O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

www.aulaparticularonline.net.br - Matemática - Conjunto de Números Inteiros

Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
CONJUNTO DOS NÚMEROS
      INTEIROS

Vídeos do YouTube não são mais aceitos pelo SlideShare

Visualizar original no YouTube

O QUE SÃO NÚMEROS NEGATIVOS?
    São números que representam medidas
 abaixo de zero.
Exemplos:
            -4   -35   -1 ...

Vídeos do YouTube não são mais aceitos pelo SlideShare

Visualizar original no YouTube

Vídeos do YouTube não são mais aceitos pelo SlideShare

Visualizar original no YouTube

Confira estes a seguir

1 de 37 Anúncio
Anúncio

Mais Conteúdo rRelacionado

Diapositivos para si (18)

Semelhante a www.aulaparticularonline.net.br - Matemática - Conjunto de Números Inteiros (20)

Anúncio

Mais de Lucia Silveira (20)

Mais recentes (20)

Anúncio

www.aulaparticularonline.net.br - Matemática - Conjunto de Números Inteiros

  1. 1. CONJUNTO DOS NÚMEROS INTEIROS
  2. 2. O QUE SÃO NÚMEROS NEGATIVOS? São números que representam medidas abaixo de zero. Exemplos: -4 -35 -1 -2137 Os números acima de zero são chamados de positivos. E O ZERO? O zero não é positivo nem negativo.
  3. 3. PARA QUE SERVEM OS NÚMEROS NEGATIVOS? Dentre várias utilidades veremos as mais comuns:  Representar temperaturas abaixo de zero.  Indicar um saldo negativo de uma conta bancária.  Efetuar subtrações onde o subtraendo é maior que o minuendo. Ex: 7-10
  4. 4. COMO É FORMADO O CONJUNTO DOS NÚMEROS INTEIROS? É formado pelo conjunto dos números naturais, mais os números negativos. Representações: Ν = { 0,1,2,3,4,5,...} Ζ = {... − 5,−4,−3,−2,−1,0,1,2,3,4,5,...} Z N
  5. 5. COMO REPRESENTAMOS O CONJUNTO DOS NÚMEROS INTEIROS NA RETA NUMÉRICA? -5 -4 -3 -2 -1 0 1 2 3 4 5 O conjunto dos números naturais é um subconjunto dos números inteiros.
  6. 6. OBSERVAÇÃO: Quanto mais a direita estiver um número, maior ele será. Veja: -5 -4 -3 -2 -1 0 1 2 3 4 5 5>3 -3 > -5 0 > -2 Macete: quanto mais negativo for um número, menor ele será.
  7. 7. TENTE FAZER SOZINHO! Responda: a) Qual é o maior número negativo? b) Qual é o antecessor de -5? c) Qual é o sucessor de -10?
  8. 8. SOLUÇÃO a) O maior número negativo é -1. b) O antecessor de -5 é -6. c) O sucessor de -10 é -9.
  9. 9. O QUE SIGNIFICAM OS SÍMBOLOS: Ζ ,Ζ ,Ζ ,Ζ e Ζ ? * + − * + * − Ζ é o conjunto dos números inteiros sem o zero. * Ζ* = {...,−3,−2,−1,1,2,3,...} Ζ + é o conjunto dos números inteiros não-negativos. Ζ + = { 0,1,2,3,...} Ζ − é o conjunto dos números inteiros não-positivos. Ζ − = {...,−3,−2,−1,0} Ζ * + é o conjunto dos números inteiros positivos. Ζ* = {1,2,3,...} + Ζ * − é o conjunto dos números inteiros negativos. Ζ* = {...,−3,−2,−1} _
  10. 10. O QUE É O MÓDULO DE UM NÚMERO? É o valor que representa a distância entre esse número e o zero. Exemplo: -4 0 4 A distância entre o número 4 e o zero é a mesma entre o número -4 e o zero. Logo, o módulo desses de 4 e -4 é igual a 4.
  11. 11. COMO INDICAMOS O MÓDULO DE UM NÚMERO? Colocando esse número entre duas barras verticais. Exemplos: 6 =6 20 = 20 −6 = 6 − 20 = 20 O módulo também pode ser chamado de valor absoluto
  12. 12. VAMOS PRATICAR! Quais são os possíveis valores para x em x = 2? Resposta: 2 e -2, pois qualquer um desses números, quando colocado no lugar do x tem resultado igual a 2.
  13. 13. TENTE FAZER SOZINHO! Apresente os possíveis valores de x na expressão: x <4
  14. 14. Solução Temos que verificar quais são os números que o módulo dá um resultado menor que 4. Logo, a resposta é {-3,-2,-1,0,1,2,3}
  15. 15. O QUE SÃO NÚMEROS SIMÉTRICOS? São números que apresentam o mesmo módulo. Exemplos: 10 e -10 8 e -8 201 e -201 Os números simétricos também são chamados de opostos.
  16. 16. RESOLVENDO PROBLEMAS Responda: Qual é o simétrico de 5? -5 Qual é o oposto de -10? 10 Qual é o módulo do oposto de -35? 35
  17. 17. TENTE FAZER SOZINHO! Apresente o simétrico do oposto do módulo de -7. SOLUÇÃO O módulo de -7 é 7. O oposto de 7 é -7. O simétrico de -7 é 7.
  18. 18. COMO SOMAMOS E SUBTRAÍMOS NÚMEROS INTEIROS? Primeiro retiramos os parênteses e depois efetuamos os cálculos. Se o sinal antes do parêntese for +, então conservamos o sinal de todos os números dentro do parêntese. Se o sinal antes do parêntese for -, então mudamos o sinal de todos os números dentro do parêntese. Exemplos: a) + (+30) + (-25) = + 30 – 25 = + 5 b) - (-17) + (+3) = + 17 + 3 = + 20
  19. 19. PARA EFETUAR OS CÁLCULOS, USAREMOS A SEGUINTE REGRA:  Se os sinais forem iguais, somamos os valores absolutos e conservamos o sinal.  Se os sinais forem diferentes, subtraímos os valores absolutos e conservamos o sinal do maior. Exemplos: a) -(+45) + (-5) = - 45 - 5 = - 50 b) -(+20) + (+4) = - 20 + 4 = -16
  20. 20. OBSERVAÇÕES IMPORTANTES! 1) Se não existir sinal antes de um parênteses ou antes de um número, então dizemos que o sinal é +. Ou seja, + (30) = (+30) = + (+30) = 30. 2) A soma de números simétricos é igual a zero. Ou seja, -10 + 10 = 0 e 8 - 8 = 0.
  21. 21. RESOLVENDO EXPRESSÕES (-5) + (-9) + (-3) + (+8) + (+2)= Tirando os parênteses, temos: -5–9–3+8+2= Juntando os números negativos e os números positivos, temos - 17 + 10 = Efetuando os cálculos, encontramos: -7
  22. 22. TENTE FAZER SOZINHO! Resolva a expressão: 12 + {- 2 + [- 3 – (- 2 + 11)]} =
  23. 23. SOLUÇÃO 12 + {- 2 + [- 3 – (- 2 + 11)]} = 12 + {- 2 + [- 3 – (+ 9)]} = 12 + {- 2 + [- 3 – 9]} = 12 + {- 2 + [- 12]} = 12 + {- 2 - 12} = 12 + {- 14} = 12 – 14 = -2
  24. 24. COMO MULTIPLICAMOS E DIVIDIMOS NÚMEROS INTEIROS? Basta efetuar os cálculos com os valores absolutos. O sinal deve obedecer a seguinte regra: se forem iguais, +, se forem diferentes, - . Exemplos: a) (-3) . (-4) = 12 b) (+8) : (+4) = 2 c) (-3) . (+4) = - 12 d) (+8) : (-4) = - 2
  25. 25. TENTE FAZER SOZINHO! Resolva a expressão: [-27 + (- 12 + 4)] : [1 + (- 3) . (- 2)]=
  26. 26. SOLUÇÃO [-27 + (- 12 + 4)] : [1 + (- 3) . (- 2)]= [-27 + (- 8)] : [1 + (+ 6)]= [-27 - 8] : [1 + 6]= [-35] : [7]= -5
  27. 27. COMO ELEVAMOS UM NÚMEROS INTEIRO A UMA POTÊNCIA? Basta efetuar o cálculo da potência com os valores absolutos. Se o expoente for par, o resultado é sempre positivo. Se o for ímpar, permanece o sinal inicial. Exemplos: a) (-5)2 = 25 b) (+5)2 = 25 c) (-5)3 = - 125 d) (+5)3 = 125
  28. 28. REGRAS IMPORTANTES  Qualquer base elevada a 1 é igual a ela mesma. a1 = a  Zero elevado a qualquer expoente é igual a zero. 0b = 0  Qualquer base elevada a zero é igual a 1. a0 = 1
  29. 29. COMO MULTIPLICAMOS POTÊNCIAS COM A MESMA BASE? Basta conservar a base e somar os expoentes. Exemplos:  (6)7 . (6)3 = 67+3 = 610 Quando um número não apresenta expoente,  (-20)4 . (-20) = (-20)5 dizemos que está elevado a 1.
  30. 30. COMO DIVIDIMOS POTÊNCIAS COM A MESMA BASE? Basta conservar a base e subtrair os expoentes. Exemplos:  (5)7 : (5)3 = (5)7-3 = 54  (-9)5 : (-9)3 = (-9)5-3 = (-9)2
  31. 31. COMO ELEVAMOS UMA POTÊNCIA A OUTRA POTÊNCIA? Basta conservar a base e multiplicar os expoentes. Exemplos: (42)3 = 42x3 = 46 (53)6 = 53x6 = 518
  32. 32. COMO EXTRAÍMOS A RAIZ QUADRADA DOS NÚMEROS INTEIROS? Basta efetuar os cálculos que já conhecemos, pois só podemos extrair raiz quadrada de números não-negativos. Exemplos: +9 =3 − 9 não existe no conjunto Ζ.
  33. 33. TENTE FAZER SOZINHO! Resolva a expressão: ( − 2) 2 [ ] − ( − 7 ) : 10 0 + 5.( − 3) − 36 =
  34. 34. SOLUÇÃO ( − 2) − [( − 7 ) : 100 + 5.( − 3) ] − 2 36 = 4 − [ ( − 7 ) : 1 + 5.( − 3) ] − 6 4 − [ − 7 + ( − 15) ] − 6 = 4 − [ − 7 − 15] − 6 = 4 − [ − 22] − 6 = 4 + 22 − 6 = 26 − 6 = 20

×