O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

www.AulasDeMatematicanoRJ.Com.Br - Matemática - Conjuntos Numéricos

Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Próximos SlideShares
Conjuntos numericos 6
Conjuntos numericos 6
Carregando em…3
×

Confira estes a seguir

1 de 34 Anúncio

Mais Conteúdo rRelacionado

Diapositivos para si (18)

Semelhante a www.AulasDeMatematicanoRJ.Com.Br - Matemática - Conjuntos Numéricos (20)

Anúncio

Mais de Clarice Leclaire (20)

Mais recentes (20)

Anúncio

www.AulasDeMatematicanoRJ.Com.Br - Matemática - Conjuntos Numéricos

  1. 1. CONJUNTO DOS NÚMEROS INTEIROS
  2. 2. O QUE SÃO NÚMEROS NEGATIVOS? São números que representam medidas abaixo de zero. Exemplos: -4 -35 -1 -2137 Os números acima de zero são chamados de positivos. E O ZERO? O zero não é positivo nem negativo.
  3. 3. PARA QUE SERVEM OS NÚMEROS NEGATIVOS? Dentre várias utilidades veremos as mais comuns:  Representar temperaturas abaixo de zero.  Indicar um saldo negativo de uma conta bancária.  Efetuar subtrações onde o subtraendo é maior que o minuendo. Ex: 7-10
  4. 4. COMO É FORMADO O CONJUNTO DOS NÚMEROS INTEIROS? É formado pelo conjunto dos números naturais, mais os números negativos. Representações: Ν = { 0,1,2,3,4,5,...} Ζ = {... − 5,−4,−3,−2,−1,0,1,2,3,4,5,...} Z N
  5. 5. COMO REPRESENTAMOS O CONJUNTO DOS NÚMEROS INTEIROS NA RETA NUMÉRICA? -5 -4 -3 -2 -1 0 1 2 3 4 5 O conjunto dos números naturais é um subconjunto dos números inteiros.
  6. 6. OBSERVAÇÃO: Quanto mais a direita estiver um número, maior ele será. Veja: -5 -4 -3 -2 -1 0 1 2 3 4 5 5>3 -3 > -5 0 > -2 Macete: quanto mais negativo for um número, menor ele será.
  7. 7. TENTE FAZER SOZINHO! Responda: a) Qual é o maior número negativo? b) Qual é o antecessor de -5? c) Qual é o sucessor de -10?
  8. 8. SOLUÇÃO a) O maior número negativo é -1. b) O antecessor de -5 é -6. c) O sucessor de -10 é -9.
  9. 9. O QUE SIGNIFICAM OS SÍMBOLOS: Ζ ,Ζ ,Ζ ,Ζ e Ζ ? * + − * + * − Ζ é o conjunto dos números inteiros sem o zero. * Ζ* = {...,−3,−2,−1,1,2,3,...} Ζ + é o conjunto dos números inteiros não-negativos. Ζ + = { 0,1,2,3,...} Ζ − é o conjunto dos números inteiros não-positivos. Ζ − = {...,−3,−2,−1,0} Ζ * + é o conjunto dos números inteiros positivos. Ζ* = {1,2,3,...} + Ζ * − é o conjunto dos números inteiros negativos. Ζ* = {...,−3,−2,−1} _
  10. 10. O QUE É O MÓDULO DE UM NÚMERO? É o valor que representa a distância entre esse número e o zero. Exemplo: -4 0 4 A distância entre o número 4 e o zero é a mesma entre o número -4 e o zero. Logo, o módulo desses de 4 e -4 é igual a 4.
  11. 11. COMO INDICAMOS O MÓDULO DE UM NÚMERO? Colocando esse número entre duas barras verticais. Exemplos: 6 =6 20 = 20 −6 = 6 − 20 = 20 O módulo também pode ser chamado de valor absoluto
  12. 12. VAMOS PRATICAR! Quais são os possíveis valores para x em x = 2? Resposta: 2 e -2, pois qualquer um desses números, quando colocado no lugar do x tem resultado igual a 2.
  13. 13. TENTE FAZER SOZINHO! Apresente os possíveis valores de x na expressão: x <4
  14. 14. Solução Temos que verificar quais são os números que o módulo dá um resultado menor que 4. Logo, a resposta é {-3,-2,-1,0,1,2,3}
  15. 15. O QUE SÃO NÚMEROS SIMÉTRICOS? São números que apresentam o mesmo módulo. Exemplos: 10 e -10 8 e -8 201 e -201 Os números simétricos também são chamados de opostos.
  16. 16. RESOLVENDO PROBLEMAS Responda: Qual é o simétrico de 5? -5 Qual é o oposto de -10? 10 Qual é o módulo do oposto de -35? 35
  17. 17. TENTE FAZER SOZINHO! Apresente o simétrico do oposto do módulo de -7. SOLUÇÃO O módulo de -7 é 7. O oposto de 7 é -7. O simétrico de -7 é 7.
  18. 18. COMO SOMAMOS E SUBTRAÍMOS NÚMEROS INTEIROS? Primeiro retiramos os parênteses e depois efetuamos os cálculos. Se o sinal antes do parêntese for +, então conservamos o sinal de todos os números dentro do parêntese. Se o sinal antes do parêntese for -, então mudamos o sinal de todos os números dentro do parêntese. Exemplos: a) + (+30) + (-25) = + 30 – 25 = + 5 b) - (-17) + (+3) = + 17 + 3 = + 20
  19. 19. PARA EFETUAR OS CÁLCULOS, USAREMOS A SEGUINTE REGRA:  Se os sinais forem iguais, somamos os valores absolutos e conservamos o sinal.  Se os sinais forem diferentes, subtraímos os valores absolutos e conservamos o sinal do maior. Exemplos: a) -(+45) + (-5) = - 45 - 5 = - 50 b) -(+20) + (+4) = - 20 + 4 = -16
  20. 20. OBSERVAÇÕES IMPORTANTES! 1) Se não existir sinal antes de um parênteses ou antes de um número, então dizemos que o sinal é +. Ou seja, + (30) = (+30) = + (+30) = 30. 2) A soma de números simétricos é igual a zero. Ou seja, -10 + 10 = 0 e 8 - 8 = 0.
  21. 21. RESOLVENDO EXPRESSÕES (-5) + (-9) + (-3) + (+8) + (+2)= Tirando os parênteses, temos: -5–9–3+8+2= Juntando os números negativos e os números positivos, temos - 17 + 10 = Efetuando os cálculos, encontramos: -7
  22. 22. TENTE FAZER SOZINHO! Resolva a expressão: 12 + {- 2 + [- 3 – (- 2 + 11)]} =
  23. 23. SOLUÇÃO 12 + {- 2 + [- 3 – (- 2 + 11)]} = 12 + {- 2 + [- 3 – (+ 9)]} = 12 + {- 2 + [- 3 – 9]} = 12 + {- 2 + [- 12]} = 12 + {- 2 - 12} = 12 + {- 14} = 12 – 14 = -2
  24. 24. COMO MULTIPLICAMOS E DIVIDIMOS NÚMEROS INTEIROS? Basta efetuar os cálculos com os valores absolutos. O sinal deve obedecer a seguinte regra: se forem iguais, +, se forem diferentes, - . Exemplos: a) (-3) . (-4) = 12 b) (+8) : (+4) = 2 c) (-3) . (+4) = - 12 d) (+8) : (-4) = - 2
  25. 25. TENTE FAZER SOZINHO! Resolva a expressão: [-27 + (- 12 + 4)] : [1 + (- 3) . (- 2)]=
  26. 26. SOLUÇÃO [-27 + (- 12 + 4)] : [1 + (- 3) . (- 2)]= [-27 + (- 8)] : [1 + (+ 6)]= [-27 - 8] : [1 + 6]= [-35] : [7]= -5
  27. 27. COMO ELEVAMOS UM NÚMEROS INTEIRO A UMA POTÊNCIA? Basta efetuar o cálculo da potência com os valores absolutos. Se o expoente for par, o resultado é sempre positivo. Se o for ímpar, permanece o sinal inicial. Exemplos: a) (-5)2 = 25 b) (+5)2 = 25 c) (-5)3 = - 125 d) (+5)3 = 125
  28. 28. REGRAS IMPORTANTES  Qualquer base elevada a 1 é igual a ela mesma. a1 = a  Zero elevado a qualquer expoente é igual a zero. 0b = 0  Qualquer base elevada a zero é igual a 1. a0 = 1
  29. 29. COMO MULTIPLICAMOS POTÊNCIAS COM A MESMA BASE? Basta conservar a base e somar os expoentes. Exemplos:  (6)7 . (6)3 = 67+3 = 610 Quando um número não apresenta expoente,  (-20)4 . (-20) = (-20)5 dizemos que está elevado a 1.
  30. 30. COMO DIVIDIMOS POTÊNCIAS COM A MESMA BASE? Basta conservar a base e subtrair os expoentes. Exemplos:  (5)7 : (5)3 = (5)7-3 = 54  (-9)5 : (-9)3 = (-9)5-3 = (-9)2
  31. 31. COMO ELEVAMOS UMA POTÊNCIA A OUTRA POTÊNCIA? Basta conservar a base e multiplicar os expoentes. Exemplos: (42)3 = 42x3 = 46 (53)6 = 53x6 = 518
  32. 32. COMO EXTRAÍMOS A RAIZ QUADRADA DOS NÚMEROS INTEIROS? Basta efetuar os cálculos que já conhecemos, pois só podemos extrair raiz quadrada de números não-negativos. Exemplos: +9 =3 − 9 não existe no conjunto Ζ.
  33. 33. TENTE FAZER SOZINHO! Resolva a expressão: ( − 2) 2 [ ] − ( − 7 ) : 10 0 + 5.( − 3) − 36 =
  34. 34. SOLUÇÃO ( − 2) − [( − 7 ) : 100 + 5.( − 3) ] − 2 36 = 4 − [ ( − 7 ) : 1 + 5.( − 3) ] − 6 4 − [ − 7 + ( − 15) ] − 6 = 4 − [ − 7 − 15] − 6 = 4 − [ − 22] − 6 = 4 + 22 − 6 = 26 − 6 = 20

×