SlideShare uma empresa Scribd logo
1 de 50
Baixar para ler offline
Questões resolvidas para
preparação SIMAVE/PROEB
           2011

 Matemática do 3º ano Ensino Médio


           Prof. Idelma
           23/11/2011
Resolução:
Pelo teorema de Tales temos o
triângulo BGE ≈ CGD.
Então, fazemos: x/8 = 10/10
                 x = 8 (alt D)
                                 2
Resolução:
Temos a fórmula d² = a² + b² + c²
Então fica d² = 6² + 3² + 4²
            d² = 36 + 9 + 16
            d² = 61
            d = √61 (alt E)         3
Resolução:
Duas bases iguais é prisma.
Como as bases são hexagonais,
é um prisma de base hexagonal
(alt B)



                                4
Resolução:
Pela relação de Euler encontramos o
número de vértices:
F+V=A+2
7 + V = 15 + 2
V = 10
Como são 3 parafusos em cada vértice,
então são 3 x 10 = 30 (alt D)




                                        5
Resolução:
Para o ângulo de 15° temos x como o cateto oposto e 24 como o
cateto adjacente.
Portanto usaremos a fórmula da tangente:
Tg 15° = x/24
0,26 = x/24
x = 0,26 x 24
x = 6,24
 (alt A)
                                                    6
Resolução:
Todo par ordenado é do tipo (x,y). Então a
A tem coordenadas (3,4) : (alt C)

                                             7
Resolução:
Para uma reta ser paralela aos eixos x ou y, é necessário faltar y ou x,
respectivamente. Portanto as alternativas A e B estão descartadas.
O coeficiente angular (a) é do tipo y = ax + b. Então:
2y = - x
y = - x/2
a = -1/2 : (alt C)
                                                       8
Resolução:
Uma forma prática de encontrar a equação
é pelo determinante, que é igual a ZERO.
Faz-se:

     x    y   1
D=
     3 5      1

    4 -2 1
5 x + 4 y – 6 – 20 – 3y + 2 x = 0
7x + y – 26 = 0
y = - 7x + 26

(alt A)
                           9
Resolução:
Resolvendo o sistema de equações pelo
                                               Para encontrar o
método da substituição vem:
                                               x vamos
Eq. I:                x+3y–1=0
                                               substituir o valor
Isolando o x temos: x = 1 - 3y
                                               de y na eq. I:
Substituindo a x por 1 – 3y na eq. II temos:
                                               X = 1 – 3.1
                      1–3y–y+3=0
                                               X=1–3
                      -4y+4=0
                                               X = -2
                      y=-4/-4
                      y=1
                                               Logo, P(-2, 1)
A única alternativa que tem y = 1 é a B.
                                                    10
Resolução:
A equação da circunferência é do tipo:
r² = (x – a)² + (y – b)², que desenvolvida fica assim:
r² = x² – 2ax + a² + y² – 2by + b²
x² + y² – 2ax – 2by + a² + b² – r² = 0
Por análise, descartamos as alternativas B, D e E, visto
que temos nelas o oposto de y². E na alternativa C
temos o r² = -16, que é impossível de resolver no
conjunto dos reais. Logo,a alternativa correta é (A).
Desenvolvendo a alternativa A por comparação, temos:
x² – 2x + 1 + y² – 25 = 0
-2 x = -2ax ↔ a = 1
b=0
E a² + b² – r² = - 25
1² + 0² – r² = - 25
- r² = - 25
r² = 25
r=5.

                                   11
Resolução:
Note que foi acrescentado ao perímetro apenas os
recortes fora das árvores, que para cada uma é
2 m + 2 m.
Temos 4 vértices da figura original, então o
acréscimo foi de 4 x 4 = 16 m.
Somando o perímetro antigo ao que será
acrescentado fica 24 + 16 = 40 m (alt D)
                            12
Resolução:
Vou calcular a área cinza excluindo as partes
brancas da área total.
AT = 40 x 40 = 1600 cm²
Área dos triângulos brancos:
A = 4. b. h/2
A = 4x20x20/2 = 4x200 = 800
Área dos 4 arcos (formam um círculo):
A = π . r² = 3,14 x 10² = 3,14 x 100 = 314 cm²

Área cinza = 1600 – 800 – 314 = 486 (alt C)




                     13
Resolução:
Se o pote tem 12 cm de altura e foi colocado água até
a altura de 8 cm, sobra 4 cm, que é a altura ocupada
pelas bolas de gude.
Seu volume será:
V = π . 4². 4 = π 16 . 4 = 64 π
 (alt C)




                                14
Resolução:
Multiplicando dois números decimais
teremos um número centesimal.
Veja:
0,2 x 0,8 = 0, 16 (que está antes de 0,2)
0,3 x 0,7 = 0,21 (que está antes de 0,3)
0,4 x 0,6 = 0, 24 (que está antes de 0,4)
Por dedução o produto xy está entre 0 e x:
(alt B).



                    15
Resolução:
Podemos assim resolver:
7 partes + 11 partes = 18 partes
180 / 18 = 10 reais por cada parte.
Então o filho mais novo recebe 7 x 10 = 70 reais e o
mais velho 11 x 10 = 110 reais. (alt A)

                                          16
Resolução:
70% de 1000 = 0,7 x 1000 = 700 pessoas que bebem café.
44% de 700 = 0,44 x 700 = 308 mulheres bebem café.
Logo, são 700 – 308 = 392 homens que bebem café. (alt C)




                                                   17
Resolução:
O terreno mede 10 x 12 = 120 m².
A faixa para o caminho medirá 120 – 80 = 40 m² de área.
Podemos calcular a largura através da área:
Comprimento do terreno x largura do caminho + Largura do terreno x largura do caminho – a sobreposição de uma faixa
sobre a outra = 40 m²
12x + 10x – x² = 40
- x² + 22 x – 40 = 0
Resolvendo por Báskara encontramos as raízes 2 e 20. A medida possível é 2 m de
largura. (alt C)                                             18
Resolução:
Analisando a situação, é uma função afim e
temos como indenização i = 450 o coeficiente
fixo b. As demais indenizações acrescentam-
se 500 a cada ano trabalhado, que é o
coeficiente angular a.
Então a função é
i = 450 + 500 t (alt B)



                               19
Resolução:
Montando a função onde C é o custo e x o nº de peças fabricadas, temos:
C = 1500 + 10x
Substituindo C por 3200:
3200 = 1500 + 10x
3200 – 1500 = 10x
10x = 1700
x = 170 (alt D)




                                                       20
Resolução:
De 0 às 4 h a temperatura é constante.
Das 4 às 12 h a temperatura eleva-se.
Das 12 às 16 h a temperatura permanece a mesma.
De 16 às 24 h a temperatura cai.
Portanto, a alt. C é a correta.
                                                  21
Resolução:
No eixo y verificamos que
Luizinho saiu 20 m a frente
de Pedrão nas alternativas
B, C, D e E.
Somente os gráficos B e C
mostram Pedrão
ultrapassando Luizinho.
Mas é o gráfico B que
mostra Pedrão chegando
em menor tempo.




    22
Resolução:
Como o problema já forneceu a fórmula da quantia poupada, é só
substituir os valores nela.
a12 = 30 + (12-1) . 5
a12 = 30 + 11.5
A12 = 30 + 55 = 85 (alt E)




                                                     23
Resolução:
P(0) = 35; isso exclui as
altertnativas D e E.
P(10) = -(1/2)10 + 35 = 30;
isso exclui as alternativas B e
C. Resta a alternativa A.

      24
Resolução:
Através do gráfico conseguimos os pares ordenados
(2, 3) e (4, 1). Resolvendo pelo determinante temos:

 x y    1
 2 3    1     = 0 → 3x + 4y + 2 – 12 – 2y – x = 0
 4 1    1
              2x + 2y – 10 = 0; que simplificada por 2 fica:
 .            x + y – 5 = 0. (alt B)
                                      25
Resolução:
 Na funçao do 2° grau, quando a
concavidade é voltada para baixo o vértice
é chamado ponto de máximo e esse tem
coordenadas (2, 1) ; alt D.
                                             26
Resolução:
Podemos efetuar a multiplicação distributiva e resolver
a equação do 2° grau ou simplesmente fazer
x–3=0→x=3
x + 1 = 0 → x = -1

Logo, as raízes são 3 e -1. (alt B)




                                  27
Resolução:
A função exponencial tem o
expoente variável (x).
Faça
(0,1)0 = 1 e (0,1)¹ = 0,1 perceba
que os valores de x aumentaram e
y diminuiram.
100 = 1 e 10¹ = 10 verifique que os
valores de x e de y aumentaram
(alt D)




                    28
Resolução:
A alt. A está incorreta pois o
grafico da função do 1º grau é
uma reta.
A alt. B está incorreta pois o
gráfico da função do 2º grau é
uma parábola.
A alt. C é uma função
logarítmica e está correta, pois
2¹ =2 e 2² = 4, onde a base é 2,
o expoente é y e a potência é x.
       29
Resolução:
400 = 25. 2 t
400/25 = 2 t
2 t = 16
2t = 24
t= 4 horas
(alt C)



                30
Resolução:
Lembre-se dos valores
Cos 0° = 1; cos 45° = √2/2= 1,4/2 = 0,7; cos 90° = 0
Com esses valores já excluímos A, C e E.
O gráfico D também é excluído pois as unidades de
x são desconhecidas.
Logo, a alternativa correta é B.

                             31
Resolução:
A matriz tem a 1ª coluna com elementos x, a
2ª coluna elementos y, a 3ª coluna com
elementos z e a 4ª coluna os termos
independentes. (alt C)



                     32
Resolução:
Em análise combinatória, essa situação é arranjo, pois a ordem das
premiações faz diferença.
A maneira prática de calcular é multiplicar tantos fatores que for o p
(neste caso é 3) em ordem decrescente, partindo do n (que é 7). Veja:
A7,3 = 7 x 6 x 5 = 210 possibilidades. (alt D)




                                                          33
Resolução:
O número do elementos do espaço amostral é 6, pois o dado tem 6
faces.
O número de elementos do evento é 2, pois o evento tem apenas os
números 4 e 6.
p = 2/6
p = 1/3 (alt B)




                                                     34
Resolução:
Basta procurar na tabela a coluna Nordeste. Os
dados já estão em porcentagem.
Alugado + cedido = 9,8 + 12,7 = 22,5 % (alt C)
                                     35
36
Resolução:
O gráfico que representa a tabela acima é a letra
A, pois mostra o aumento da profundidade de
forma lenta e depois um pouco mais acelerada.

                               37
Resolução:
Total de estudantes: 400 + 800 = 1200
Sexo feminino: 800
p = 800/1200
p = 8/12
p = 2/3 (alt E)




                           38
Resolução:
Volume do cilindro = π. R² . h
Como as alturas são iguais e o π também,
podemos simplificar a razão V2/V1 assim:
6²/3³ = 36/6 = 4 vezes maior. (alt C)




                           39
Resolução:
Observando os pontos cardeais, podemos
perceber que a direção Sul e a Leste são
ortogonais (formam entre si um ângulo de
90°).
Portanto podemos formar um triângulo
retângulo, onde a distância é a hipotenusa e
vamos utilizar o Teorema de Pitágoras:
D² = 12² + 5²
D² = 144 + 25
D² = 169
D² = 13²
D = 13 m
 (alt B)
                          40
Resolução:
Em análise combinatória, esse é um caso de
arranjo.
A 6, 2 = 6.5 = 30 maneiras. (alt D)




                             41
Ao passar sua mão direita por todos os vértices e arestas de um poliedro, somente uma
vez, um deficiente visual percebe que passou por 8 vértices e 12 arestas.
Conclui-se que o número de faces desse poliedro é igual a

(A) 20.
(B) 12.                 Resolução:
(C) 8.                  Usando a Relação de Euler, temos
(D) 6.                  V+F=A+2
(E) 4.                  8 + F = 12 + 2
                        F = 14 – 8
                        F = 6. (alt D)




                                                              42
Resolução:
Simplificando o polinômio por 5 temos:
X² + x – 6 = 0
Resolvendo a equação do 2º grau
encontramos as raízes -3 e 2.
Fazemos
x = -3
x+3=0e
x =2
x– 2 = 0
Então representamos o polinômio por
5(x + 3)(x – 2), que é alt. B
.
                            43
Resolução:
4 km é o cateto oposto ao ângulo de
60° e o cateto adjacente a 60° é a
distância a ser encontrada para ser
somada com 4 km.
Usaremos tg 60° = 4/x
√3 = 4/x
X = 4/√3
X = 4√3/3 km
Logo, a distância é 4 + 4√3/3.
(alt C)
                     44
Resolução:
Usando dois pontos, escolhi (10, 55) e
(20, 60).
Resolvendo pelo determinante cheguei a
55q + 600 = 20C – 60q – 1100 – 10C = 0
-5q – 500 + 10C = 0
Dividindo por 10 fica:
-1/2 q – 50 + C = 0
C = ½ q + 50, que é a alt. D


                        45
Resolução:
Basta observar a reta numerada. A equipe masculina
fica em -55 e a feminina em + 45. (alt D)


                                    46
Resolução:
Basta fazer t =0 e
encontramos V = 0. O
único gráfico que
corresponde a isso é o
da alt. C.


47
Resolução:
A única alternativa com base
circular é a D.




                               48
(A) y = − cos x .
                        Resolução: Notamos nesta tabela, que não
(B) y = cos .x/2.
                        pertence ao problema, que os valores de
(C) y = sen ( − x ) .   seno são opostos aos do gráfico, então a
(D) y = sen 2 x .       função é y = sen(-x).
                        (alt C)
(E) y = 2 sen x .       .


                                            49
Resolução:
Às 23 horas ele está na
toca. Portanto, às 18 h ele
está mais longe. (alt A)

      50

Mais conteúdo relacionado

Mais procurados

Exercicios de porcentagem
Exercicios de porcentagemExercicios de porcentagem
Exercicios de porcentagemRoberto Sena
 
Lista de relações métricas no triangulo retângulo
Lista de  relações métricas no triangulo retânguloLista de  relações métricas no triangulo retângulo
Lista de relações métricas no triangulo retânguloRosana Santos Quirino
 
Mat geometria figuras geometricas
Mat geometria figuras geometricasMat geometria figuras geometricas
Mat geometria figuras geometricastrigono_metrico
 
Lista de Exercícios 1 – Regra de Três
Lista de Exercícios 1 – Regra de TrêsLista de Exercícios 1 – Regra de Três
Lista de Exercícios 1 – Regra de TrêsEverton Moraes
 
Lista de Exercícios – Divisores
Lista de Exercícios – DivisoresLista de Exercícios – Divisores
Lista de Exercícios – DivisoresEverton Moraes
 
Simulado olimpiadas 2
Simulado olimpiadas 2Simulado olimpiadas 2
Simulado olimpiadas 2edmildo
 
Lista de relações métricas no triangulo retângulo
Lista de  relações métricas no triangulo retânguloLista de  relações métricas no triangulo retângulo
Lista de relações métricas no triangulo retânguloRosana Santos Quirino
 
SIMULADO 1 - MATEMÁTICA
SIMULADO 1 - MATEMÁTICA SIMULADO 1 - MATEMÁTICA
SIMULADO 1 - MATEMÁTICA Mary Alvarenga
 
Exercicio De ProporçãO Com Gabarito
Exercicio De ProporçãO Com GabaritoExercicio De ProporçãO Com Gabarito
Exercicio De ProporçãO Com Gabaritoguesta4929b
 
160 exercicios concordância e verbal pg27
160 exercicios concordância e verbal pg27160 exercicios concordância e verbal pg27
160 exercicios concordância e verbal pg27kisb1337
 
sSimulado de matemática 5º ano novembro
sSimulado de matemática   5º ano novembrosSimulado de matemática   5º ano novembro
sSimulado de matemática 5º ano novembroCASA-FACEBOOK-INSTAGRAM
 
Exercicios funcao quimica_organica
Exercicios funcao quimica_organicaExercicios funcao quimica_organica
Exercicios funcao quimica_organicaLuciano Nogueira
 

Mais procurados (20)

Exercicios de porcentagem
Exercicios de porcentagemExercicios de porcentagem
Exercicios de porcentagem
 
Lista de relações métricas no triangulo retângulo
Lista de  relações métricas no triangulo retânguloLista de  relações métricas no triangulo retângulo
Lista de relações métricas no triangulo retângulo
 
Mat geometria figuras geometricas
Mat geometria figuras geometricasMat geometria figuras geometricas
Mat geometria figuras geometricas
 
D1 (5º ano mat.)
D1 (5º ano   mat.)D1 (5º ano   mat.)
D1 (5º ano mat.)
 
Lista de Exercícios 1 – Regra de Três
Lista de Exercícios 1 – Regra de TrêsLista de Exercícios 1 – Regra de Três
Lista de Exercícios 1 – Regra de Três
 
D3 (5º ano mat.)
D3  (5º ano   mat.)D3  (5º ano   mat.)
D3 (5º ano mat.)
 
Lista de Exercícios – Divisores
Lista de Exercícios – DivisoresLista de Exercícios – Divisores
Lista de Exercícios – Divisores
 
Numeros decimais
Numeros decimaisNumeros decimais
Numeros decimais
 
Provas do 9º
Provas do 9ºProvas do 9º
Provas do 9º
 
D4 (5º ano mat.)
D4 (5º ano   mat.)D4 (5º ano   mat.)
D4 (5º ano mat.)
 
Trabalho 2 bim 2012
Trabalho 2 bim 2012Trabalho 2 bim 2012
Trabalho 2 bim 2012
 
Simulado olimpiadas 2
Simulado olimpiadas 2Simulado olimpiadas 2
Simulado olimpiadas 2
 
Lista de relações métricas no triangulo retângulo
Lista de  relações métricas no triangulo retânguloLista de  relações métricas no triangulo retângulo
Lista de relações métricas no triangulo retângulo
 
SIMULADO 1 - MATEMÁTICA
SIMULADO 1 - MATEMÁTICA SIMULADO 1 - MATEMÁTICA
SIMULADO 1 - MATEMÁTICA
 
Polígonos semelhantes 2014 9 ano
Polígonos semelhantes 2014 9 anoPolígonos semelhantes 2014 9 ano
Polígonos semelhantes 2014 9 ano
 
Exercicio De ProporçãO Com Gabarito
Exercicio De ProporçãO Com GabaritoExercicio De ProporçãO Com Gabarito
Exercicio De ProporçãO Com Gabarito
 
160 exercicios concordância e verbal pg27
160 exercicios concordância e verbal pg27160 exercicios concordância e verbal pg27
160 exercicios concordância e verbal pg27
 
sSimulado de matemática 5º ano novembro
sSimulado de matemática   5º ano novembrosSimulado de matemática   5º ano novembro
sSimulado de matemática 5º ano novembro
 
Caderno de Questões Matemáticas - Simulado - Prova Brasil
Caderno de Questões Matemáticas - Simulado - Prova BrasilCaderno de Questões Matemáticas - Simulado - Prova Brasil
Caderno de Questões Matemáticas - Simulado - Prova Brasil
 
Exercicios funcao quimica_organica
Exercicios funcao quimica_organicaExercicios funcao quimica_organica
Exercicios funcao quimica_organica
 

Semelhante a Simave proeb 2011 para 3º ano

Cn2008 2009
Cn2008 2009Cn2008 2009
Cn2008 20092marrow
 
Cesgranrio petrobras engenheiro petroleo 2018
Cesgranrio petrobras engenheiro petroleo 2018Cesgranrio petrobras engenheiro petroleo 2018
Cesgranrio petrobras engenheiro petroleo 2018Arthur Lima
 
Prova do Colégio Militar do Rio de Janeiro, COMENTADA
Prova do Colégio Militar do Rio de Janeiro, COMENTADAProva do Colégio Militar do Rio de Janeiro, COMENTADA
Prova do Colégio Militar do Rio de Janeiro, COMENTADAthieresaulas
 
Lista de exercícios 6 - Mat Elem
Lista de exercícios 6 - Mat ElemLista de exercícios 6 - Mat Elem
Lista de exercícios 6 - Mat ElemCarlos Campani
 
Exercicios resolvidos
Exercicios resolvidosExercicios resolvidos
Exercicios resolvidostexa0111
 
Gabarito 1ª Fase - Nível 3 - 2012
Gabarito 1ª Fase - Nível 3 - 2012Gabarito 1ª Fase - Nível 3 - 2012
Gabarito 1ª Fase - Nível 3 - 2012oim_matematica
 
Mat140questoesresolvidasvoli 111209133424-phpapp01
Mat140questoesresolvidasvoli 111209133424-phpapp01Mat140questoesresolvidasvoli 111209133424-phpapp01
Mat140questoesresolvidasvoli 111209133424-phpapp01Pastora Camargo
 
Matemática 140 questoes resolvidas
Matemática 140 questoes resolvidasMatemática 140 questoes resolvidas
Matemática 140 questoes resolvidasEdgerson Souza
 
matematica e midias
matematica e midiasmatematica e midias
matematica e midiasiraciva
 
2010 volume2 cadernodoaluno_matematica_ensinofundamentalii_7aserie_gabarito
2010 volume2 cadernodoaluno_matematica_ensinofundamentalii_7aserie_gabarito2010 volume2 cadernodoaluno_matematica_ensinofundamentalii_7aserie_gabarito
2010 volume2 cadernodoaluno_matematica_ensinofundamentalii_7aserie_gabaritoprofzwipp
 
Proposta de-correccao-do-teste-intermedio-9-ano7-de-fevereiro-de-2011-v1
Proposta de-correccao-do-teste-intermedio-9-ano7-de-fevereiro-de-2011-v1Proposta de-correccao-do-teste-intermedio-9-ano7-de-fevereiro-de-2011-v1
Proposta de-correccao-do-teste-intermedio-9-ano7-de-fevereiro-de-2011-v1Ana Tapadinhas
 
Resolução prova matematica naval 2008 2009
Resolução prova matematica naval 2008   2009Resolução prova matematica naval 2008   2009
Resolução prova matematica naval 2008 2009cavip
 
Exercícios resolvidos de máximo e mínimo de função
Exercícios resolvidos de máximo e mínimo de funçãoExercícios resolvidos de máximo e mínimo de função
Exercícios resolvidos de máximo e mínimo de funçãoDiego Oliveira
 
Lista de exercícios 1 - Cálculo
Lista de exercícios 1 - CálculoLista de exercícios 1 - Cálculo
Lista de exercícios 1 - CálculoCarlos Campani
 
Equação biquadrada exercicios
Equação biquadrada exerciciosEquação biquadrada exercicios
Equação biquadrada exerciciosMarcia Roberto
 
EquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
EquaçãO Do 2º Grau Autor Antonio Carlos C BarrosoEquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
EquaçãO Do 2º Grau Autor Antonio Carlos C BarrosoAntonio Carneiro
 

Semelhante a Simave proeb 2011 para 3º ano (20)

Cn2008 2009
Cn2008 2009Cn2008 2009
Cn2008 2009
 
Remember 08
Remember 08Remember 08
Remember 08
 
Matematica 2015
Matematica 2015Matematica 2015
Matematica 2015
 
Cesgranrio petrobras engenheiro petroleo 2018
Cesgranrio petrobras engenheiro petroleo 2018Cesgranrio petrobras engenheiro petroleo 2018
Cesgranrio petrobras engenheiro petroleo 2018
 
Prova do Colégio Militar do Rio de Janeiro, COMENTADA
Prova do Colégio Militar do Rio de Janeiro, COMENTADAProva do Colégio Militar do Rio de Janeiro, COMENTADA
Prova do Colégio Militar do Rio de Janeiro, COMENTADA
 
Lista de exercícios 6 - Mat Elem
Lista de exercícios 6 - Mat ElemLista de exercícios 6 - Mat Elem
Lista de exercícios 6 - Mat Elem
 
Ita02m
Ita02mIta02m
Ita02m
 
Exercicios resolvidos
Exercicios resolvidosExercicios resolvidos
Exercicios resolvidos
 
Gabarito 1ª Fase - Nível 3 - 2012
Gabarito 1ª Fase - Nível 3 - 2012Gabarito 1ª Fase - Nível 3 - 2012
Gabarito 1ª Fase - Nível 3 - 2012
 
matematica
matematica matematica
matematica
 
Mat140questoesresolvidasvoli 111209133424-phpapp01
Mat140questoesresolvidasvoli 111209133424-phpapp01Mat140questoesresolvidasvoli 111209133424-phpapp01
Mat140questoesresolvidasvoli 111209133424-phpapp01
 
Matemática 140 questoes resolvidas
Matemática 140 questoes resolvidasMatemática 140 questoes resolvidas
Matemática 140 questoes resolvidas
 
matematica e midias
matematica e midiasmatematica e midias
matematica e midias
 
2010 volume2 cadernodoaluno_matematica_ensinofundamentalii_7aserie_gabarito
2010 volume2 cadernodoaluno_matematica_ensinofundamentalii_7aserie_gabarito2010 volume2 cadernodoaluno_matematica_ensinofundamentalii_7aserie_gabarito
2010 volume2 cadernodoaluno_matematica_ensinofundamentalii_7aserie_gabarito
 
Proposta de-correccao-do-teste-intermedio-9-ano7-de-fevereiro-de-2011-v1
Proposta de-correccao-do-teste-intermedio-9-ano7-de-fevereiro-de-2011-v1Proposta de-correccao-do-teste-intermedio-9-ano7-de-fevereiro-de-2011-v1
Proposta de-correccao-do-teste-intermedio-9-ano7-de-fevereiro-de-2011-v1
 
Resolução prova matematica naval 2008 2009
Resolução prova matematica naval 2008   2009Resolução prova matematica naval 2008   2009
Resolução prova matematica naval 2008 2009
 
Exercícios resolvidos de máximo e mínimo de função
Exercícios resolvidos de máximo e mínimo de funçãoExercícios resolvidos de máximo e mínimo de função
Exercícios resolvidos de máximo e mínimo de função
 
Lista de exercícios 1 - Cálculo
Lista de exercícios 1 - CálculoLista de exercícios 1 - Cálculo
Lista de exercícios 1 - Cálculo
 
Equação biquadrada exercicios
Equação biquadrada exerciciosEquação biquadrada exercicios
Equação biquadrada exercicios
 
EquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
EquaçãO Do 2º Grau Autor Antonio Carlos C BarrosoEquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
EquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
 

Mais de Idelma

Poesia matemática mat
Poesia matemática matPoesia matemática mat
Poesia matemática matIdelma
 
Professor chaves - histórico do lab de informática
Professor chaves - histórico do lab de informáticaProfessor chaves - histórico do lab de informática
Professor chaves - histórico do lab de informáticaIdelma
 
Supertestes 8ª série
Supertestes 8ª sérieSupertestes 8ª série
Supertestes 8ª sérieIdelma
 
Simave 1 9º ano 2011
Simave 1 9º ano 2011Simave 1 9º ano 2011
Simave 1 9º ano 2011Idelma
 
Simave proeb 2011 para 3º
Simave proeb 2011 para 3ºSimave proeb 2011 para 3º
Simave proeb 2011 para 3ºIdelma
 
Histórico da sala de informática na e e prof chaves
Histórico da sala de informática na e e prof chavesHistórico da sala de informática na e e prof chaves
Histórico da sala de informática na e e prof chavesIdelma
 
Simave Proeb para Educadores
Simave Proeb para EducadoresSimave Proeb para Educadores
Simave Proeb para EducadoresIdelma
 
Simave proeb 9º ano 2011
Simave proeb 9º ano 2011Simave proeb 9º ano 2011
Simave proeb 9º ano 2011Idelma
 

Mais de Idelma (8)

Poesia matemática mat
Poesia matemática matPoesia matemática mat
Poesia matemática mat
 
Professor chaves - histórico do lab de informática
Professor chaves - histórico do lab de informáticaProfessor chaves - histórico do lab de informática
Professor chaves - histórico do lab de informática
 
Supertestes 8ª série
Supertestes 8ª sérieSupertestes 8ª série
Supertestes 8ª série
 
Simave 1 9º ano 2011
Simave 1 9º ano 2011Simave 1 9º ano 2011
Simave 1 9º ano 2011
 
Simave proeb 2011 para 3º
Simave proeb 2011 para 3ºSimave proeb 2011 para 3º
Simave proeb 2011 para 3º
 
Histórico da sala de informática na e e prof chaves
Histórico da sala de informática na e e prof chavesHistórico da sala de informática na e e prof chaves
Histórico da sala de informática na e e prof chaves
 
Simave Proeb para Educadores
Simave Proeb para EducadoresSimave Proeb para Educadores
Simave Proeb para Educadores
 
Simave proeb 9º ano 2011
Simave proeb 9º ano 2011Simave proeb 9º ano 2011
Simave proeb 9º ano 2011
 

Simave proeb 2011 para 3º ano

  • 1. Questões resolvidas para preparação SIMAVE/PROEB 2011 Matemática do 3º ano Ensino Médio Prof. Idelma 23/11/2011
  • 2. Resolução: Pelo teorema de Tales temos o triângulo BGE ≈ CGD. Então, fazemos: x/8 = 10/10 x = 8 (alt D) 2
  • 3. Resolução: Temos a fórmula d² = a² + b² + c² Então fica d² = 6² + 3² + 4² d² = 36 + 9 + 16 d² = 61 d = √61 (alt E) 3
  • 4. Resolução: Duas bases iguais é prisma. Como as bases são hexagonais, é um prisma de base hexagonal (alt B) 4
  • 5. Resolução: Pela relação de Euler encontramos o número de vértices: F+V=A+2 7 + V = 15 + 2 V = 10 Como são 3 parafusos em cada vértice, então são 3 x 10 = 30 (alt D) 5
  • 6. Resolução: Para o ângulo de 15° temos x como o cateto oposto e 24 como o cateto adjacente. Portanto usaremos a fórmula da tangente: Tg 15° = x/24 0,26 = x/24 x = 0,26 x 24 x = 6,24 (alt A) 6
  • 7. Resolução: Todo par ordenado é do tipo (x,y). Então a A tem coordenadas (3,4) : (alt C) 7
  • 8. Resolução: Para uma reta ser paralela aos eixos x ou y, é necessário faltar y ou x, respectivamente. Portanto as alternativas A e B estão descartadas. O coeficiente angular (a) é do tipo y = ax + b. Então: 2y = - x y = - x/2 a = -1/2 : (alt C) 8
  • 9. Resolução: Uma forma prática de encontrar a equação é pelo determinante, que é igual a ZERO. Faz-se: x y 1 D= 3 5 1 4 -2 1 5 x + 4 y – 6 – 20 – 3y + 2 x = 0 7x + y – 26 = 0 y = - 7x + 26 (alt A) 9
  • 10. Resolução: Resolvendo o sistema de equações pelo Para encontrar o método da substituição vem: x vamos Eq. I: x+3y–1=0 substituir o valor Isolando o x temos: x = 1 - 3y de y na eq. I: Substituindo a x por 1 – 3y na eq. II temos: X = 1 – 3.1 1–3y–y+3=0 X=1–3 -4y+4=0 X = -2 y=-4/-4 y=1 Logo, P(-2, 1) A única alternativa que tem y = 1 é a B. 10
  • 11. Resolução: A equação da circunferência é do tipo: r² = (x – a)² + (y – b)², que desenvolvida fica assim: r² = x² – 2ax + a² + y² – 2by + b² x² + y² – 2ax – 2by + a² + b² – r² = 0 Por análise, descartamos as alternativas B, D e E, visto que temos nelas o oposto de y². E na alternativa C temos o r² = -16, que é impossível de resolver no conjunto dos reais. Logo,a alternativa correta é (A). Desenvolvendo a alternativa A por comparação, temos: x² – 2x + 1 + y² – 25 = 0 -2 x = -2ax ↔ a = 1 b=0 E a² + b² – r² = - 25 1² + 0² – r² = - 25 - r² = - 25 r² = 25 r=5. 11
  • 12. Resolução: Note que foi acrescentado ao perímetro apenas os recortes fora das árvores, que para cada uma é 2 m + 2 m. Temos 4 vértices da figura original, então o acréscimo foi de 4 x 4 = 16 m. Somando o perímetro antigo ao que será acrescentado fica 24 + 16 = 40 m (alt D) 12
  • 13. Resolução: Vou calcular a área cinza excluindo as partes brancas da área total. AT = 40 x 40 = 1600 cm² Área dos triângulos brancos: A = 4. b. h/2 A = 4x20x20/2 = 4x200 = 800 Área dos 4 arcos (formam um círculo): A = π . r² = 3,14 x 10² = 3,14 x 100 = 314 cm² Área cinza = 1600 – 800 – 314 = 486 (alt C) 13
  • 14. Resolução: Se o pote tem 12 cm de altura e foi colocado água até a altura de 8 cm, sobra 4 cm, que é a altura ocupada pelas bolas de gude. Seu volume será: V = π . 4². 4 = π 16 . 4 = 64 π (alt C) 14
  • 15. Resolução: Multiplicando dois números decimais teremos um número centesimal. Veja: 0,2 x 0,8 = 0, 16 (que está antes de 0,2) 0,3 x 0,7 = 0,21 (que está antes de 0,3) 0,4 x 0,6 = 0, 24 (que está antes de 0,4) Por dedução o produto xy está entre 0 e x: (alt B). 15
  • 16. Resolução: Podemos assim resolver: 7 partes + 11 partes = 18 partes 180 / 18 = 10 reais por cada parte. Então o filho mais novo recebe 7 x 10 = 70 reais e o mais velho 11 x 10 = 110 reais. (alt A) 16
  • 17. Resolução: 70% de 1000 = 0,7 x 1000 = 700 pessoas que bebem café. 44% de 700 = 0,44 x 700 = 308 mulheres bebem café. Logo, são 700 – 308 = 392 homens que bebem café. (alt C) 17
  • 18. Resolução: O terreno mede 10 x 12 = 120 m². A faixa para o caminho medirá 120 – 80 = 40 m² de área. Podemos calcular a largura através da área: Comprimento do terreno x largura do caminho + Largura do terreno x largura do caminho – a sobreposição de uma faixa sobre a outra = 40 m² 12x + 10x – x² = 40 - x² + 22 x – 40 = 0 Resolvendo por Báskara encontramos as raízes 2 e 20. A medida possível é 2 m de largura. (alt C) 18
  • 19. Resolução: Analisando a situação, é uma função afim e temos como indenização i = 450 o coeficiente fixo b. As demais indenizações acrescentam- se 500 a cada ano trabalhado, que é o coeficiente angular a. Então a função é i = 450 + 500 t (alt B) 19
  • 20. Resolução: Montando a função onde C é o custo e x o nº de peças fabricadas, temos: C = 1500 + 10x Substituindo C por 3200: 3200 = 1500 + 10x 3200 – 1500 = 10x 10x = 1700 x = 170 (alt D) 20
  • 21. Resolução: De 0 às 4 h a temperatura é constante. Das 4 às 12 h a temperatura eleva-se. Das 12 às 16 h a temperatura permanece a mesma. De 16 às 24 h a temperatura cai. Portanto, a alt. C é a correta. 21
  • 22. Resolução: No eixo y verificamos que Luizinho saiu 20 m a frente de Pedrão nas alternativas B, C, D e E. Somente os gráficos B e C mostram Pedrão ultrapassando Luizinho. Mas é o gráfico B que mostra Pedrão chegando em menor tempo. 22
  • 23. Resolução: Como o problema já forneceu a fórmula da quantia poupada, é só substituir os valores nela. a12 = 30 + (12-1) . 5 a12 = 30 + 11.5 A12 = 30 + 55 = 85 (alt E) 23
  • 24. Resolução: P(0) = 35; isso exclui as altertnativas D e E. P(10) = -(1/2)10 + 35 = 30; isso exclui as alternativas B e C. Resta a alternativa A. 24
  • 25. Resolução: Através do gráfico conseguimos os pares ordenados (2, 3) e (4, 1). Resolvendo pelo determinante temos: x y 1 2 3 1 = 0 → 3x + 4y + 2 – 12 – 2y – x = 0 4 1 1 2x + 2y – 10 = 0; que simplificada por 2 fica: . x + y – 5 = 0. (alt B) 25
  • 26. Resolução: Na funçao do 2° grau, quando a concavidade é voltada para baixo o vértice é chamado ponto de máximo e esse tem coordenadas (2, 1) ; alt D. 26
  • 27. Resolução: Podemos efetuar a multiplicação distributiva e resolver a equação do 2° grau ou simplesmente fazer x–3=0→x=3 x + 1 = 0 → x = -1 Logo, as raízes são 3 e -1. (alt B) 27
  • 28. Resolução: A função exponencial tem o expoente variável (x). Faça (0,1)0 = 1 e (0,1)¹ = 0,1 perceba que os valores de x aumentaram e y diminuiram. 100 = 1 e 10¹ = 10 verifique que os valores de x e de y aumentaram (alt D) 28
  • 29. Resolução: A alt. A está incorreta pois o grafico da função do 1º grau é uma reta. A alt. B está incorreta pois o gráfico da função do 2º grau é uma parábola. A alt. C é uma função logarítmica e está correta, pois 2¹ =2 e 2² = 4, onde a base é 2, o expoente é y e a potência é x. 29
  • 30. Resolução: 400 = 25. 2 t 400/25 = 2 t 2 t = 16 2t = 24 t= 4 horas (alt C) 30
  • 31. Resolução: Lembre-se dos valores Cos 0° = 1; cos 45° = √2/2= 1,4/2 = 0,7; cos 90° = 0 Com esses valores já excluímos A, C e E. O gráfico D também é excluído pois as unidades de x são desconhecidas. Logo, a alternativa correta é B. 31
  • 32. Resolução: A matriz tem a 1ª coluna com elementos x, a 2ª coluna elementos y, a 3ª coluna com elementos z e a 4ª coluna os termos independentes. (alt C) 32
  • 33. Resolução: Em análise combinatória, essa situação é arranjo, pois a ordem das premiações faz diferença. A maneira prática de calcular é multiplicar tantos fatores que for o p (neste caso é 3) em ordem decrescente, partindo do n (que é 7). Veja: A7,3 = 7 x 6 x 5 = 210 possibilidades. (alt D) 33
  • 34. Resolução: O número do elementos do espaço amostral é 6, pois o dado tem 6 faces. O número de elementos do evento é 2, pois o evento tem apenas os números 4 e 6. p = 2/6 p = 1/3 (alt B) 34
  • 35. Resolução: Basta procurar na tabela a coluna Nordeste. Os dados já estão em porcentagem. Alugado + cedido = 9,8 + 12,7 = 22,5 % (alt C) 35
  • 36. 36
  • 37. Resolução: O gráfico que representa a tabela acima é a letra A, pois mostra o aumento da profundidade de forma lenta e depois um pouco mais acelerada. 37
  • 38. Resolução: Total de estudantes: 400 + 800 = 1200 Sexo feminino: 800 p = 800/1200 p = 8/12 p = 2/3 (alt E) 38
  • 39. Resolução: Volume do cilindro = π. R² . h Como as alturas são iguais e o π também, podemos simplificar a razão V2/V1 assim: 6²/3³ = 36/6 = 4 vezes maior. (alt C) 39
  • 40. Resolução: Observando os pontos cardeais, podemos perceber que a direção Sul e a Leste são ortogonais (formam entre si um ângulo de 90°). Portanto podemos formar um triângulo retângulo, onde a distância é a hipotenusa e vamos utilizar o Teorema de Pitágoras: D² = 12² + 5² D² = 144 + 25 D² = 169 D² = 13² D = 13 m (alt B) 40
  • 41. Resolução: Em análise combinatória, esse é um caso de arranjo. A 6, 2 = 6.5 = 30 maneiras. (alt D) 41
  • 42. Ao passar sua mão direita por todos os vértices e arestas de um poliedro, somente uma vez, um deficiente visual percebe que passou por 8 vértices e 12 arestas. Conclui-se que o número de faces desse poliedro é igual a (A) 20. (B) 12. Resolução: (C) 8. Usando a Relação de Euler, temos (D) 6. V+F=A+2 (E) 4. 8 + F = 12 + 2 F = 14 – 8 F = 6. (alt D) 42
  • 43. Resolução: Simplificando o polinômio por 5 temos: X² + x – 6 = 0 Resolvendo a equação do 2º grau encontramos as raízes -3 e 2. Fazemos x = -3 x+3=0e x =2 x– 2 = 0 Então representamos o polinômio por 5(x + 3)(x – 2), que é alt. B . 43
  • 44. Resolução: 4 km é o cateto oposto ao ângulo de 60° e o cateto adjacente a 60° é a distância a ser encontrada para ser somada com 4 km. Usaremos tg 60° = 4/x √3 = 4/x X = 4/√3 X = 4√3/3 km Logo, a distância é 4 + 4√3/3. (alt C) 44
  • 45. Resolução: Usando dois pontos, escolhi (10, 55) e (20, 60). Resolvendo pelo determinante cheguei a 55q + 600 = 20C – 60q – 1100 – 10C = 0 -5q – 500 + 10C = 0 Dividindo por 10 fica: -1/2 q – 50 + C = 0 C = ½ q + 50, que é a alt. D 45
  • 46. Resolução: Basta observar a reta numerada. A equipe masculina fica em -55 e a feminina em + 45. (alt D) 46
  • 47. Resolução: Basta fazer t =0 e encontramos V = 0. O único gráfico que corresponde a isso é o da alt. C. 47
  • 48. Resolução: A única alternativa com base circular é a D. 48
  • 49. (A) y = − cos x . Resolução: Notamos nesta tabela, que não (B) y = cos .x/2. pertence ao problema, que os valores de (C) y = sen ( − x ) . seno são opostos aos do gráfico, então a (D) y = sen 2 x . função é y = sen(-x). (alt C) (E) y = 2 sen x . . 49
  • 50. Resolução: Às 23 horas ele está na toca. Portanto, às 18 h ele está mais longe. (alt A) 50