 A história nos mostra que desde muito tempo o
homem sempre teve a preocupação em contar
objetos e ter registros numérico...
Naturais (N)
N = {0,1,2,3,4,...}
Problemas do conjunto:
- Subtração: 3 – 4 = ?
- Divisão: 1 : 2 = ?
Como o zero originou...
Inteiros (Z)
Z = {...,-2,-1,0,1,2,...}
Problema no conjunto:
Divisão: 1 : 2 = ?
Assim como no conjunto dos naturais, pod...
Racionais (Q).
Q = {a/b | a, b  Z e b  0}.
Todo número que pode ser escrito em forma
de fração.
Exemplos:
- Decimais fi...
3,14159265... Este não é um número Racional, pois possui
infinitos algarismos após a vírgula
(representados pelas reticênc...
 Raízes
inexatas;
 Decimais
infinitos e não
periódicos;
  = 3,14...;
 e = 2,72...
O "IRRACIONAIS“ é formado por todos...
Reais (R).
o conjunto dos números Reais é formado
por todos os números Racionais junto
com os números Irracionais, portan...
Conjuntos numéricos
Próximos SlideShares
Carregando em…5
×

Conjuntos numéricos

500 visualizações

Publicada em

0 comentários
0 gostaram
Estatísticas
Notas
  • Seja o primeiro a comentar

  • Seja a primeira pessoa a gostar disto

Sem downloads
Visualizações
Visualizações totais
500
No SlideShare
0
A partir de incorporações
0
Número de incorporações
11
Ações
Compartilhamentos
0
Downloads
13
Comentários
0
Gostaram
0
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Conjuntos numéricos

  1. 1.  A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras, ossos, desenhos, dos dedos ou outra forma qualquer, em que procurava abstrair a natureza por meio de processos de determinação de quantidades.  E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos
  2. 2. Naturais (N) N = {0,1,2,3,4,...} Problemas do conjunto: - Subtração: 3 – 4 = ? - Divisão: 1 : 2 = ? Como o zero originou-se depois dos outros números e possui algumas propriedades próprias, algumas vezes teremos a necessidade de representar o conjunto dos números naturais sem incluir o zero. Para isso foi definido que o símbolo * (asterisco) empregado ao lado do símbolo do conjunto, iria representar a ausência do zero. Veja o exemplo abaixo:
  3. 3. Inteiros (Z) Z = {...,-2,-1,0,1,2,...} Problema no conjunto: Divisão: 1 : 2 = ? Assim como no conjunto dos naturais, podemos representar todos os inteiros sem o ZERO com a mesma notação usada para os NATURAIS. Inteiros não negativos sem o zero Inteiros não positivos sem o zero
  4. 4. Racionais (Q). Q = {a/b | a, b  Z e b  0}. Todo número que pode ser escrito em forma de fração. Exemplos: - Decimais finitos; - Dízimas periódicas; - Raízes exatas; Problema no Conjunto: Como escrever  em forma de fração?
  5. 5. 3,14159265... Este não é um número Racional, pois possui infinitos algarismos após a vírgula (representados pelas reticências) 2,252 Este é um número Racional, pois possui finitos algarismos após a vírgula. 2,252525... Este número possui infinitos números após a vírgula, mas é racional, é chamado de dízima periódica. Reconhecemos um número destes quando, após a vírgula, ele sempre repetir um número (no caso 25). = {Todos os racionais sem o zero} = {Todos os racionais NÃO NEGATIVOS} = {Todos os racionais NÃO NEGATIVOS sem o zero, ou seja, os positivos} = {Todos os racionais NÃO POSITIVOS} = {Todos os racionais NÃO POSITIVOS sem o zero, ou seja, os negativos}
  6. 6.  Raízes inexatas;  Decimais infinitos e não periódicos;   = 3,14...;  e = 2,72... O "IRRACIONAIS“ é formado por todos os números que, ao contrário dos racionais, NÃO podem ser representados por uma fração de números inteiros. São eles: Irracionais (I).
  7. 7. Reais (R). o conjunto dos números Reais é formado por todos os números Racionais junto com os números Irracionais, portanto: Q  I = R.

×