SlideShare uma empresa Scribd logo
Álbebra Booleana
Prof. Tony Alexander Hild
Lógica Digital – 1 CC – Unicentro – 2013
Princípio da Dualidade
●

Em álgebra Booleana a dualidade pode ser obtida
trocando operadores · e + e substituindo 0s por 1s e
vice-versa.
Exemplo:
(a · b) + c' = (a' + b') · c

2
Postulados e Teoremas da Álgebra
Booleana
●

Postulado 1 – Operações:
A álgebra Booleana tem um conjunto K de 2 ou mais valores e duas
operações · e +, de modo que para todo a, b pertencentes a K:
a·b∈K
a+b∈K

●

Postulado 2 – Valores Neutros:
Existem valores 0 e 1 tais que:
a+0=a
a·1=a

3
Postulados e Teoremas da Álgebra
Booleana
●

Postulado 3 – comutatividade:
a+b=b+a
a·b=b·a

●

Postulado 4 – associatividade:
a + (b + c) = (a + b) + c
a · (b · c) = (a · b) · c

●

Postulado 5 – distributividade:
a + (b · c) = (a + b) · (a + c)
a · (b + c) = (a · b) + (a · c)
4
Postulados e Teoremas da Álgebra
Booleana
●

Postulado 6 – existência de complemento:
Para todo a ∈ K, existe um e apenas um a' ∈ K,
chamado de complemento de a, tal que:
a + a' = 1
a · a' = 0

5
Postulados e Teoremas da Álgebra
Booleana
●

Teorema 1 (Idempotência):
A soma ou o produto de um valor por ele mesmo é igual
a ele mesmo.
a+a=a
a·a=a
____________________________
Prova

6
Postulados e Teoremas da Álgebra
Booleana
●

Teorema 2 (Aniquilação):
a+1=1
a·0=0
____________________________
Prova

7
Postulados e Teoremas da Álgebra
Booleana
●

Teorema 3 (Involução):

●

Teorema 4 (Absorção):
a + (a · b) = a
a · (a + b) = a
____________________________
Prova

8
Postulados e Teoremas da Álgebra
Booleana
●

Teorema 5:
a + a' · b = a + b
a · (a' + b) = a · b
____________________________
Prova

9
Postulados e Teoremas da Álgebra
Booleana
●

Teorema 6 (Adjacência lógica):
a · b + a · b' = a
(a + b) · (a + b) = a
____________________________
Prova

10
Postulados e Teoremas da Álgebra
Booleana
●

Teorema 7:
a · b + a · b' · c = a · b + a · c
(a + b) · (a + b + c) = (a + b) · (a + c)
____________________________
Prova

11
Postulados e Teoremas da Álgebra
Booleana
●

Teorema 8 (Leis de DeMorgan):
(a + b)' = a' · b'
(a · b)' = a' + b'
____________________________
Prova

12
Postulados e Teoremas da Álgebra
Booleana
●

Teorema 9 (Teorema do Consenso):
a · b + a' · c + b · c = a · b + a' · c
(a + b) · (a' + c) · (b + c) = (a + b) · (a' + c)
____________________________
Prova

13
Leis de DeMorgan

14
Leis de DeMorgan

15
Universalidade das portas NAND

16
Universalidade das portas NOR

17
Resumo dos Postulados e Teoremas

18
Postulados e Teoremas expressos por meio de
portas lógicas

19
Representação alternativa

20
Exemplos de simplificações

21
Exemplos de simplificações

22
Exemplos de simplificações

23
Exemplos de simplificações

24
Exemplos de simplificações

25
Exemplos de simplificações

26
Mais exemplos de simplificações

27
Formas Canônica e Padrão
●

Precisamos considerar técnicas formais para a
simplificação de funções booleanas.
–
–
–
–
–

Funções idênticas terão exatamente a mesma forma
canônica;
Mintermos e maxtermos;
Soma dos mintermos e Produtos dos maxtermos;
Produto e soma de termos;
Soma de Produtos (SOP) e Produto de Somas (POS).

28
Definições
●

Literal: Uma variável ou o seu complemento;

●

Termo Produto: literais conectados por ·;

●

Termo Soma: literais conectados por +;

●

●

Mintermo: um termo Produto em que todas as
variáveis aparecem exatamente uma vez, seja
complementada ou não complementada;
Maxtermo: um termo de Soma em que todas as
variáveis aparecem exatamente uma vez, seja
complementada ou não complementada.
29
Mintermo
●

●

●

●

Representa exatamente uma combinação na tabela verdade;
Denotado por mj, onde j é o equivalente decimal dos mintermos
correspondente à combinação binária (bj);
Uma variável em mj é complementada se seu valor em bj for 0, caso
contrário é não complementada;
Exemplo: Dadas 3 variáveis (A,B,C), e j=3. Então, bj = 011 e seu
mintermo correspondente é denotado por mj = A’BC.

30
Maxtermo
●

●

●

●

Representa exatamente uma combinação na tabela verdade;
Denotado por Mj, onde j é o equivalente decimal dos maxtermos
correspondente à combinação binária (bj);
Uma variável em Mj é complementada se seu valor em bj for 1,
caso contrário é não complementada;
Exemplo: Dadas 3 variáveis (A,B,C), e j=3. Então, bj = 011 e
seu maxtermo correspondente é denotado por Mj = A+B'+C'.

31
Tabela verdade para a notação de Mintermos e
Maxtermos
●

●

Mintermos e Maxtermos são fáceis de denotar usando
uma tabela verdade;
Examplo: Assuma 3 variáveis A,B,C (com ordem fixa).
Decimal A
0
0
1
0
2
0
3
0
4
1
5
1
6
1
7
1

B
0
0
1
1
0
0
1
1

C
0
1
0
1
0
1
0
1

f(A,B,C)
1
0
1
1
0
0
1
1

Mintermos
m0 = A'B'C'
m1 = A'B'C
m2 = A'BC'
m3 = A'BC
m4 = AB'C'
m5 = AB'C
m6 = ABC'
m7 = ABC

Maxtermos
M0 = A + B + C
M1 = A + B + C'
M2 = A + B' + C
M3 = A + B' + C'
M4 = A' + B + C
M5 = A' + B + C'
M6 = A' + B' + C
M7 = A' + B' + C'
32
Formas Canônicas (Únicas)
●

●

Qualquer função Booleana f( ) pode ser expressada
como uma soma única de mintermos ou um produto
único de maxtermos (sob uma ordem de variáveis fixa);
Em outras palavras, toda função f( ) possui duas formas
canônicas:
–
–

Soma de Produtos Canônica (soma de mintermos);
Produto de Somas Canônico (produto de maxtermos).

33
Formas Canônicas (cont.)
●

Soma de Produtos Canônica:
Os mintermos incluídos são os mj tal que f( ) = 1 na
linha j da tabela verdade para f( ).
Produto de Somas Canônico:
–

●

–

Os maxtermos incluídos são os Mj tal que f( ) = 0 na
linha j da tabela verdade para f( ).

34
Exemplo
●

Tabela verdade para f(A,B,C);

●

A forma canônica de soma de produtos para f é:
–

●

A forma canônica de produto de somas para F é:
–

●

f(A,B,C) = m1 + m2 + m4 + m6 = A’B’C + A’BC’ + AB’C’ + ABC’
f(A,B,C) = M0 · M3 · M5 · M7 = (A+B+C) · (A+B’+C’) · (A’+B+C’) ·
(A’+B’+C’)

Observe que: mj = Mj’.
0
1
2
3
4
5
6
7

A
0
0
0
0
1
1
1
1

B
0
0
1
1
0
0
1
1

C
0
1
0
1
0
1
0
1

F
0
1
1
0
1
0
1
0

35
Abreviatura: ∑ e ∏
●

●

●

f(A,B,C) = ∑ m(1,2,4,6), onde ∑ indica que é a forma Soma de
Produtos, e m(1,2,4,6) indica que os mintermos que devem ser
incluídos são m1, m2, m4, e m6.
f(A,B,C) = ∏ M(0,3,5,7), onde ∏ indica que é a forma Produto
de Somas, e M(0,3,5,7) indica que os maxtermos que devem ser
incluídos são M0, M3, M5, e M7.
Como mj = Mj’ para todo j,
∑ m(1,2,4,6) = ∏ M(0,3,5,7) = f(A,B,C)

36
Conversão entre Formas Canônicas
●

●

Substitua ∑ por ∏ (ou vice versa) e substitua os j’s que estão na forma
original pelos que não estão.
Example:
f(A,B,C) = A’B’C + A’BC’ + AB’C’ + ABC’
= m1 + m2 + m4 + m6
= ∑(1,2,4,6)
= ∏(0,3,5,7)
= (A+B+C)·(A+B’+C’)·(A’+B+C’)·(A’+B’+C’)

37
Formas Padrão (Não Únicas)
●

●

●

Formas Padrão são “como” Formas Canônicas, exceto
que nem todas as variáveis precisam aparecer nos
termos produto (SOP) ou soma (POS) individuais;
Exemplo:
f(A,B,C) = A’B’C + BC’ + AC’
é uma forma padrão de soma de produtos.
f(A,B,C) = (A+B+C)·(B’+C’)·(A’+C’)
é uma forma padrão de produto de somas.

38
Conversão de SOP da forma padrão para a
forma canônica
●

●
●

Expanda os termos não-canônicos inserindo o
equivalente a 1 em cada variável x ausente:
(x + x’) = 1
Remova os mintermos duplicados
f(A,B,C) = A’B’C + BC’ + AC’
= A’B’C + (A+A’)BC’ + A(B+B’)C’
= A’B’C + ABC’ + A’BC’ + ABC’ + AB’C’
= A’B’C + ABC’ + A’BC + AB’C’

39
Conversão de POS da forma padrão para a
forma canônica
●

●
●

Expanda os termos não-canônicos adicionando 0 nos termos
com variáveis faltantes (e.g., xx’ = 0) e use a lei distributiva.
Remova os maxtermos duplicados.
f(A,B,C) = (A+B+C)·(B’+C’)·(A’+C’)
= (A+B+C)·(AA’+B’+C’)·(A’+BB’+C’)
= (A+B+C)·(A+B’+C’)·(A’+B’+C’)·
(A’+B+C’)·(A’+B’+C’)
= (A+B+C)·(A+B’+C’)·(A’+B’+C’)·(A’+B+C’)

40

Mais conteúdo relacionado

Mais procurados

18 series de taylor e de maclaurin
18 series de taylor e de maclaurin18 series de taylor e de maclaurin
18 series de taylor e de maclaurin
Gabriela Cristina
 
Fórmulas de Eletromagnetismo
Fórmulas de EletromagnetismoFórmulas de Eletromagnetismo
Fórmulas de Eletromagnetismo
O mundo da FÍSICA
 
Funcoes trigonometricas.ppt
Funcoes trigonometricas.pptFuncoes trigonometricas.ppt
Funcoes trigonometricas.ppt
Rodrigo Carvalho
 
Amplificadores operacionais
Amplificadores operacionaisAmplificadores operacionais
Amplificadores operacionais
GIGLLIARA SEGANTINI DE MENEZES
 
Trigonometria introducao
Trigonometria introducaoTrigonometria introducao
Trigonometria introducao
Justi Fica-se
 
Aula sobre triângulos
Aula sobre triângulosAula sobre triângulos
Aula sobre triângulos
andreilson18
 
Função afim
Função afimFunção afim
Função afim
wfsousamatematica
 
Monômios
MonômiosMonômios
Monômios
Faculdade Nobre
 
Ternos pitagóricos
Ternos pitagóricosTernos pitagóricos
Ternos pitagóricos
betencourt
 
Lista de exercicios algoritmos resolvida-
Lista de exercicios   algoritmos  resolvida-Lista de exercicios   algoritmos  resolvida-
Lista de exercicios algoritmos resolvida-
Mauro Pereira
 
Equações do 1º grau ppt
Equações do 1º grau pptEquações do 1º grau ppt
Equações do 1º grau ppt
ktorz
 
Algoritmos - Lógica de Programação
Algoritmos - Lógica de ProgramaçãoAlgoritmos - Lógica de Programação
Algoritmos - Lógica de Programação
Elaine Cecília Gatto
 
Funções
FunçõesFunções
Perímetro e área do circulo
Perímetro e área do circuloPerímetro e área do circulo
Perímetro e área do circulo
Abel Mondlane
 
Matriz transposta, Matriz Simétrica, Matriz Conjugada
Matriz transposta, Matriz Simétrica, Matriz ConjugadaMatriz transposta, Matriz Simétrica, Matriz Conjugada
Matriz transposta, Matriz Simétrica, Matriz Conjugada
numerosnamente
 
Lógica matemática (exercícios resolvidos)
Lógica matemática (exercícios resolvidos)Lógica matemática (exercícios resolvidos)
Lógica matemática (exercícios resolvidos)
wilkerfilipel
 
Lista de exercicios algoritmos com pseudocodigo
Lista de exercicios   algoritmos com pseudocodigoLista de exercicios   algoritmos com pseudocodigo
Lista de exercicios algoritmos com pseudocodigo
Mauro Pereira
 
Introdução a python
Introdução a pythonIntrodução a python
Introdução a python
Gemilson George
 
Estequiometria
EstequiometriaEstequiometria
Estequiometria
DelPadre
 
FunçõEs Polinomiais
FunçõEs PolinomiaisFunçõEs Polinomiais
FunçõEs Polinomiais
educacao f
 

Mais procurados (20)

18 series de taylor e de maclaurin
18 series de taylor e de maclaurin18 series de taylor e de maclaurin
18 series de taylor e de maclaurin
 
Fórmulas de Eletromagnetismo
Fórmulas de EletromagnetismoFórmulas de Eletromagnetismo
Fórmulas de Eletromagnetismo
 
Funcoes trigonometricas.ppt
Funcoes trigonometricas.pptFuncoes trigonometricas.ppt
Funcoes trigonometricas.ppt
 
Amplificadores operacionais
Amplificadores operacionaisAmplificadores operacionais
Amplificadores operacionais
 
Trigonometria introducao
Trigonometria introducaoTrigonometria introducao
Trigonometria introducao
 
Aula sobre triângulos
Aula sobre triângulosAula sobre triângulos
Aula sobre triângulos
 
Função afim
Função afimFunção afim
Função afim
 
Monômios
MonômiosMonômios
Monômios
 
Ternos pitagóricos
Ternos pitagóricosTernos pitagóricos
Ternos pitagóricos
 
Lista de exercicios algoritmos resolvida-
Lista de exercicios   algoritmos  resolvida-Lista de exercicios   algoritmos  resolvida-
Lista de exercicios algoritmos resolvida-
 
Equações do 1º grau ppt
Equações do 1º grau pptEquações do 1º grau ppt
Equações do 1º grau ppt
 
Algoritmos - Lógica de Programação
Algoritmos - Lógica de ProgramaçãoAlgoritmos - Lógica de Programação
Algoritmos - Lógica de Programação
 
Funções
FunçõesFunções
Funções
 
Perímetro e área do circulo
Perímetro e área do circuloPerímetro e área do circulo
Perímetro e área do circulo
 
Matriz transposta, Matriz Simétrica, Matriz Conjugada
Matriz transposta, Matriz Simétrica, Matriz ConjugadaMatriz transposta, Matriz Simétrica, Matriz Conjugada
Matriz transposta, Matriz Simétrica, Matriz Conjugada
 
Lógica matemática (exercícios resolvidos)
Lógica matemática (exercícios resolvidos)Lógica matemática (exercícios resolvidos)
Lógica matemática (exercícios resolvidos)
 
Lista de exercicios algoritmos com pseudocodigo
Lista de exercicios   algoritmos com pseudocodigoLista de exercicios   algoritmos com pseudocodigo
Lista de exercicios algoritmos com pseudocodigo
 
Introdução a python
Introdução a pythonIntrodução a python
Introdução a python
 
Estequiometria
EstequiometriaEstequiometria
Estequiometria
 
FunçõEs Polinomiais
FunçõEs PolinomiaisFunçõEs Polinomiais
FunçõEs Polinomiais
 

Destaque

ICC-05 Álgebra Booleana
ICC-05 Álgebra BooleanaICC-05 Álgebra Booleana
ICC-05 Álgebra Booleana
Eduardo Nicola F. Zagari
 
Algebra Boole
Algebra BooleAlgebra Boole
Algebra Boole
fernandosrv
 
Álgebra de Boole
Álgebra de BooleÁlgebra de Boole
Álgebra de Boole
Chromus Master
 
áLgebra booleana
áLgebra booleanaáLgebra booleana
áLgebra booleana
María Gabriela Díaz Marín
 
Boolean algebra
Boolean algebraBoolean algebra
Boolean algebra
Gagan Deep
 
Algebra de Boole - Circuitos Digitais
Algebra de Boole - Circuitos DigitaisAlgebra de Boole - Circuitos Digitais
Algebra de Boole - Circuitos Digitais
Matheus Verçosa
 
Biografia de george boole
Biografia de george booleBiografia de george boole
Biografia de george boole
Fabio Guerreiro
 
George Boole - Rosimeire
George Boole - RosimeireGeorge Boole - Rosimeire
George Boole - Rosimeire
Alberto Casaca
 
Lógica booleana e estruturas condicionais
Lógica booleana e estruturas condicionaisLógica booleana e estruturas condicionais
Lógica booleana e estruturas condicionais
Carlos Wagner Costa
 
Arquitetura 6 1
Arquitetura 6 1Arquitetura 6 1
Arquitetura 6 1
Paulo Fonseca
 
Algebra booleana aplicações
Algebra booleana aplicaçõesAlgebra booleana aplicações
Algebra booleana aplicações
Jefferson William Rosa
 
Circuitos
CircuitosCircuitos
Circuitos
Luiz Henrique
 
Circuitos logicos
Circuitos logicosCircuitos logicos
Circuitos logicos
Jairo Espinoza
 
Algebra de boole
Algebra de booleAlgebra de boole
Algebra de boole
Ruth Sotelo Landa
 
Operadores Booleanos
Operadores BooleanosOperadores Booleanos
Operadores Booleanos
Ana Bessa
 
Algebra booleana
Algebra booleanaAlgebra booleana
Algebra booleana
Aiirebii Kwuanalo
 
Boolean algebra
Boolean algebraBoolean algebra
Boolean algebra
Ganesh Mummidi
 
Algebra[1]
Algebra[1]Algebra[1]
Aula 05
Aula 05Aula 05
Apontamentos de contabilidade Geral 1 Ano
Apontamentos de contabilidade Geral 1 AnoApontamentos de contabilidade Geral 1 Ano
Apontamentos de contabilidade Geral 1 Ano
nihomue
 

Destaque (20)

ICC-05 Álgebra Booleana
ICC-05 Álgebra BooleanaICC-05 Álgebra Booleana
ICC-05 Álgebra Booleana
 
Algebra Boole
Algebra BooleAlgebra Boole
Algebra Boole
 
Álgebra de Boole
Álgebra de BooleÁlgebra de Boole
Álgebra de Boole
 
áLgebra booleana
áLgebra booleanaáLgebra booleana
áLgebra booleana
 
Boolean algebra
Boolean algebraBoolean algebra
Boolean algebra
 
Algebra de Boole - Circuitos Digitais
Algebra de Boole - Circuitos DigitaisAlgebra de Boole - Circuitos Digitais
Algebra de Boole - Circuitos Digitais
 
Biografia de george boole
Biografia de george booleBiografia de george boole
Biografia de george boole
 
George Boole - Rosimeire
George Boole - RosimeireGeorge Boole - Rosimeire
George Boole - Rosimeire
 
Lógica booleana e estruturas condicionais
Lógica booleana e estruturas condicionaisLógica booleana e estruturas condicionais
Lógica booleana e estruturas condicionais
 
Arquitetura 6 1
Arquitetura 6 1Arquitetura 6 1
Arquitetura 6 1
 
Algebra booleana aplicações
Algebra booleana aplicaçõesAlgebra booleana aplicações
Algebra booleana aplicações
 
Circuitos
CircuitosCircuitos
Circuitos
 
Circuitos logicos
Circuitos logicosCircuitos logicos
Circuitos logicos
 
Algebra de boole
Algebra de booleAlgebra de boole
Algebra de boole
 
Operadores Booleanos
Operadores BooleanosOperadores Booleanos
Operadores Booleanos
 
Algebra booleana
Algebra booleanaAlgebra booleana
Algebra booleana
 
Boolean algebra
Boolean algebraBoolean algebra
Boolean algebra
 
Algebra[1]
Algebra[1]Algebra[1]
Algebra[1]
 
Aula 05
Aula 05Aula 05
Aula 05
 
Apontamentos de contabilidade Geral 1 Ano
Apontamentos de contabilidade Geral 1 AnoApontamentos de contabilidade Geral 1 Ano
Apontamentos de contabilidade Geral 1 Ano
 

Semelhante a Álgebra Booleana

Prova de Matemática fuzileiro naval 2011
Prova de Matemática fuzileiro naval 2011Prova de Matemática fuzileiro naval 2011
Prova de Matemática fuzileiro naval 2011
thieresaulas
 
Ab algebra-boole-simplificacao-circuitos
Ab algebra-boole-simplificacao-circuitosAb algebra-boole-simplificacao-circuitos
Ab algebra-boole-simplificacao-circuitos
Juvena1212
 
Aalgebra-boole-simplificacao-circuitos
Aalgebra-boole-simplificacao-circuitosAalgebra-boole-simplificacao-circuitos
Aalgebra-boole-simplificacao-circuitos
Bel Arts
 
Trabalho de mat.pptx
Trabalho de mat.pptxTrabalho de mat.pptx
Trabalho de mat.pptx
jonaldinhogaucho08
 
AULAO MATEMÁTICA BÁSICA ENSINO MÉDIO.ppt
AULAO MATEMÁTICA BÁSICA ENSINO MÉDIO.pptAULAO MATEMÁTICA BÁSICA ENSINO MÉDIO.ppt
AULAO MATEMÁTICA BÁSICA ENSINO MÉDIO.ppt
MarcosViniciusLemesL
 
Prova do Colégio Militar do Rio de Janeiro, COMENTADA
Prova do Colégio Militar do Rio de Janeiro, COMENTADAProva do Colégio Militar do Rio de Janeiro, COMENTADA
Prova do Colégio Militar do Rio de Janeiro, COMENTADA
thieresaulas
 
Matemática apostila 1 suely
Matemática   apostila 1 suelyMatemática   apostila 1 suely
Matemática apostila 1 suely
Suely Do Nascimento
 
Lista de exercícios 3
Lista de exercícios 3Lista de exercícios 3
Lista de exercícios 3
Carlos Campani
 
pdf_novembro_-_semana_1_-_formulas_de_matematica_para_o_enem_-_completo_2.PDF
pdf_novembro_-_semana_1_-_formulas_de_matematica_para_o_enem_-_completo_2.PDFpdf_novembro_-_semana_1_-_formulas_de_matematica_para_o_enem_-_completo_2.PDF
pdf_novembro_-_semana_1_-_formulas_de_matematica_para_o_enem_-_completo_2.PDF
AbraoSantos22
 
Conjuntos numericos
Conjuntos numericosConjuntos numericos
Conjuntos numericos
CLAUDIO ROCHA DE JESUS
 
Conjuntosnumericos
Conjuntosnumericos Conjuntosnumericos
Conjuntosnumericos
Prof. Valdemir Ferreira
 
18 algoritmos de busca de palavras em texto
18   algoritmos de busca de palavras em texto18   algoritmos de busca de palavras em texto
18 algoritmos de busca de palavras em texto
Ricardo Bolanho
 
08022014
0802201408022014
Apostila de matemática i apostila específica para o concurso da prefeitura ...
Apostila de matemática i   apostila específica para o concurso da prefeitura ...Apostila de matemática i   apostila específica para o concurso da prefeitura ...
Apostila de matemática i apostila específica para o concurso da prefeitura ...
Iracema Vasconcellos
 
Aula_Algebra de Boole.pdf
Aula_Algebra de Boole.pdfAula_Algebra de Boole.pdf
Aula_Algebra de Boole.pdf
MrioSitoe2
 
Conjuntos numericos
Conjuntos numericosConjuntos numericos
Conjuntos numericos
André Luís Nogueira
 
Matemática aplicada aula01
Matemática aplicada aula01Matemática aplicada aula01
Matemática aplicada aula01
Augusto Junior
 
Lista de exercícios 2 - Mat Elem
Lista de exercícios 2 - Mat ElemLista de exercícios 2 - Mat Elem
Lista de exercícios 2 - Mat Elem
Carlos Campani
 
Fundamento Hardware - Aula 007
Fundamento Hardware - Aula 007Fundamento Hardware - Aula 007
Fundamento Hardware - Aula 007
Cláudio Amaral
 
Aplicativo aula007
Aplicativo aula007Aplicativo aula007
Aplicativo aula007
Cláudio Amaral
 

Semelhante a Álgebra Booleana (20)

Prova de Matemática fuzileiro naval 2011
Prova de Matemática fuzileiro naval 2011Prova de Matemática fuzileiro naval 2011
Prova de Matemática fuzileiro naval 2011
 
Ab algebra-boole-simplificacao-circuitos
Ab algebra-boole-simplificacao-circuitosAb algebra-boole-simplificacao-circuitos
Ab algebra-boole-simplificacao-circuitos
 
Aalgebra-boole-simplificacao-circuitos
Aalgebra-boole-simplificacao-circuitosAalgebra-boole-simplificacao-circuitos
Aalgebra-boole-simplificacao-circuitos
 
Trabalho de mat.pptx
Trabalho de mat.pptxTrabalho de mat.pptx
Trabalho de mat.pptx
 
AULAO MATEMÁTICA BÁSICA ENSINO MÉDIO.ppt
AULAO MATEMÁTICA BÁSICA ENSINO MÉDIO.pptAULAO MATEMÁTICA BÁSICA ENSINO MÉDIO.ppt
AULAO MATEMÁTICA BÁSICA ENSINO MÉDIO.ppt
 
Prova do Colégio Militar do Rio de Janeiro, COMENTADA
Prova do Colégio Militar do Rio de Janeiro, COMENTADAProva do Colégio Militar do Rio de Janeiro, COMENTADA
Prova do Colégio Militar do Rio de Janeiro, COMENTADA
 
Matemática apostila 1 suely
Matemática   apostila 1 suelyMatemática   apostila 1 suely
Matemática apostila 1 suely
 
Lista de exercícios 3
Lista de exercícios 3Lista de exercícios 3
Lista de exercícios 3
 
pdf_novembro_-_semana_1_-_formulas_de_matematica_para_o_enem_-_completo_2.PDF
pdf_novembro_-_semana_1_-_formulas_de_matematica_para_o_enem_-_completo_2.PDFpdf_novembro_-_semana_1_-_formulas_de_matematica_para_o_enem_-_completo_2.PDF
pdf_novembro_-_semana_1_-_formulas_de_matematica_para_o_enem_-_completo_2.PDF
 
Conjuntos numericos
Conjuntos numericosConjuntos numericos
Conjuntos numericos
 
Conjuntosnumericos
Conjuntosnumericos Conjuntosnumericos
Conjuntosnumericos
 
18 algoritmos de busca de palavras em texto
18   algoritmos de busca de palavras em texto18   algoritmos de busca de palavras em texto
18 algoritmos de busca de palavras em texto
 
08022014
0802201408022014
08022014
 
Apostila de matemática i apostila específica para o concurso da prefeitura ...
Apostila de matemática i   apostila específica para o concurso da prefeitura ...Apostila de matemática i   apostila específica para o concurso da prefeitura ...
Apostila de matemática i apostila específica para o concurso da prefeitura ...
 
Aula_Algebra de Boole.pdf
Aula_Algebra de Boole.pdfAula_Algebra de Boole.pdf
Aula_Algebra de Boole.pdf
 
Conjuntos numericos
Conjuntos numericosConjuntos numericos
Conjuntos numericos
 
Matemática aplicada aula01
Matemática aplicada aula01Matemática aplicada aula01
Matemática aplicada aula01
 
Lista de exercícios 2 - Mat Elem
Lista de exercícios 2 - Mat ElemLista de exercícios 2 - Mat Elem
Lista de exercícios 2 - Mat Elem
 
Fundamento Hardware - Aula 007
Fundamento Hardware - Aula 007Fundamento Hardware - Aula 007
Fundamento Hardware - Aula 007
 
Aplicativo aula007
Aplicativo aula007Aplicativo aula007
Aplicativo aula007
 

Mais de Tony Alexander Hild

Circuitos combinacionais
Circuitos combinacionaisCircuitos combinacionais
Circuitos combinacionais
Tony Alexander Hild
 
Paradigma funcional
Paradigma funcionalParadigma funcional
Paradigma funcional
Tony Alexander Hild
 
Circuitos sequenciais
Circuitos sequenciaisCircuitos sequenciais
Circuitos sequenciais
Tony Alexander Hild
 
Circuitos Integrados Digitais
Circuitos Integrados DigitaisCircuitos Integrados Digitais
Circuitos Integrados Digitais
Tony Alexander Hild
 
Paradigma Orientado a Objeto
Paradigma Orientado a ObjetoParadigma Orientado a Objeto
Paradigma Orientado a Objeto
Tony Alexander Hild
 
Simplificação de expressões Booleanas utilizando mapas de Karnaugh
Simplificação de expressões Booleanas utilizando mapas de KarnaughSimplificação de expressões Booleanas utilizando mapas de Karnaugh
Simplificação de expressões Booleanas utilizando mapas de Karnaugh
Tony Alexander Hild
 
Introdução aos Mapas de Karnaugh
Introdução aos Mapas de KarnaughIntrodução aos Mapas de Karnaugh
Introdução aos Mapas de Karnaugh
Tony Alexander Hild
 
Introdução ao paradigma imperativo
Introdução ao paradigma imperativoIntrodução ao paradigma imperativo
Introdução ao paradigma imperativo
Tony Alexander Hild
 
CEAD 2013 - Oficina 1: Ferramentas colaborativas e de comunicação WEB
CEAD 2013 - Oficina 1: Ferramentas colaborativas e de comunicação WEBCEAD 2013 - Oficina 1: Ferramentas colaborativas e de comunicação WEB
CEAD 2013 - Oficina 1: Ferramentas colaborativas e de comunicação WEB
Tony Alexander Hild
 
Introdução ao Desenvolvimento WEB
Introdução ao Desenvolvimento WEBIntrodução ao Desenvolvimento WEB
Introdução ao Desenvolvimento WEB
Tony Alexander Hild
 
Computação Gráfica - Transformações Geométricas no Plano e no Espaço
Computação Gráfica - Transformações Geométricas no Plano e no EspaçoComputação Gráfica - Transformações Geométricas no Plano e no Espaço
Computação Gráfica - Transformações Geométricas no Plano e no Espaço
Tony Alexander Hild
 
Computação Gráfica - Introdução ao OpenGL
Computação Gráfica - Introdução ao OpenGLComputação Gráfica - Introdução ao OpenGL
Computação Gráfica - Introdução ao OpenGL
Tony Alexander Hild
 
Computação Gráfica - Artquitetura de Dispositivos Gráficos
Computação Gráfica - Artquitetura de Dispositivos GráficosComputação Gráfica - Artquitetura de Dispositivos Gráficos
Computação Gráfica - Artquitetura de Dispositivos Gráficos
Tony Alexander Hild
 
Computação Gráfica - Informações Visuais Óculo-motoras
Computação Gráfica - Informações Visuais Óculo-motorasComputação Gráfica - Informações Visuais Óculo-motoras
Computação Gráfica - Informações Visuais Óculo-motoras
Tony Alexander Hild
 
Computação Gráfica - Percepção Tridimensional
Computação Gráfica - Percepção TridimensionalComputação Gráfica - Percepção Tridimensional
Computação Gráfica - Percepção Tridimensional
Tony Alexander Hild
 
Computação Gráfica - Introdução
Computação Gráfica - IntroduçãoComputação Gráfica - Introdução
Computação Gráfica - Introdução
Tony Alexander Hild
 

Mais de Tony Alexander Hild (16)

Circuitos combinacionais
Circuitos combinacionaisCircuitos combinacionais
Circuitos combinacionais
 
Paradigma funcional
Paradigma funcionalParadigma funcional
Paradigma funcional
 
Circuitos sequenciais
Circuitos sequenciaisCircuitos sequenciais
Circuitos sequenciais
 
Circuitos Integrados Digitais
Circuitos Integrados DigitaisCircuitos Integrados Digitais
Circuitos Integrados Digitais
 
Paradigma Orientado a Objeto
Paradigma Orientado a ObjetoParadigma Orientado a Objeto
Paradigma Orientado a Objeto
 
Simplificação de expressões Booleanas utilizando mapas de Karnaugh
Simplificação de expressões Booleanas utilizando mapas de KarnaughSimplificação de expressões Booleanas utilizando mapas de Karnaugh
Simplificação de expressões Booleanas utilizando mapas de Karnaugh
 
Introdução aos Mapas de Karnaugh
Introdução aos Mapas de KarnaughIntrodução aos Mapas de Karnaugh
Introdução aos Mapas de Karnaugh
 
Introdução ao paradigma imperativo
Introdução ao paradigma imperativoIntrodução ao paradigma imperativo
Introdução ao paradigma imperativo
 
CEAD 2013 - Oficina 1: Ferramentas colaborativas e de comunicação WEB
CEAD 2013 - Oficina 1: Ferramentas colaborativas e de comunicação WEBCEAD 2013 - Oficina 1: Ferramentas colaborativas e de comunicação WEB
CEAD 2013 - Oficina 1: Ferramentas colaborativas e de comunicação WEB
 
Introdução ao Desenvolvimento WEB
Introdução ao Desenvolvimento WEBIntrodução ao Desenvolvimento WEB
Introdução ao Desenvolvimento WEB
 
Computação Gráfica - Transformações Geométricas no Plano e no Espaço
Computação Gráfica - Transformações Geométricas no Plano e no EspaçoComputação Gráfica - Transformações Geométricas no Plano e no Espaço
Computação Gráfica - Transformações Geométricas no Plano e no Espaço
 
Computação Gráfica - Introdução ao OpenGL
Computação Gráfica - Introdução ao OpenGLComputação Gráfica - Introdução ao OpenGL
Computação Gráfica - Introdução ao OpenGL
 
Computação Gráfica - Artquitetura de Dispositivos Gráficos
Computação Gráfica - Artquitetura de Dispositivos GráficosComputação Gráfica - Artquitetura de Dispositivos Gráficos
Computação Gráfica - Artquitetura de Dispositivos Gráficos
 
Computação Gráfica - Informações Visuais Óculo-motoras
Computação Gráfica - Informações Visuais Óculo-motorasComputação Gráfica - Informações Visuais Óculo-motoras
Computação Gráfica - Informações Visuais Óculo-motoras
 
Computação Gráfica - Percepção Tridimensional
Computação Gráfica - Percepção TridimensionalComputação Gráfica - Percepção Tridimensional
Computação Gráfica - Percepção Tridimensional
 
Computação Gráfica - Introdução
Computação Gráfica - IntroduçãoComputação Gráfica - Introdução
Computação Gráfica - Introdução
 

Último

Sócrates e os sofistas - apresentação de slides
Sócrates e os sofistas - apresentação de slidesSócrates e os sofistas - apresentação de slides
Sócrates e os sofistas - apresentação de slides
jbellas2
 
05-os-pre-socraticos sociologia-28-slides.pptx
05-os-pre-socraticos sociologia-28-slides.pptx05-os-pre-socraticos sociologia-28-slides.pptx
05-os-pre-socraticos sociologia-28-slides.pptx
ValdineyRodriguesBez1
 
proposta curricular ou plano de cursode lingua portuguesa eja anos finais ( ...
proposta curricular  ou plano de cursode lingua portuguesa eja anos finais ( ...proposta curricular  ou plano de cursode lingua portuguesa eja anos finais ( ...
proposta curricular ou plano de cursode lingua portuguesa eja anos finais ( ...
Escola Municipal Jesus Cristo
 
livro da EJA - 2a ETAPA - 4o e 5o ano. para análise do professorpdf
livro da EJA - 2a ETAPA - 4o e 5o ano. para análise do professorpdflivro da EJA - 2a ETAPA - 4o e 5o ano. para análise do professorpdf
livro da EJA - 2a ETAPA - 4o e 5o ano. para análise do professorpdf
Escola Municipal Jesus Cristo
 
iNTRODUÇÃO À Plantas terrestres e Plantas aquáticas. (1).pdf
iNTRODUÇÃO À Plantas terrestres e Plantas aquáticas. (1).pdfiNTRODUÇÃO À Plantas terrestres e Plantas aquáticas. (1).pdf
iNTRODUÇÃO À Plantas terrestres e Plantas aquáticas. (1).pdf
andressacastro36
 
Sinais de pontuação
Sinais de pontuaçãoSinais de pontuação
Sinais de pontuação
Mary Alvarenga
 
Egito antigo resumo - aula de história.pdf
Egito antigo resumo - aula de história.pdfEgito antigo resumo - aula de história.pdf
Egito antigo resumo - aula de história.pdf
sthefanydesr
 
PowerPoint Newton gostava de Ler - Saber em Gel.pdf
PowerPoint Newton gostava de Ler - Saber em Gel.pdfPowerPoint Newton gostava de Ler - Saber em Gel.pdf
PowerPoint Newton gostava de Ler - Saber em Gel.pdf
1000a
 
CADERNO DE CONCEITOS E ORIENTAÇÕES DO CENSO ESCOLAR 2024.pdf
CADERNO DE CONCEITOS E ORIENTAÇÕES DO CENSO ESCOLAR 2024.pdfCADERNO DE CONCEITOS E ORIENTAÇÕES DO CENSO ESCOLAR 2024.pdf
CADERNO DE CONCEITOS E ORIENTAÇÕES DO CENSO ESCOLAR 2024.pdf
NatySousa3
 
APOSTILA DE TEXTOS CURTOS E INTERPRETAÇÃO.pdf
APOSTILA DE TEXTOS CURTOS E INTERPRETAÇÃO.pdfAPOSTILA DE TEXTOS CURTOS E INTERPRETAÇÃO.pdf
APOSTILA DE TEXTOS CURTOS E INTERPRETAÇÃO.pdf
RenanSilva991968
 
UFCD_8298_Cozinha criativa_índice do manual
UFCD_8298_Cozinha criativa_índice do manualUFCD_8298_Cozinha criativa_índice do manual
UFCD_8298_Cozinha criativa_índice do manual
Manuais Formação
 
Especialidade - Animais Ameaçados de Extinção(1).pdf
Especialidade - Animais Ameaçados de Extinção(1).pdfEspecialidade - Animais Ameaçados de Extinção(1).pdf
Especialidade - Animais Ameaçados de Extinção(1).pdf
DanielCastro80471
 
Unificação da Itália e a formação da Alemanha
Unificação da Itália e a formação da AlemanhaUnificação da Itália e a formação da Alemanha
Unificação da Itália e a formação da Alemanha
Acrópole - História & Educação
 
Arundhati Roy - O Deus das Pequenas Coisas - ÍNDIA.pdf
Arundhati Roy - O Deus das Pequenas Coisas - ÍNDIA.pdfArundhati Roy - O Deus das Pequenas Coisas - ÍNDIA.pdf
Arundhati Roy - O Deus das Pequenas Coisas - ÍNDIA.pdf
Ana Da Silva Ponce
 
EJA -livro para professor -dos anos iniciais letramento e alfabetização.pdf
EJA -livro para professor -dos anos iniciais letramento e alfabetização.pdfEJA -livro para professor -dos anos iniciais letramento e alfabetização.pdf
EJA -livro para professor -dos anos iniciais letramento e alfabetização.pdf
Escola Municipal Jesus Cristo
 
Fato X Opinião (Língua Portuguesa 9º Ano).pptx
Fato X Opinião (Língua Portuguesa 9º Ano).pptxFato X Opinião (Língua Portuguesa 9º Ano).pptx
Fato X Opinião (Língua Portuguesa 9º Ano).pptx
MariaFatima425285
 
Caça-palavras - ortografia S, SS, X, C e Z
Caça-palavras - ortografia  S, SS, X, C e ZCaça-palavras - ortografia  S, SS, X, C e Z
Caça-palavras - ortografia S, SS, X, C e Z
Mary Alvarenga
 
Apresentação_Primeira_Guerra_Mundial 9 ANO-1.pptx
Apresentação_Primeira_Guerra_Mundial 9 ANO-1.pptxApresentação_Primeira_Guerra_Mundial 9 ANO-1.pptx
Apresentação_Primeira_Guerra_Mundial 9 ANO-1.pptx
JulianeMelo17
 
Sistema de Bibliotecas UCS - Chronica do emperador Clarimundo, donde os reis ...
Sistema de Bibliotecas UCS - Chronica do emperador Clarimundo, donde os reis ...Sistema de Bibliotecas UCS - Chronica do emperador Clarimundo, donde os reis ...
Sistema de Bibliotecas UCS - Chronica do emperador Clarimundo, donde os reis ...
Biblioteca UCS
 
Slides Lição 10, Central Gospel, A Batalha Do Armagedom, 1Tr24.pptx
Slides Lição 10, Central Gospel, A Batalha Do Armagedom, 1Tr24.pptxSlides Lição 10, Central Gospel, A Batalha Do Armagedom, 1Tr24.pptx
Slides Lição 10, Central Gospel, A Batalha Do Armagedom, 1Tr24.pptx
LuizHenriquedeAlmeid6
 

Último (20)

Sócrates e os sofistas - apresentação de slides
Sócrates e os sofistas - apresentação de slidesSócrates e os sofistas - apresentação de slides
Sócrates e os sofistas - apresentação de slides
 
05-os-pre-socraticos sociologia-28-slides.pptx
05-os-pre-socraticos sociologia-28-slides.pptx05-os-pre-socraticos sociologia-28-slides.pptx
05-os-pre-socraticos sociologia-28-slides.pptx
 
proposta curricular ou plano de cursode lingua portuguesa eja anos finais ( ...
proposta curricular  ou plano de cursode lingua portuguesa eja anos finais ( ...proposta curricular  ou plano de cursode lingua portuguesa eja anos finais ( ...
proposta curricular ou plano de cursode lingua portuguesa eja anos finais ( ...
 
livro da EJA - 2a ETAPA - 4o e 5o ano. para análise do professorpdf
livro da EJA - 2a ETAPA - 4o e 5o ano. para análise do professorpdflivro da EJA - 2a ETAPA - 4o e 5o ano. para análise do professorpdf
livro da EJA - 2a ETAPA - 4o e 5o ano. para análise do professorpdf
 
iNTRODUÇÃO À Plantas terrestres e Plantas aquáticas. (1).pdf
iNTRODUÇÃO À Plantas terrestres e Plantas aquáticas. (1).pdfiNTRODUÇÃO À Plantas terrestres e Plantas aquáticas. (1).pdf
iNTRODUÇÃO À Plantas terrestres e Plantas aquáticas. (1).pdf
 
Sinais de pontuação
Sinais de pontuaçãoSinais de pontuação
Sinais de pontuação
 
Egito antigo resumo - aula de história.pdf
Egito antigo resumo - aula de história.pdfEgito antigo resumo - aula de história.pdf
Egito antigo resumo - aula de história.pdf
 
PowerPoint Newton gostava de Ler - Saber em Gel.pdf
PowerPoint Newton gostava de Ler - Saber em Gel.pdfPowerPoint Newton gostava de Ler - Saber em Gel.pdf
PowerPoint Newton gostava de Ler - Saber em Gel.pdf
 
CADERNO DE CONCEITOS E ORIENTAÇÕES DO CENSO ESCOLAR 2024.pdf
CADERNO DE CONCEITOS E ORIENTAÇÕES DO CENSO ESCOLAR 2024.pdfCADERNO DE CONCEITOS E ORIENTAÇÕES DO CENSO ESCOLAR 2024.pdf
CADERNO DE CONCEITOS E ORIENTAÇÕES DO CENSO ESCOLAR 2024.pdf
 
APOSTILA DE TEXTOS CURTOS E INTERPRETAÇÃO.pdf
APOSTILA DE TEXTOS CURTOS E INTERPRETAÇÃO.pdfAPOSTILA DE TEXTOS CURTOS E INTERPRETAÇÃO.pdf
APOSTILA DE TEXTOS CURTOS E INTERPRETAÇÃO.pdf
 
UFCD_8298_Cozinha criativa_índice do manual
UFCD_8298_Cozinha criativa_índice do manualUFCD_8298_Cozinha criativa_índice do manual
UFCD_8298_Cozinha criativa_índice do manual
 
Especialidade - Animais Ameaçados de Extinção(1).pdf
Especialidade - Animais Ameaçados de Extinção(1).pdfEspecialidade - Animais Ameaçados de Extinção(1).pdf
Especialidade - Animais Ameaçados de Extinção(1).pdf
 
Unificação da Itália e a formação da Alemanha
Unificação da Itália e a formação da AlemanhaUnificação da Itália e a formação da Alemanha
Unificação da Itália e a formação da Alemanha
 
Arundhati Roy - O Deus das Pequenas Coisas - ÍNDIA.pdf
Arundhati Roy - O Deus das Pequenas Coisas - ÍNDIA.pdfArundhati Roy - O Deus das Pequenas Coisas - ÍNDIA.pdf
Arundhati Roy - O Deus das Pequenas Coisas - ÍNDIA.pdf
 
EJA -livro para professor -dos anos iniciais letramento e alfabetização.pdf
EJA -livro para professor -dos anos iniciais letramento e alfabetização.pdfEJA -livro para professor -dos anos iniciais letramento e alfabetização.pdf
EJA -livro para professor -dos anos iniciais letramento e alfabetização.pdf
 
Fato X Opinião (Língua Portuguesa 9º Ano).pptx
Fato X Opinião (Língua Portuguesa 9º Ano).pptxFato X Opinião (Língua Portuguesa 9º Ano).pptx
Fato X Opinião (Língua Portuguesa 9º Ano).pptx
 
Caça-palavras - ortografia S, SS, X, C e Z
Caça-palavras - ortografia  S, SS, X, C e ZCaça-palavras - ortografia  S, SS, X, C e Z
Caça-palavras - ortografia S, SS, X, C e Z
 
Apresentação_Primeira_Guerra_Mundial 9 ANO-1.pptx
Apresentação_Primeira_Guerra_Mundial 9 ANO-1.pptxApresentação_Primeira_Guerra_Mundial 9 ANO-1.pptx
Apresentação_Primeira_Guerra_Mundial 9 ANO-1.pptx
 
Sistema de Bibliotecas UCS - Chronica do emperador Clarimundo, donde os reis ...
Sistema de Bibliotecas UCS - Chronica do emperador Clarimundo, donde os reis ...Sistema de Bibliotecas UCS - Chronica do emperador Clarimundo, donde os reis ...
Sistema de Bibliotecas UCS - Chronica do emperador Clarimundo, donde os reis ...
 
Slides Lição 10, Central Gospel, A Batalha Do Armagedom, 1Tr24.pptx
Slides Lição 10, Central Gospel, A Batalha Do Armagedom, 1Tr24.pptxSlides Lição 10, Central Gospel, A Batalha Do Armagedom, 1Tr24.pptx
Slides Lição 10, Central Gospel, A Batalha Do Armagedom, 1Tr24.pptx
 

Álgebra Booleana

  • 1. Álbebra Booleana Prof. Tony Alexander Hild Lógica Digital – 1 CC – Unicentro – 2013
  • 2. Princípio da Dualidade ● Em álgebra Booleana a dualidade pode ser obtida trocando operadores · e + e substituindo 0s por 1s e vice-versa. Exemplo: (a · b) + c' = (a' + b') · c 2
  • 3. Postulados e Teoremas da Álgebra Booleana ● Postulado 1 – Operações: A álgebra Booleana tem um conjunto K de 2 ou mais valores e duas operações · e +, de modo que para todo a, b pertencentes a K: a·b∈K a+b∈K ● Postulado 2 – Valores Neutros: Existem valores 0 e 1 tais que: a+0=a a·1=a 3
  • 4. Postulados e Teoremas da Álgebra Booleana ● Postulado 3 – comutatividade: a+b=b+a a·b=b·a ● Postulado 4 – associatividade: a + (b + c) = (a + b) + c a · (b · c) = (a · b) · c ● Postulado 5 – distributividade: a + (b · c) = (a + b) · (a + c) a · (b + c) = (a · b) + (a · c) 4
  • 5. Postulados e Teoremas da Álgebra Booleana ● Postulado 6 – existência de complemento: Para todo a ∈ K, existe um e apenas um a' ∈ K, chamado de complemento de a, tal que: a + a' = 1 a · a' = 0 5
  • 6. Postulados e Teoremas da Álgebra Booleana ● Teorema 1 (Idempotência): A soma ou o produto de um valor por ele mesmo é igual a ele mesmo. a+a=a a·a=a ____________________________ Prova 6
  • 7. Postulados e Teoremas da Álgebra Booleana ● Teorema 2 (Aniquilação): a+1=1 a·0=0 ____________________________ Prova 7
  • 8. Postulados e Teoremas da Álgebra Booleana ● Teorema 3 (Involução): ● Teorema 4 (Absorção): a + (a · b) = a a · (a + b) = a ____________________________ Prova 8
  • 9. Postulados e Teoremas da Álgebra Booleana ● Teorema 5: a + a' · b = a + b a · (a' + b) = a · b ____________________________ Prova 9
  • 10. Postulados e Teoremas da Álgebra Booleana ● Teorema 6 (Adjacência lógica): a · b + a · b' = a (a + b) · (a + b) = a ____________________________ Prova 10
  • 11. Postulados e Teoremas da Álgebra Booleana ● Teorema 7: a · b + a · b' · c = a · b + a · c (a + b) · (a + b + c) = (a + b) · (a + c) ____________________________ Prova 11
  • 12. Postulados e Teoremas da Álgebra Booleana ● Teorema 8 (Leis de DeMorgan): (a + b)' = a' · b' (a · b)' = a' + b' ____________________________ Prova 12
  • 13. Postulados e Teoremas da Álgebra Booleana ● Teorema 9 (Teorema do Consenso): a · b + a' · c + b · c = a · b + a' · c (a + b) · (a' + c) · (b + c) = (a + b) · (a' + c) ____________________________ Prova 13
  • 18. Resumo dos Postulados e Teoremas 18
  • 19. Postulados e Teoremas expressos por meio de portas lógicas 19
  • 27. Mais exemplos de simplificações 27
  • 28. Formas Canônica e Padrão ● Precisamos considerar técnicas formais para a simplificação de funções booleanas. – – – – – Funções idênticas terão exatamente a mesma forma canônica; Mintermos e maxtermos; Soma dos mintermos e Produtos dos maxtermos; Produto e soma de termos; Soma de Produtos (SOP) e Produto de Somas (POS). 28
  • 29. Definições ● Literal: Uma variável ou o seu complemento; ● Termo Produto: literais conectados por ·; ● Termo Soma: literais conectados por +; ● ● Mintermo: um termo Produto em que todas as variáveis aparecem exatamente uma vez, seja complementada ou não complementada; Maxtermo: um termo de Soma em que todas as variáveis aparecem exatamente uma vez, seja complementada ou não complementada. 29
  • 30. Mintermo ● ● ● ● Representa exatamente uma combinação na tabela verdade; Denotado por mj, onde j é o equivalente decimal dos mintermos correspondente à combinação binária (bj); Uma variável em mj é complementada se seu valor em bj for 0, caso contrário é não complementada; Exemplo: Dadas 3 variáveis (A,B,C), e j=3. Então, bj = 011 e seu mintermo correspondente é denotado por mj = A’BC. 30
  • 31. Maxtermo ● ● ● ● Representa exatamente uma combinação na tabela verdade; Denotado por Mj, onde j é o equivalente decimal dos maxtermos correspondente à combinação binária (bj); Uma variável em Mj é complementada se seu valor em bj for 1, caso contrário é não complementada; Exemplo: Dadas 3 variáveis (A,B,C), e j=3. Então, bj = 011 e seu maxtermo correspondente é denotado por Mj = A+B'+C'. 31
  • 32. Tabela verdade para a notação de Mintermos e Maxtermos ● ● Mintermos e Maxtermos são fáceis de denotar usando uma tabela verdade; Examplo: Assuma 3 variáveis A,B,C (com ordem fixa). Decimal A 0 0 1 0 2 0 3 0 4 1 5 1 6 1 7 1 B 0 0 1 1 0 0 1 1 C 0 1 0 1 0 1 0 1 f(A,B,C) 1 0 1 1 0 0 1 1 Mintermos m0 = A'B'C' m1 = A'B'C m2 = A'BC' m3 = A'BC m4 = AB'C' m5 = AB'C m6 = ABC' m7 = ABC Maxtermos M0 = A + B + C M1 = A + B + C' M2 = A + B' + C M3 = A + B' + C' M4 = A' + B + C M5 = A' + B + C' M6 = A' + B' + C M7 = A' + B' + C' 32
  • 33. Formas Canônicas (Únicas) ● ● Qualquer função Booleana f( ) pode ser expressada como uma soma única de mintermos ou um produto único de maxtermos (sob uma ordem de variáveis fixa); Em outras palavras, toda função f( ) possui duas formas canônicas: – – Soma de Produtos Canônica (soma de mintermos); Produto de Somas Canônico (produto de maxtermos). 33
  • 34. Formas Canônicas (cont.) ● Soma de Produtos Canônica: Os mintermos incluídos são os mj tal que f( ) = 1 na linha j da tabela verdade para f( ). Produto de Somas Canônico: – ● – Os maxtermos incluídos são os Mj tal que f( ) = 0 na linha j da tabela verdade para f( ). 34
  • 35. Exemplo ● Tabela verdade para f(A,B,C); ● A forma canônica de soma de produtos para f é: – ● A forma canônica de produto de somas para F é: – ● f(A,B,C) = m1 + m2 + m4 + m6 = A’B’C + A’BC’ + AB’C’ + ABC’ f(A,B,C) = M0 · M3 · M5 · M7 = (A+B+C) · (A+B’+C’) · (A’+B+C’) · (A’+B’+C’) Observe que: mj = Mj’. 0 1 2 3 4 5 6 7 A 0 0 0 0 1 1 1 1 B 0 0 1 1 0 0 1 1 C 0 1 0 1 0 1 0 1 F 0 1 1 0 1 0 1 0 35
  • 36. Abreviatura: ∑ e ∏ ● ● ● f(A,B,C) = ∑ m(1,2,4,6), onde ∑ indica que é a forma Soma de Produtos, e m(1,2,4,6) indica que os mintermos que devem ser incluídos são m1, m2, m4, e m6. f(A,B,C) = ∏ M(0,3,5,7), onde ∏ indica que é a forma Produto de Somas, e M(0,3,5,7) indica que os maxtermos que devem ser incluídos são M0, M3, M5, e M7. Como mj = Mj’ para todo j, ∑ m(1,2,4,6) = ∏ M(0,3,5,7) = f(A,B,C) 36
  • 37. Conversão entre Formas Canônicas ● ● Substitua ∑ por ∏ (ou vice versa) e substitua os j’s que estão na forma original pelos que não estão. Example: f(A,B,C) = A’B’C + A’BC’ + AB’C’ + ABC’ = m1 + m2 + m4 + m6 = ∑(1,2,4,6) = ∏(0,3,5,7) = (A+B+C)·(A+B’+C’)·(A’+B+C’)·(A’+B’+C’) 37
  • 38. Formas Padrão (Não Únicas) ● ● ● Formas Padrão são “como” Formas Canônicas, exceto que nem todas as variáveis precisam aparecer nos termos produto (SOP) ou soma (POS) individuais; Exemplo: f(A,B,C) = A’B’C + BC’ + AC’ é uma forma padrão de soma de produtos. f(A,B,C) = (A+B+C)·(B’+C’)·(A’+C’) é uma forma padrão de produto de somas. 38
  • 39. Conversão de SOP da forma padrão para a forma canônica ● ● ● Expanda os termos não-canônicos inserindo o equivalente a 1 em cada variável x ausente: (x + x’) = 1 Remova os mintermos duplicados f(A,B,C) = A’B’C + BC’ + AC’ = A’B’C + (A+A’)BC’ + A(B+B’)C’ = A’B’C + ABC’ + A’BC’ + ABC’ + AB’C’ = A’B’C + ABC’ + A’BC + AB’C’ 39
  • 40. Conversão de POS da forma padrão para a forma canônica ● ● ● Expanda os termos não-canônicos adicionando 0 nos termos com variáveis faltantes (e.g., xx’ = 0) e use a lei distributiva. Remova os maxtermos duplicados. f(A,B,C) = (A+B+C)·(B’+C’)·(A’+C’) = (A+B+C)·(AA’+B’+C’)·(A’+BB’+C’) = (A+B+C)·(A+B’+C’)·(A’+B’+C’)· (A’+B+C’)·(A’+B’+C’) = (A+B+C)·(A+B’+C’)·(A’+B’+C’)·(A’+B+C’) 40

Notas do Editor

  1. Oct 6, 2013 Boolean Algebra
  2. Oct 6, 2013 Boolean Algebra
  3. Oct 6, 2013 Boolean Algebra
  4. Oct 6, 2013 Boolean Algebra
  5. Oct 6, 2013 Boolean Algebra
  6. Oct 6, 2013 Boolean Algebra
  7. Oct 6, 2013 Boolean Algebra
  8. Oct 6, 2013 Boolean Algebra
  9. Oct 6, 2013 Boolean Algebra
  10. Oct 6, 2013 Boolean Algebra
  11. Oct 6, 2013 Boolean Algebra
  12. Oct 6, 2013 Boolean Algebra
  13. Oct 6, 2013 Boolean Algebra