SlideShare uma empresa Scribd logo
1 de 4
Baixar para ler offline
¨ˆ
SEQUENCIA DE FIBONACCI
Aspectos matem´ticos
a
Rodrigo Thiago Passos Silva
rodrigotpsilva@gmail.com
A seq¨ˆncia de Fibonacci ´ uma seq¨ˆncia de n´meros reais
ue
e
ue
u
dada por

1,



F (n) = Fn = 1,



Fn−1 + Fn−2

num´rica, ou seja, uma fun¸˜o F : N → R
e
ca
se n = 1
se n = 2 .
se n ≥ 3

Em outras palavras, ´ uma seq¨ˆncia cujos dois primeiros termos s˜o iguais a 1 e os demais correspondem
e
ue
a
a
` soma dos dois anteriores. Os primeiros termos da seq¨ˆncia s˜o:
ue
a
F1 = 1

F2 = 1

F3 = 2

F4 = 3

F5 = 5

F6 = 8

F7 = 13

F8 = 21.

Observemos agora que
F1 = 1 = F3 − 1
F1 + F2 = 2 = F4 − 1
F1 + F2 + F3 = 4 = F5 − 1
F1 + F2 + F3 + F4 = 7 = F6 − 1
F1 + F2 + F3 + F4 + F5 = 12 = F7 − 1.
n

Fi = Fn+2 − 1 .

Portanto, conjecturemos que
i=1

Demonstra¸˜o
ca
´ a
Utilizaremos o Princ´
ıpio da Indu¸ao Matem´tica. E f´cil observar que a propriedade conjecturada ´
c˜
a
e
1

Fi = 1 e F1+2 − 1 = F3 − 1 = 2 − 1 = 1.

v´lida para n = 1 pois
a
i=1

k

Fi = Fk+2 − 1 queremos

Supondo que a propriedade ´ v´lida para n = k, ou seja, que ´ verdade P (k) :
e a
e
i=1
k+1

Fi = Fk+3 − 1 ´ v´lida.
e a

mostrar que P (k + 1) :
i=1

Somando-se Fk+1 em ambos os lados da igualdade assumida como hip´tese temos
o
k

Fi + Fk+1 = Fk+2 + Fk+1 − 1.
i=1
k+1

O lado esquerdo equivale a

Fi e, como o termo posterior na seq¨ˆncia de Fibonacci ´ dado pela soma
ue
e
i=1
k+1

dos dois anteriores, o lado direito equivale a Fk+3 − 1. Assim, concluimos que

Fi = Fk+3 − 1 como
i=1

quer´
ıamos demonstrar.

1
Agora, observemos a soma dos termos da seq¨ˆncia de ´
ue
ındice ´
ımpar
n=1
n=2
n=3

F1 = 1 = F2
F1 + F3 = 3 = F4

F1 + F3 + F5 = 8 = F6 .

n

Conjecturemos, ent˜o, que
a

F2i−1 = F2n .
i=1

Demonstra¸˜o
ca
1

A propriedade conjecturada ´ v´lida para n = 1 pois
e a

F2i−1 = F1 = 1 e F2n = 1.
i=1
k

Supomos que ela ´ v´lida tamb´m para n = k, ou seja, que
e a
e

F2i−1 = F2k ´ verdadeiro. Somando-se o
e
i=1

termo F2k+1 em ambos os lados da hip´tese indutiva obtemos
o
k

F2i−1 + F2k+1 = F2k + F2k+1 .
i=1

Ultilizando-se racioc´
ınio an´logo ao da demonstra¸ao anterior conclu´
a
c˜
ımos que a igualdade acima ´ igual
e
a
k+1

F2i−1 = F2k+2 = F2(k+1) .
i=1

Da´ conclu´
ı
ımos que se a propriedade ´ v´lida para n = k ´ tamb´m v´lida para n = k + 1. Portanto, pelo
e a
e
e
a
princ´
ıpio da indu¸˜o matem´tica, ´ v´lida para todo n > 1.
ca
a
e a

Podemos observar tamb´m o comportamento da soma dos termos da seq¨ˆncia de ´
e
ue
ındice par
n=1
n=2
n=3

F2 = 1 = F3 − 1
F2 + F4 = 4 = F5 − 1

F2 + F4 + F6 = 12 = F7 − 1.

n

F2i = F2n+1 − 1 .

Logo, podemos conjecturar que
i=1

Demonstra¸˜o
ca
Tomemos a soma dos termos da seq¨ˆncia de Fibonacci at´ o 2n-´simo termo. Temos
ue
e
e
2n

Fi = F1 + F2 + F3 + F4 + F5 · · · + F2n−1 + F2n = F2n+2 − 1.
i=1

Tomemos a soma dos termos ´
ımpares da seq¨ˆncia de Fibonacci at´ o termo de ´
ue
e
ındice 2n − 1 (i.e., os n
primeiros ´
ımpares). Temos
n

F2i−1 = F1 + F3 + F5 + · · · + F2n−1 = F2n .
i=1

2
Subtraindo a segunda equa¸˜o da primeira obtemos
ca
(F1 + F2 + F3 + F4 + F5 · · · + F2n−1 + F2n ) − (F1 + F3 + F5 + · · · + F2n−1 ) = (F2n+2 − 1) − F2n
que ´ igual a
e

n

F2i = F2 + F4 + · · · + F2n = F2n+1 − 1
i=1

pois F2n+2 = F2n+1 + F2n .
Analogamente ` anterior, esta propriedade pode ser tamb´m demonstrada pelo Princ´
a
e
ıpio da Indu¸˜o
ca
Matem´tica. Deixo-a a cargo do leitor.
a

A pr´xima propriedade a ser demonstrada refere-se ` limita¸˜o superior de todos os termos da seq¨ˆncia
o
a
ca
ue
n
7
em fun¸˜o de n. A propriedade afirma que Fn <
ca
.
4
Demonstra¸˜o
ca
2
A propriedade ´ v´lida para n = 1 e n = 2 pois F1 = 1 < 7 e F2 = 1 < 7 = 49 .
e a
4
4
16
Utilizemos ent˜o o “Princ´
a
ıpio da Indu¸ao Forte”. Supomos que a propriedade ´ verdadeira para n ∈
c˜
e
7 k
e Fk−1 <
{1, 2, 3, · · · , k − 1, k}. Neste caso, utilizaremos (assumamos que ´ verdade) que Fk <
e
4
7 k−1
para concluir que
4
Fk+1 = Fk + Fk−1 <

7
4

k

+

7
4

k−1

=

Isto n˜o prova a propriedade. Mas, como
a

Fk+1 <

11
4

7
4

7
4

7
4

k−1

11
49
<
=
4
16
k−1

<

7
4

+

7
4

7
4
2

k−1

=

7
4

k−1

7
+1
4

=

11
4

7
4

k−1

.

2

ent˜o
a
7
4

k−1

=

7
4

k+1

,

como quer´
ıamos demonstrar.

Por fim, demonstremos a f´rmula geral da seq¨ˆncia de Fibonacci, conhecida por F´rmula de Binet, que
o
ue
o
´ dada por
e
√ n
√ n
1
1+ 5
1
1− 5
Fn = √
−√
.
2
2
5
5
Demonstra¸˜o
ca
Para n = 1 temos

√
√
1+ 5
1
1− 5
−√
=
2
2
5
√
√
1+ 5 1− 5
1 √
−
= √ 5 = 1 = F1 .
2
2
5

1
√
5
1
√
5

Logo a propriedade ´ verdadeira para n = 1. Supondo que a propriedade ´ tamb´m v´lida para n ∈
e
e
e
a
{1, 2, 3, · · · , k − 1, k} queremos mostrar que ´ v´lida tamb´m para n = k + 1. Sabemos que, por hip´tese,
e a
e
o
3
√

√

k

√

k

√

k−1

k−1

1
1
1
1
que Fk = √5 1+2 5 − √5 1−2 5
e Fk−1 = √5 1+2 5
− √5 1−2 5
. Sabemos tamb´m, pela
e
defini¸˜o da seq¨ˆncia de Fibonacci que Fk+1 = Fk + Fk−1 para k ≥ 2. Ent˜o,
ca
ue
a

Fk+1 = Fk + Fk−1
Fk+1

Fk+1

1
=√
5

√
1+ 5
2

1
=√
5

√
1+ 5
2
Fk+1

k

Fk+1

√
1+ 5
2

1
=√
5

k

√
1+ 5
2

Fk+1

√
1− 5
2

1
−√
5

√
1− 5
2

1
−√
5

1
=√
5

k

1
=√
5

k

k

√
1+ 5
2

1
+√
5

√
1+ 5
2

1
+√
5
k

k−1

√
1+ 5
2

−1

1
−√
5
1
−√
5

2
√
1+
1+ 5

1
−√
5

√
1− 5
2

k

√
1+ 5
2

1
−√
5

√
1− 5
2

k

1
−√
5

√
1− 5
2

√
1− 5
2
√
1− 5
2

k−1

k

√
1− 5
2

−1

k+1

k

√
1+ 5
2

k+1

1+

2
√
1− 5

√
1− 5
2

Logo, pelo “Princ´
ıpio da Indu¸ao Matem´tica Forte”, a propriedade ´ v´lida para todo n ≥ 1.
c˜
a
e a
√
1+ 5
O n´mero irracional ϕ =
u
´ conhecido como raz˜o aurea ou n´mero de ouro. Utilizando este
e
a ´
u
2
n´mero, podemos reescrever a F´rmula de Binet.
u
o
Observe que
√ −1
√
2
1− 5
1+ 5
−1
√ =
.
(−ϕ) = −
=−
2
2
1+ 5
Logo,
Fn =

ϕn − (−ϕ)−n
√
.
5

4

Mais conteúdo relacionado

Mais procurados

Pontos notáveis no triângulo
Pontos notáveis no triânguloPontos notáveis no triângulo
Pontos notáveis no triânguloELIZEU GODOY JR
 
Função logarítmica definição e propeiedades
Função logarítmica   definição e propeiedadesFunção logarítmica   definição e propeiedades
Função logarítmica definição e propeiedadesPéricles Penuel
 
Geometria Espacial - Questões resolvidas sobre cubo e paralelepípedo - Fundam...
Geometria Espacial - Questões resolvidas sobre cubo e paralelepípedo - Fundam...Geometria Espacial - Questões resolvidas sobre cubo e paralelepípedo - Fundam...
Geometria Espacial - Questões resolvidas sobre cubo e paralelepípedo - Fundam...Celso do Rozário Brasil Gonçalves
 
SEMANA 06 - MATEMÁTICA - 3ª SÉRIE - PRINCÍPIO MULTIPLICATIVO E PRINCÍPIO ADITIVO
SEMANA 06 - MATEMÁTICA - 3ª SÉRIE - PRINCÍPIO MULTIPLICATIVO E PRINCÍPIO ADITIVOSEMANA 06 - MATEMÁTICA - 3ª SÉRIE - PRINCÍPIO MULTIPLICATIVO E PRINCÍPIO ADITIVO
SEMANA 06 - MATEMÁTICA - 3ª SÉRIE - PRINCÍPIO MULTIPLICATIVO E PRINCÍPIO ADITIVOGernciadeProduodeMat
 
Áreas e volumes de sólidos
Áreas e volumes de sólidosÁreas e volumes de sólidos
Áreas e volumes de sólidosJoana Ferreira
 
Operações básicas da matemática
Operações básicas da matemáticaOperações básicas da matemática
Operações básicas da matemáticaEdiclei Oliveira
 
Razões trigonométricas no triângulo retângulo
Razões trigonométricas no triângulo retânguloRazões trigonométricas no triângulo retângulo
Razões trigonométricas no triângulo retânguloSandra Barreto
 
Gabarito AV3 MA14 2016 - PROFMAT/CPII
Gabarito AV3 MA14 2016 - PROFMAT/CPIIGabarito AV3 MA14 2016 - PROFMAT/CPII
Gabarito AV3 MA14 2016 - PROFMAT/CPIILuciana Martino
 
Principio Fundamental Da Contagem
Principio Fundamental Da ContagemPrincipio Fundamental Da Contagem
Principio Fundamental Da Contagemteodepaula
 
Equações do 2.º grau
Equações do 2.º grauEquações do 2.º grau
Equações do 2.º graualdaalves
 
Cálculo Numérico - Aula 03: Zeros de funções
Cálculo Numérico - Aula 03: Zeros de funçõesCálculo Numérico - Aula 03: Zeros de funções
Cálculo Numérico - Aula 03: Zeros de funçõesRodolfo Almeida
 
Probabilidade. 3º ano
Probabilidade. 3º anoProbabilidade. 3º ano
Probabilidade. 3º anowelixon
 
Equações literais
Equações literaisEquações literais
Equações literaisaldaalves
 

Mais procurados (20)

Propriedades da multiplicação
Propriedades da multiplicaçãoPropriedades da multiplicação
Propriedades da multiplicação
 
Pontos notáveis no triângulo
Pontos notáveis no triânguloPontos notáveis no triângulo
Pontos notáveis no triângulo
 
Função logarítmica definição e propeiedades
Função logarítmica   definição e propeiedadesFunção logarítmica   definição e propeiedades
Função logarítmica definição e propeiedades
 
1. esfera fórmulas e questões
1. esfera   fórmulas e questões1. esfera   fórmulas e questões
1. esfera fórmulas e questões
 
Geometria Espacial - Questões resolvidas sobre cubo e paralelepípedo - Fundam...
Geometria Espacial - Questões resolvidas sobre cubo e paralelepípedo - Fundam...Geometria Espacial - Questões resolvidas sobre cubo e paralelepípedo - Fundam...
Geometria Espacial - Questões resolvidas sobre cubo e paralelepípedo - Fundam...
 
SEMANA 06 - MATEMÁTICA - 3ª SÉRIE - PRINCÍPIO MULTIPLICATIVO E PRINCÍPIO ADITIVO
SEMANA 06 - MATEMÁTICA - 3ª SÉRIE - PRINCÍPIO MULTIPLICATIVO E PRINCÍPIO ADITIVOSEMANA 06 - MATEMÁTICA - 3ª SÉRIE - PRINCÍPIO MULTIPLICATIVO E PRINCÍPIO ADITIVO
SEMANA 06 - MATEMÁTICA - 3ª SÉRIE - PRINCÍPIO MULTIPLICATIVO E PRINCÍPIO ADITIVO
 
Áreas e volumes de sólidos
Áreas e volumes de sólidosÁreas e volumes de sólidos
Áreas e volumes de sólidos
 
Operações básicas da matemática
Operações básicas da matemáticaOperações básicas da matemática
Operações básicas da matemática
 
Razao Da Semelhanca
Razao Da SemelhancaRazao Da Semelhanca
Razao Da Semelhanca
 
Numeros complexos
Numeros complexosNumeros complexos
Numeros complexos
 
Razões trigonométricas no triângulo retângulo
Razões trigonométricas no triângulo retânguloRazões trigonométricas no triângulo retângulo
Razões trigonométricas no triângulo retângulo
 
Gabarito AV3 MA14 2016 - PROFMAT/CPII
Gabarito AV3 MA14 2016 - PROFMAT/CPIIGabarito AV3 MA14 2016 - PROFMAT/CPII
Gabarito AV3 MA14 2016 - PROFMAT/CPII
 
Principio Fundamental Da Contagem
Principio Fundamental Da ContagemPrincipio Fundamental Da Contagem
Principio Fundamental Da Contagem
 
Probabilidade
ProbabilidadeProbabilidade
Probabilidade
 
Equações do 2.º grau
Equações do 2.º grauEquações do 2.º grau
Equações do 2.º grau
 
Matemática a1-geometria
Matemática a1-geometriaMatemática a1-geometria
Matemática a1-geometria
 
Função afim
Função afimFunção afim
Função afim
 
Cálculo Numérico - Aula 03: Zeros de funções
Cálculo Numérico - Aula 03: Zeros de funçõesCálculo Numérico - Aula 03: Zeros de funções
Cálculo Numérico - Aula 03: Zeros de funções
 
Probabilidade. 3º ano
Probabilidade. 3º anoProbabilidade. 3º ano
Probabilidade. 3º ano
 
Equações literais
Equações literaisEquações literais
Equações literais
 

Destaque

Como calcular a média do ENEM para ingresso na UFABC?
Como calcular a média do ENEM para ingresso na UFABC?Como calcular a média do ENEM para ingresso na UFABC?
Como calcular a média do ENEM para ingresso na UFABC?Rodrigo Thiago Passos Silva
 
Necessidades de P&D na área industrial de Vinhaça
Necessidades de P&D na área industrial de VinhaçaNecessidades de P&D na área industrial de Vinhaça
Necessidades de P&D na área industrial de VinhaçaRodrigo Thiago Passos Silva
 

Destaque (20)

Como calcular a média do ENEM para ingresso na UFABC?
Como calcular a média do ENEM para ingresso na UFABC?Como calcular a média do ENEM para ingresso na UFABC?
Como calcular a média do ENEM para ingresso na UFABC?
 
Identidade de Euler - Demonstração
Identidade de Euler - DemonstraçãoIdentidade de Euler - Demonstração
Identidade de Euler - Demonstração
 
Cálculo do imposto de renda
Cálculo do imposto de rendaCálculo do imposto de renda
Cálculo do imposto de renda
 
Redes de Primeira Ordem
Redes de Primeira OrdemRedes de Primeira Ordem
Redes de Primeira Ordem
 
Por que "menos com menos dá mais"?
Por que "menos com menos dá mais"?Por que "menos com menos dá mais"?
Por que "menos com menos dá mais"?
 
1 = 0,999...
1 = 0,999...1 = 0,999...
1 = 0,999...
 
Demonstração da equação de Bhaskara
Demonstração da equação de BhaskaraDemonstração da equação de Bhaskara
Demonstração da equação de Bhaskara
 
Tensão média e tensão eficaz
Tensão média e tensão eficazTensão média e tensão eficaz
Tensão média e tensão eficaz
 
Necessidades de P&D na área industrial de Vinhaça
Necessidades de P&D na área industrial de VinhaçaNecessidades de P&D na área industrial de Vinhaça
Necessidades de P&D na área industrial de Vinhaça
 
Apresentação - TCC - Eletronica
Apresentação -  TCC - EletronicaApresentação -  TCC - Eletronica
Apresentação - TCC - Eletronica
 
Petróleos ultra-pesados
Petróleos ultra-pesadosPetróleos ultra-pesados
Petróleos ultra-pesados
 
Esboço - Gráfico de Função
Esboço - Gráfico de FunçãoEsboço - Gráfico de Função
Esboço - Gráfico de Função
 
Sensor de Campo Magnético
Sensor de Campo MagnéticoSensor de Campo Magnético
Sensor de Campo Magnético
 
Questões - Bases Matemáticas
Questões - Bases MatemáticasQuestões - Bases Matemáticas
Questões - Bases Matemáticas
 
Resumo - Álgebra Linear
Resumo - Álgebra LinearResumo - Álgebra Linear
Resumo - Álgebra Linear
 
Lista 2 - Geometria Analítica
Lista 2  - Geometria AnalíticaLista 2  - Geometria Analítica
Lista 2 - Geometria Analítica
 
Relatório - Desenho e Projeto
Relatório - Desenho e ProjetoRelatório - Desenho e Projeto
Relatório - Desenho e Projeto
 
TCC - Eletrônica
TCC - Eletrônica TCC - Eletrônica
TCC - Eletrônica
 
Lista 3 - Bases Matemáticas - Indução
Lista 3  - Bases Matemáticas - InduçãoLista 3  - Bases Matemáticas - Indução
Lista 3 - Bases Matemáticas - Indução
 
Newton e Leibniz
Newton e LeibnizNewton e Leibniz
Newton e Leibniz
 

Mais de Rodrigo Thiago Passos Silva (14)

Recompra de Energia - Demonstração
Recompra de Energia - DemonstraçãoRecompra de Energia - Demonstração
Recompra de Energia - Demonstração
 
Exercício sobre Pré-Imagem
Exercício sobre Pré-ImagemExercício sobre Pré-Imagem
Exercício sobre Pré-Imagem
 
Demonstração - Propriedade de módulo
Demonstração - Propriedade de móduloDemonstração - Propriedade de módulo
Demonstração - Propriedade de módulo
 
Petróleos ultra-pesados - Apresentação
Petróleos ultra-pesados - ApresentaçãoPetróleos ultra-pesados - Apresentação
Petróleos ultra-pesados - Apresentação
 
Exercício - Torre de Resfriamento - Termodinâmica
Exercício - Torre de Resfriamento - TermodinâmicaExercício - Torre de Resfriamento - Termodinâmica
Exercício - Torre de Resfriamento - Termodinâmica
 
Demonstração do binômio de Newton
Demonstração do binômio de NewtonDemonstração do binômio de Newton
Demonstração do binômio de Newton
 
Formulário - Estatística
Formulário - EstatísticaFormulário - Estatística
Formulário - Estatística
 
Limite de função de duas variáveis
Limite de função de duas variáveisLimite de função de duas variáveis
Limite de função de duas variáveis
 
Exercícios de Geometria Analítica
Exercícios de Geometria AnalíticaExercícios de Geometria Analítica
Exercícios de Geometria Analítica
 
1+1=2
1+1=21+1=2
1+1=2
 
Lista 4 - Resolução
Lista 4 - ResoluçãoLista 4 - Resolução
Lista 4 - Resolução
 
Lista 3 - Geometria Analítica
Lista 3   - Geometria AnalíticaLista 3   - Geometria Analítica
Lista 3 - Geometria Analítica
 
Matriz inversa
Matriz inversaMatriz inversa
Matriz inversa
 
Apresentação - Desenho e Projeto
Apresentação - Desenho e ProjetoApresentação - Desenho e Projeto
Apresentação - Desenho e Projeto
 

Último

Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicasCenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicasRosalina Simão Nunes
 
Pedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptxPedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptxleandropereira983288
 
GÊNERO TEXTUAL - TIRINHAS - Charges - Cartum
GÊNERO TEXTUAL - TIRINHAS - Charges - CartumGÊNERO TEXTUAL - TIRINHAS - Charges - Cartum
GÊNERO TEXTUAL - TIRINHAS - Charges - CartumAugusto Costa
 
Gerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalGerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalJacqueline Cerqueira
 
Slide língua portuguesa português 8 ano.pptx
Slide língua portuguesa português 8 ano.pptxSlide língua portuguesa português 8 ano.pptx
Slide língua portuguesa português 8 ano.pptxssuserf54fa01
 
Slides Lição 5, CPAD, Os Inimigos do Cristão, 2Tr24, Pr Henrique.pptx
Slides Lição 5, CPAD, Os Inimigos do Cristão, 2Tr24, Pr Henrique.pptxSlides Lição 5, CPAD, Os Inimigos do Cristão, 2Tr24, Pr Henrique.pptx
Slides Lição 5, CPAD, Os Inimigos do Cristão, 2Tr24, Pr Henrique.pptxLuizHenriquedeAlmeid6
 
trabalho wanda rocha ditadura
trabalho wanda rocha ditaduratrabalho wanda rocha ditadura
trabalho wanda rocha ditaduraAdryan Luiz
 
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptxSlides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptxLuizHenriquedeAlmeid6
 
A Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das MãesA Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das MãesMary Alvarenga
 
“Sobrou pra mim” - Conto de Ruth Rocha.pptx
“Sobrou pra mim” - Conto de Ruth Rocha.pptx“Sobrou pra mim” - Conto de Ruth Rocha.pptx
“Sobrou pra mim” - Conto de Ruth Rocha.pptxthaisamaral9365923
 
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)Mary Alvarenga
 
William J. Bennett - O livro das virtudes para Crianças.pdf
William J. Bennett - O livro das virtudes para Crianças.pdfWilliam J. Bennett - O livro das virtudes para Crianças.pdf
William J. Bennett - O livro das virtudes para Crianças.pdfAdrianaCunha84
 
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASBCRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASBAline Santana
 
Mapa mental - Classificação dos seres vivos .docx
Mapa mental - Classificação dos seres vivos .docxMapa mental - Classificação dos seres vivos .docx
Mapa mental - Classificação dos seres vivos .docxBeatrizLittig1
 
RedacoesComentadasModeloAnalisarFazer.pdf
RedacoesComentadasModeloAnalisarFazer.pdfRedacoesComentadasModeloAnalisarFazer.pdf
RedacoesComentadasModeloAnalisarFazer.pdfAlissonMiranda22
 
Literatura Brasileira - escolas literárias.ppt
Literatura Brasileira - escolas literárias.pptLiteratura Brasileira - escolas literárias.ppt
Literatura Brasileira - escolas literárias.pptMaiteFerreira4
 
D9 RECONHECER GENERO DISCURSIVO SPA.pptx
D9 RECONHECER GENERO DISCURSIVO SPA.pptxD9 RECONHECER GENERO DISCURSIVO SPA.pptx
D9 RECONHECER GENERO DISCURSIVO SPA.pptxRonys4
 

Último (20)

Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicasCenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
Cenários de Aprendizagem - Estratégia para implementação de práticas pedagógicas
 
Pedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptxPedologia- Geografia - Geologia - aula_01.pptx
Pedologia- Geografia - Geologia - aula_01.pptx
 
GÊNERO TEXTUAL - TIRINHAS - Charges - Cartum
GÊNERO TEXTUAL - TIRINHAS - Charges - CartumGÊNERO TEXTUAL - TIRINHAS - Charges - Cartum
GÊNERO TEXTUAL - TIRINHAS - Charges - Cartum
 
Gerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalGerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem Organizacional
 
Slide língua portuguesa português 8 ano.pptx
Slide língua portuguesa português 8 ano.pptxSlide língua portuguesa português 8 ano.pptx
Slide língua portuguesa português 8 ano.pptx
 
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA -
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA      -XI OLIMPÍADAS DA LÍNGUA PORTUGUESA      -
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA -
 
Slides Lição 5, CPAD, Os Inimigos do Cristão, 2Tr24, Pr Henrique.pptx
Slides Lição 5, CPAD, Os Inimigos do Cristão, 2Tr24, Pr Henrique.pptxSlides Lição 5, CPAD, Os Inimigos do Cristão, 2Tr24, Pr Henrique.pptx
Slides Lição 5, CPAD, Os Inimigos do Cristão, 2Tr24, Pr Henrique.pptx
 
trabalho wanda rocha ditadura
trabalho wanda rocha ditaduratrabalho wanda rocha ditadura
trabalho wanda rocha ditadura
 
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptxSlides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
Slides Lição 4, Betel, Ordenança quanto à contribuição financeira, 2Tr24.pptx
 
A Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das MãesA Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das Mães
 
“Sobrou pra mim” - Conto de Ruth Rocha.pptx
“Sobrou pra mim” - Conto de Ruth Rocha.pptx“Sobrou pra mim” - Conto de Ruth Rocha.pptx
“Sobrou pra mim” - Conto de Ruth Rocha.pptx
 
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
Grupo Tribalhista - Música Velha Infância (cruzadinha e caça palavras)
 
William J. Bennett - O livro das virtudes para Crianças.pdf
William J. Bennett - O livro das virtudes para Crianças.pdfWilliam J. Bennett - O livro das virtudes para Crianças.pdf
William J. Bennett - O livro das virtudes para Crianças.pdf
 
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASBCRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
CRÔNICAS DE UMA TURMA - TURMA DE 9ºANO - EASB
 
Mapa mental - Classificação dos seres vivos .docx
Mapa mental - Classificação dos seres vivos .docxMapa mental - Classificação dos seres vivos .docx
Mapa mental - Classificação dos seres vivos .docx
 
CINEMATICA DE LOS MATERIALES Y PARTICULA
CINEMATICA DE LOS MATERIALES Y PARTICULACINEMATICA DE LOS MATERIALES Y PARTICULA
CINEMATICA DE LOS MATERIALES Y PARTICULA
 
Bullying, sai pra lá
Bullying,  sai pra láBullying,  sai pra lá
Bullying, sai pra lá
 
RedacoesComentadasModeloAnalisarFazer.pdf
RedacoesComentadasModeloAnalisarFazer.pdfRedacoesComentadasModeloAnalisarFazer.pdf
RedacoesComentadasModeloAnalisarFazer.pdf
 
Literatura Brasileira - escolas literárias.ppt
Literatura Brasileira - escolas literárias.pptLiteratura Brasileira - escolas literárias.ppt
Literatura Brasileira - escolas literárias.ppt
 
D9 RECONHECER GENERO DISCURSIVO SPA.pptx
D9 RECONHECER GENERO DISCURSIVO SPA.pptxD9 RECONHECER GENERO DISCURSIVO SPA.pptx
D9 RECONHECER GENERO DISCURSIVO SPA.pptx
 

Demonstração da fórmula de Binet para a sequência de Fibonacci

  • 1. ¨ˆ SEQUENCIA DE FIBONACCI Aspectos matem´ticos a Rodrigo Thiago Passos Silva rodrigotpsilva@gmail.com A seq¨ˆncia de Fibonacci ´ uma seq¨ˆncia de n´meros reais ue e ue u dada por  1,    F (n) = Fn = 1,    Fn−1 + Fn−2 num´rica, ou seja, uma fun¸˜o F : N → R e ca se n = 1 se n = 2 . se n ≥ 3 Em outras palavras, ´ uma seq¨ˆncia cujos dois primeiros termos s˜o iguais a 1 e os demais correspondem e ue a a ` soma dos dois anteriores. Os primeiros termos da seq¨ˆncia s˜o: ue a F1 = 1 F2 = 1 F3 = 2 F4 = 3 F5 = 5 F6 = 8 F7 = 13 F8 = 21. Observemos agora que F1 = 1 = F3 − 1 F1 + F2 = 2 = F4 − 1 F1 + F2 + F3 = 4 = F5 − 1 F1 + F2 + F3 + F4 = 7 = F6 − 1 F1 + F2 + F3 + F4 + F5 = 12 = F7 − 1. n Fi = Fn+2 − 1 . Portanto, conjecturemos que i=1 Demonstra¸˜o ca ´ a Utilizaremos o Princ´ ıpio da Indu¸ao Matem´tica. E f´cil observar que a propriedade conjecturada ´ c˜ a e 1 Fi = 1 e F1+2 − 1 = F3 − 1 = 2 − 1 = 1. v´lida para n = 1 pois a i=1 k Fi = Fk+2 − 1 queremos Supondo que a propriedade ´ v´lida para n = k, ou seja, que ´ verdade P (k) : e a e i=1 k+1 Fi = Fk+3 − 1 ´ v´lida. e a mostrar que P (k + 1) : i=1 Somando-se Fk+1 em ambos os lados da igualdade assumida como hip´tese temos o k Fi + Fk+1 = Fk+2 + Fk+1 − 1. i=1 k+1 O lado esquerdo equivale a Fi e, como o termo posterior na seq¨ˆncia de Fibonacci ´ dado pela soma ue e i=1 k+1 dos dois anteriores, o lado direito equivale a Fk+3 − 1. Assim, concluimos que Fi = Fk+3 − 1 como i=1 quer´ ıamos demonstrar. 1
  • 2. Agora, observemos a soma dos termos da seq¨ˆncia de ´ ue ındice ´ ımpar n=1 n=2 n=3 F1 = 1 = F2 F1 + F3 = 3 = F4 F1 + F3 + F5 = 8 = F6 . n Conjecturemos, ent˜o, que a F2i−1 = F2n . i=1 Demonstra¸˜o ca 1 A propriedade conjecturada ´ v´lida para n = 1 pois e a F2i−1 = F1 = 1 e F2n = 1. i=1 k Supomos que ela ´ v´lida tamb´m para n = k, ou seja, que e a e F2i−1 = F2k ´ verdadeiro. Somando-se o e i=1 termo F2k+1 em ambos os lados da hip´tese indutiva obtemos o k F2i−1 + F2k+1 = F2k + F2k+1 . i=1 Ultilizando-se racioc´ ınio an´logo ao da demonstra¸ao anterior conclu´ a c˜ ımos que a igualdade acima ´ igual e a k+1 F2i−1 = F2k+2 = F2(k+1) . i=1 Da´ conclu´ ı ımos que se a propriedade ´ v´lida para n = k ´ tamb´m v´lida para n = k + 1. Portanto, pelo e a e e a princ´ ıpio da indu¸˜o matem´tica, ´ v´lida para todo n > 1. ca a e a Podemos observar tamb´m o comportamento da soma dos termos da seq¨ˆncia de ´ e ue ındice par n=1 n=2 n=3 F2 = 1 = F3 − 1 F2 + F4 = 4 = F5 − 1 F2 + F4 + F6 = 12 = F7 − 1. n F2i = F2n+1 − 1 . Logo, podemos conjecturar que i=1 Demonstra¸˜o ca Tomemos a soma dos termos da seq¨ˆncia de Fibonacci at´ o 2n-´simo termo. Temos ue e e 2n Fi = F1 + F2 + F3 + F4 + F5 · · · + F2n−1 + F2n = F2n+2 − 1. i=1 Tomemos a soma dos termos ´ ımpares da seq¨ˆncia de Fibonacci at´ o termo de ´ ue e ındice 2n − 1 (i.e., os n primeiros ´ ımpares). Temos n F2i−1 = F1 + F3 + F5 + · · · + F2n−1 = F2n . i=1 2
  • 3. Subtraindo a segunda equa¸˜o da primeira obtemos ca (F1 + F2 + F3 + F4 + F5 · · · + F2n−1 + F2n ) − (F1 + F3 + F5 + · · · + F2n−1 ) = (F2n+2 − 1) − F2n que ´ igual a e n F2i = F2 + F4 + · · · + F2n = F2n+1 − 1 i=1 pois F2n+2 = F2n+1 + F2n . Analogamente ` anterior, esta propriedade pode ser tamb´m demonstrada pelo Princ´ a e ıpio da Indu¸˜o ca Matem´tica. Deixo-a a cargo do leitor. a A pr´xima propriedade a ser demonstrada refere-se ` limita¸˜o superior de todos os termos da seq¨ˆncia o a ca ue n 7 em fun¸˜o de n. A propriedade afirma que Fn < ca . 4 Demonstra¸˜o ca 2 A propriedade ´ v´lida para n = 1 e n = 2 pois F1 = 1 < 7 e F2 = 1 < 7 = 49 . e a 4 4 16 Utilizemos ent˜o o “Princ´ a ıpio da Indu¸ao Forte”. Supomos que a propriedade ´ verdadeira para n ∈ c˜ e 7 k e Fk−1 < {1, 2, 3, · · · , k − 1, k}. Neste caso, utilizaremos (assumamos que ´ verdade) que Fk < e 4 7 k−1 para concluir que 4 Fk+1 = Fk + Fk−1 < 7 4 k + 7 4 k−1 = Isto n˜o prova a propriedade. Mas, como a Fk+1 < 11 4 7 4 7 4 7 4 k−1 11 49 < = 4 16 k−1 < 7 4 + 7 4 7 4 2 k−1 = 7 4 k−1 7 +1 4 = 11 4 7 4 k−1 . 2 ent˜o a 7 4 k−1 = 7 4 k+1 , como quer´ ıamos demonstrar. Por fim, demonstremos a f´rmula geral da seq¨ˆncia de Fibonacci, conhecida por F´rmula de Binet, que o ue o ´ dada por e √ n √ n 1 1+ 5 1 1− 5 Fn = √ −√ . 2 2 5 5 Demonstra¸˜o ca Para n = 1 temos √ √ 1+ 5 1 1− 5 −√ = 2 2 5 √ √ 1+ 5 1− 5 1 √ − = √ 5 = 1 = F1 . 2 2 5 1 √ 5 1 √ 5 Logo a propriedade ´ verdadeira para n = 1. Supondo que a propriedade ´ tamb´m v´lida para n ∈ e e e a {1, 2, 3, · · · , k − 1, k} queremos mostrar que ´ v´lida tamb´m para n = k + 1. Sabemos que, por hip´tese, e a e o 3
  • 4. √ √ k √ k √ k−1 k−1 1 1 1 1 que Fk = √5 1+2 5 − √5 1−2 5 e Fk−1 = √5 1+2 5 − √5 1−2 5 . Sabemos tamb´m, pela e defini¸˜o da seq¨ˆncia de Fibonacci que Fk+1 = Fk + Fk−1 para k ≥ 2. Ent˜o, ca ue a Fk+1 = Fk + Fk−1 Fk+1 Fk+1 1 =√ 5 √ 1+ 5 2 1 =√ 5 √ 1+ 5 2 Fk+1 k Fk+1 √ 1+ 5 2 1 =√ 5 k √ 1+ 5 2 Fk+1 √ 1− 5 2 1 −√ 5 √ 1− 5 2 1 −√ 5 1 =√ 5 k 1 =√ 5 k k √ 1+ 5 2 1 +√ 5 √ 1+ 5 2 1 +√ 5 k k−1 √ 1+ 5 2 −1 1 −√ 5 1 −√ 5 2 √ 1+ 1+ 5 1 −√ 5 √ 1− 5 2 k √ 1+ 5 2 1 −√ 5 √ 1− 5 2 k 1 −√ 5 √ 1− 5 2 √ 1− 5 2 √ 1− 5 2 k−1 k √ 1− 5 2 −1 k+1 k √ 1+ 5 2 k+1 1+ 2 √ 1− 5 √ 1− 5 2 Logo, pelo “Princ´ ıpio da Indu¸ao Matem´tica Forte”, a propriedade ´ v´lida para todo n ≥ 1. c˜ a e a √ 1+ 5 O n´mero irracional ϕ = u ´ conhecido como raz˜o aurea ou n´mero de ouro. Utilizando este e a ´ u 2 n´mero, podemos reescrever a F´rmula de Binet. u o Observe que √ −1 √ 2 1− 5 1+ 5 −1 √ = . (−ϕ) = − =− 2 2 1+ 5 Logo, Fn = ϕn − (−ϕ)−n √ . 5 4