva! José Ernesto Ferraresso.ppsx
Noite Alva! José Ernesto Ferraresso.ppsxNoite Alva! José Ernesto Ferraresso.ppsx
Noite Alva! José Ernesto Ferraresso.ppsx
Luzia Gabriele
 
Uma Breve História da Origem, Formação e Evolução da Terra
Uma Breve História da Origem, Formação e Evolução da TerraUma Breve História da Origem, Formação e Evolução da Terra
Uma Breve História da Origem, Formação e Evolução da Terra
Luiz C. da Silva
 
O processo da farinhada no Assentamento lagoa de Dentro, Zona Rural de Várzea...
O processo da farinhada no Assentamento lagoa de Dentro, Zona Rural de Várzea...O processo da farinhada no Assentamento lagoa de Dentro, Zona Rural de Várzea...
O processo da farinhada no Assentamento lagoa de Dentro, Zona Rural de Várzea...
AntHropológicas Visual PPGA-UFPE
 
FILMES DE ABRIL_BECRE D. CARLOS I_2023_24
FILMES DE ABRIL_BECRE D. CARLOS I_2023_24FILMES DE ABRIL_BECRE D. CARLOS I_2023_24
FILMES DE ABRIL_BECRE D. CARLOS I_2023_24
Sandra Pratas
 
Guerra de reconquista da Península ibérica
Guerra de reconquista da Península ibéricaGuerra de reconquista da Península ibérica
Guerra de reconquista da Península ibérica
felipescherner
 
Slide para aplicação da AVAL. FLUÊNCIA.pptx
Slide para aplicação  da AVAL. FLUÊNCIA.pptxSlide para aplicação  da AVAL. FLUÊNCIA.pptx
Slide para aplicação da AVAL. FLUÊNCIA.pptx
LeilaVilasboas
 
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdfA Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
Falcão Brasil
 
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptxSlides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
LuizHenriquedeAlmeid6
 
EBBOK_HORA DO CONTO_O SONHO DO EVARISTO_PAULA FRANCISCO_22_23
EBBOK_HORA DO CONTO_O SONHO DO EVARISTO_PAULA FRANCISCO_22_23EBBOK_HORA DO CONTO_O SONHO DO EVARISTO_PAULA FRANCISCO_22_23
EBBOK_HORA DO CONTO_O SONHO DO EVARISTO_PAULA FRANCISCO_22_23
Sandra Pratas
 
Portfólio Estratégico da Marinha do Brasil (MB).pdf
Portfólio Estratégico da Marinha do Brasil (MB).pdfPortfólio Estratégico da Marinha do Brasil (MB).pdf
Portfólio Estratégico da Marinha do Brasil (MB).pdf
Falcão Brasil
 
Desafio matemático - multiplicação e divisão.
Desafio matemático -  multiplicação e divisão.Desafio matemático -  multiplicação e divisão.
Desafio matemático - multiplicação e divisão.
Mary Alvarenga
 
Marinha do Brasil (MB) Politíca Naval.pdf
Marinha do Brasil (MB) Politíca Naval.pdfMarinha do Brasil (MB) Politíca Naval.pdf
Marinha do Brasil (MB) Politíca Naval.pdf
Falcão Brasil
 
EMOCIONES PARA TRABAJAR EN LA AREA SOCIOEMOCIONAL
EMOCIONES PARA TRABAJAR EN LA AREA SOCIOEMOCIONALEMOCIONES PARA TRABAJAR EN LA AREA SOCIOEMOCIONAL
EMOCIONES PARA TRABAJAR EN LA AREA SOCIOEMOCIONAL
JocelynNavarroBonta
 
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Centro Jacques Delors
 
EBOOK_HORA DO CONTO_O SONHO DO EVARISTO_RITA E CLÁUDIA_22_23
EBOOK_HORA DO CONTO_O SONHO DO EVARISTO_RITA E CLÁUDIA_22_23EBOOK_HORA DO CONTO_O SONHO DO EVARISTO_RITA E CLÁUDIA_22_23
EBOOK_HORA DO CONTO_O SONHO DO EVARISTO_RITA E CLÁUDIA_22_23
Sandra Pratas
 
Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024
Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024
Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024
principeandregalli
 

Último (20)

Matemática para Concursos - Teoria dos Conjuntos
Matemática para Concursos - Teoria dos ConjuntosMatemática para Concursos - Teoria dos Conjuntos
Matemática para Concursos - Teoria dos Conjuntos
 
Escola de Especialistas de Aeronáutica (EEAR).pdf
Escola de Especialistas de Aeronáutica (EEAR).pdfEscola de Especialistas de Aeronáutica (EEAR).pdf
Escola de Especialistas de Aeronáutica (EEAR).pdf
 
Noite Alva! José Ernesto Ferraresso.ppsx
Noite Alva! José Ernesto Ferraresso.ppsxNoite Alva! José Ernesto Ferraresso.ppsx
Noite Alva! José Ernesto Ferraresso.ppsx
 
Uma Breve História da Origem, Formação e Evolução da Terra
Uma Breve História da Origem, Formação e Evolução da TerraUma Breve História da Origem, Formação e Evolução da Terra
Uma Breve História da Origem, Formação e Evolução da Terra
 
O processo da farinhada no Assentamento lagoa de Dentro, Zona Rural de Várzea...
O processo da farinhada no Assentamento lagoa de Dentro, Zona Rural de Várzea...O processo da farinhada no Assentamento lagoa de Dentro, Zona Rural de Várzea...
O processo da farinhada no Assentamento lagoa de Dentro, Zona Rural de Várzea...
 
RECORDANDO BONS MOMENTOS! _
RECORDANDO BONS MOMENTOS!               _RECORDANDO BONS MOMENTOS!               _
RECORDANDO BONS MOMENTOS! _
 
FILMES DE ABRIL_BECRE D. CARLOS I_2023_24
FILMES DE ABRIL_BECRE D. CARLOS I_2023_24FILMES DE ABRIL_BECRE D. CARLOS I_2023_24
FILMES DE ABRIL_BECRE D. CARLOS I_2023_24
 
Guerra de reconquista da Península ibérica
Guerra de reconquista da Península ibéricaGuerra de reconquista da Península ibérica
Guerra de reconquista da Península ibérica
 
Slide para aplicação da AVAL. FLUÊNCIA.pptx
Slide para aplicação  da AVAL. FLUÊNCIA.pptxSlide para aplicação  da AVAL. FLUÊNCIA.pptx
Slide para aplicação da AVAL. FLUÊNCIA.pptx
 
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdfA Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
 
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptxSlides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
 
FOTOS_AS CIÊNCIAS EM AÇÃO .
FOTOS_AS CIÊNCIAS EM AÇÃO                .FOTOS_AS CIÊNCIAS EM AÇÃO                .
FOTOS_AS CIÊNCIAS EM AÇÃO .
 
EBBOK_HORA DO CONTO_O SONHO DO EVARISTO_PAULA FRANCISCO_22_23
EBBOK_HORA DO CONTO_O SONHO DO EVARISTO_PAULA FRANCISCO_22_23EBBOK_HORA DO CONTO_O SONHO DO EVARISTO_PAULA FRANCISCO_22_23
EBBOK_HORA DO CONTO_O SONHO DO EVARISTO_PAULA FRANCISCO_22_23
 
Portfólio Estratégico da Marinha do Brasil (MB).pdf
Portfólio Estratégico da Marinha do Brasil (MB).pdfPortfólio Estratégico da Marinha do Brasil (MB).pdf
Portfólio Estratégico da Marinha do Brasil (MB).pdf
 
Desafio matemático - multiplicação e divisão.
Desafio matemático -  multiplicação e divisão.Desafio matemático -  multiplicação e divisão.
Desafio matemático - multiplicação e divisão.
 
Marinha do Brasil (MB) Politíca Naval.pdf
Marinha do Brasil (MB) Politíca Naval.pdfMarinha do Brasil (MB) Politíca Naval.pdf
Marinha do Brasil (MB) Politíca Naval.pdf
 
EMOCIONES PARA TRABAJAR EN LA AREA SOCIOEMOCIONAL
EMOCIONES PARA TRABAJAR EN LA AREA SOCIOEMOCIONALEMOCIONES PARA TRABAJAR EN LA AREA SOCIOEMOCIONAL
EMOCIONES PARA TRABAJAR EN LA AREA SOCIOEMOCIONAL
 
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
 
EBOOK_HORA DO CONTO_O SONHO DO EVARISTO_RITA E CLÁUDIA_22_23
EBOOK_HORA DO CONTO_O SONHO DO EVARISTO_RITA E CLÁUDIA_22_23EBOOK_HORA DO CONTO_O SONHO DO EVARISTO_RITA E CLÁUDIA_22_23
EBOOK_HORA DO CONTO_O SONHO DO EVARISTO_RITA E CLÁUDIA_22_23
 
Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024
Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024
Guia Genealógico da Principesca e Ducal Casa de Mesolcina, 2024
 

Estatística básica

  • 1. MEDIDAS DE DISPERSÃO Medidas de tendência central fornecem um resumo parcial das informações de um conjunto de dados. A necessidade de uma medida de variação é aparente, para que nos permita, por exemplo, comparar conjuntos diferentes de valores. Algumas característica desta medida devem ser atendidos como veremos a seguir.
  • 2. MEDIDAS DE DISPERSÃO Amostragem A: 8, 8, 9, 10, 11, 12, 12 Média 10; Mediana 10 e Bimodal (8, 12) Amostragem B: 5, 6, 8, 10, 12, 14, 15 Média 10; Mediana 10 e sem Moda Amostragem C: 1, 2, 5, 10, 15, 18, 19 Média 10; Mediana 10 e sem Moda As medidas de tendência central pouco ou nada informam a respeito da dispersão dos dados O conceito de medida de dispersão é relativamente difícil. O quanto informativo é dizer que as três amostragens possuem dispersão 4, 10 e 18 (Y7-Y1)?
  • 3. MEDIDAS DE DISPERSÃO Amostragem D: 8, 9, 10, 10, 10, 11, 12 Média 10; Mediana 10 e Modal 10 Amostragem E: 5, 7, 9, 10, 11, 13, 15 Média 10; Mediana 10 e sem Moda Amostragem F:1, 5, 8, 10, 12, 15, 19 Média 9; Mediana 10 e sem Moda Estes três conjuntos de dados também possuem dispersão máxima igual a 4, 10 e 18, respectivamente. As amostras A, B e C apresentam um maior número de observações mais distantes da média, enquanto nas amostras D, E e F ocorre um maior número de observações concentradas em torno da média. Torna-se interessante que haja uma definição a qual use todas as observações e que seja um pequeno valor quando as observações se aproximam da média e grande quando estas são espaçadas.
  • 4. MEDIDAS DE DISPERSÃO Por fim considere os dados destas duas amostras: Amostra A: 5, 6, 8, 10, 12, 14, 15 Amostra B: 105, 106, 108, 110, 112, 114, 115 A dispersão (Y7-Y1) é igual nas duas amostra e, portanto, independe do tamanho dos números.
  • 5. MEDIDAS DE DISPERÇÃO O critério geralmente utilizado é aquele que mede a concentração dos dados em torno da média, e algumas medidas são as mais usadas: desvio médio, variância, desvio padrão e Coeficiente de Variação. Ex: 3, 4, 5, 6, 7 (média 5), os desvios xi-x, são: -2, -1, 0, 1 ,2. 1, 3, 5, 7, 9 (média 5), os desvios xi-x, são: -4, -2, 0, 2, 4. É fácil observar que a soma dos desvios é igual a zero, o que torna inviável esta medida. As opções são: a)Considerar o total dos desvios em valor absoluto (módulo) ou, b)Considerar o total dos quadrados dos desvios. Assim teríamos: Para a amostra: 3, 4, 5, 6, 7 = 2 + 1 + 0 + 1 + 2 = 6 (a) 2 = 4 + 1 + 0 + 1 + 4 = 10 (b) xixn i i −∑= 5 1 ( )xixn i i −∑= 5 1
  • 6. DESVIO MÉDIO O desvio médio (DM) refere-se à média dos desvio em valor absoluto, como na fórmula a seguir, aplicada a amostra 3, 4, 5, 6, 7. DM(x) = /n , usando o exemplo anterior DM(x) = 6/5 = 1,2 Para a amostra 1, 3, 5, 7, 9 teríamos: DM(x) = /n , DM(x) = 12/5 = 2.4 Baseado nos dados, pode-se dizer que a primeira amostra é mais homogênea. xixn i i −∑= 5 1 xixn i −∑= 5 1 1
  • 7. VARIÂNCIA A medida que contempla os aspectos apresentados e que é mais utilizada é a Variância. A variância é representada por dois símbolos: σ2 (letra grega sigma) para população e s2 para uma amostra. As fórmulas para a variância da população e da amostra são apresentadas abaixo. População: σ2 = 2 /n Amostra: s2 = 2 /n-1, O denominador n-1 tem o propósito de tornar a variância da amostra a estimativa da variância da população. N-1 é conhecido como grau de liberdade e refere-se ao número de somas independentes lineares numa soma de quadrados. A variância é uma medida que expressa um desvio quadrático médio. A unidade da variância é portanto o quadrado dos dados originais. Ex: para dados expressos em centímetros a variância será expressa em centímetros quadrados. ( )µ−∑= k i i ixn 1 ( )xixn k i i −∑=1
  • 8. VARIÂNCIA Para as amostras 3, 4, 5, 6, 7 e 1, 3, 5, 7, 9 As variâncias seriam: S1 2 = (3-5)2 + (4-5)2 +(5-5)2 + (6-5)2 + (7-5)2 /4 S1 2 =2,5 S2 2 = (1-5)2 +(3-5)2 +(5-5)2 +(7-5)2 +(9-5)2 /4 S2 2 =10 A amostra 3, 4, 5, 6, 7 é mais homogênea.
  • 9. VARIÂNCIA Média = (0*4)+(1*5)+(2*7)+(3*3)+(5*1))/20=1,65 DM(x) = 4*(0-1,65) + 5* (1-1,65) + 7* (2-1,65) + 3* (3-1,65) + 1* (5-1,65)/20 = 0,98 Variância S2 = 4*(-1,65)2 + 5* (-0,65)2 + 7* (0,35)2 + 3* (1,35)2 + 1* (3,35)2 /19 = 1,6
  • 10. DESVIO PADRÃO Sendo a variância uma medida que expressa um desvio quadrático médio, esta pode causar alguns problemas de interpretação. Para evitar isto, costuma-se usar o desvio padrão, que é definido como a raiz quadrada positiva da variância. Desta forma, tem-se uma medida de variabilidade expressa na mesma unidade dos valores do conjunto de dados. O desvio padrão (σ, para população e s para amostras) pode ser calculado através das seguintes fórmulas: σ= e s = O DESVIO PADRÃO DAS AMOSTRAS 3, 4, 5, 6, 7 e 1, 3, 5, 7, 9 seria: S1= =1,58 S2= =3,16 ( ) ∑ −k i n xin 1 2 µ ( ) ∑ − −k i n xxin 1 2 1 5,2 10
  • 11. COEFICIENTE DE VARIAÇÃO A variação ou dispersão real, determinada a partir do desvio padrão, ou qualquer outra medida de dispersão, é denominada dispersão absoluta. Entretanto, uma variação ou dispersão de 10 cm, na medida de uma distância de 1.000 m, é inteiramente diferente, quanto ao efeito, da mesma variação em uma distância de 20 cm. A medida desse efeito é proporcionada pela dispersão relativa, definida por: Dispersão relativa = Dispersão absoluta/média Se a dispersão absoluta é o desvio padrão s e a média é a aritmética, a dispersão relativa é denominada Coeficiente de Variação ou de Dispersão. CV= − x s 100∗
  • 12. COEFICIENTE DE VARIAÇÃO O coeficiente de variação é geralmente expresso em percentagem. O C.V. é independente das unidades adotadas. Por essa razão, é vantajosa para a comparação de distribuições cujas unidades podem ser diferentes. Uma desvantagem do C.V. é que ele deixa de ser útil quando a média esta próximo de zero. Baixa dispersão: CV ≤ 15% Média dispersão: CV 15-30% Alta dispersão: CV ≥ 30%
  • 13. ERRO PADRÃO DA MÉDIA (Sx) Quando se obtém uma amostra aleatória de tamanho n, estima-se a média populacional. É bastante intuitivo supor que se uma nova amostra aleatória for realizada a estimativa obtida será diferente daquela primeira. Desta forma, reconhece-se que as médias amostrais estão sujeitas à variação e formam populações de médias amostrais, quando todas as possíveis amostras são retiradas de uma população. O erro padrão analisa a variabilidade de uma média
  • 14. Erro padrão Fornece um mecanismo de medir a precisão com que a média populacional foi estimada n S Sx =
  • 15. Exercícios Dada a tabela abaixo, calcule: Desvio médio, Variância, Desvio padrão, Coeficiente de variação e erro padrão da média 33 35 35 39 41 41 42 45 47 48 50 52 53 54 55 55 57 59 60 60 61 64 65 65 65 66 66 66 67 68 69 71 73 73 74 74 76 77 77 78 80 81 84 85 85 88 89 91 94 97