Aula 2

Derivadas e retas tangentes. Novas
regras de deriva»~o
                ca

2.1      A derivada como inclina»~o de uma reta tangente
                                ca
         ao gr¶¯co da fun»~o
              a          ca
Na aula anterior, o conceito de derivada foi apresentado atrav¶s do conceito de velocidade
                                                              e
instant^nea. Veremos agora uma interpreta»~o geom¶trica da derivada, em rela»~o ao
       a                                       ca       e                           ca
gr¶¯co da fun»~o y = f (x). Esta ¶ uma id¶ia de Fermat.
  a           ca                    e         e

                                y
                                                            y = f(x)
                                                                         r
                                                              P
            f( x 0 + ∆ x)


                                                                   ∆y

                                                                             t
                                            P0
                   f( x 0)

                            0       α   β
                                             x0               x0 + ∆ x           x

                                                     ∆x


Figura 2.1. A derivada da fun»~o f , em x0 , ¶ a inclina»~o da reta t, tangente ao gr¶¯co
                             ca              e          ca                           a
de f em P0 .

      Fixado um valor x0 , sendo de¯nido f (x0 ), seja ¢x 60 um acr¶scimo (ou de-
                                                          =        e

                                            11
»~
Derivadas e retas tangentes. Novas regras de derivacao                              12


cr¶scimo) dado a x0 . Sendo x1 = x0 + ¢x, temos que a raz~o
  e                                                      a

                    ¢y   f (x0 + ¢x) ¡ f (x0 )   f(x1 ) ¡ f (x0 )
                       =                       =
                    ¢x           ¢x                 x1 ¡ x0
¶ o coe¯ciente angular da reta r, secante ao gr¶¯co da curva y = f (x), passando pelos
e                                              a
pontos P0 = (x0 ; f(x0 )) e P = (x1 ; f(x1 )).
      Observando os elementos geom¶tricos da ¯gura 2.1, temos que quando ¢x tende
                                      e
a 0, o ponto P tem como posi»~o limite o ponto P0 , e a reta secante P0 P ter¶ como
                                ca                                           a
posi»~o limite a reta t, tangente ao gr¶¯co de f no ponto P0 .
    ca                                 a
     Na ¯gura, temos ainda, da geometria anal¶
                                             ³tica elementar,

           tg ¯ = tangente do ^ngulo ¯
                              a
                = coe¯ciente angular (ou inclina»~o) da reta secante P0 P
                                                ca
                  ¢y
                =     :
                  ¢x

     tg ® = tangente do ^ngulo ®
                        a
          = coe¯ciente angular da reta t, tangente ao gr¶¯co de f , no ponto P0 :
                                                        a

Note aqui diferentes empregos (com diferentes signi¯cados) da palavra tangente: a tan-
gente (trigonom¶trica) do ^ngulo ®, nos d¶ a inclina»~o, ou declividade, ou coe¯ciente
                 e          a             a         ca
angular, da reta t, que ¶ (geometricamente) tangente ao gr¶¯co de f (ou que tangencia
                        e                                 a
o gr¶¯co de f) no ponto P0 .
    a
                                                     ¢y
     Quando ¢x tende a 0, ¯ tende a ®, e ent~o
                                            a        ¢x
                                                          = tg ¯ tende a tg ®.
               ¢y
     Da¶ lim
       ³,         = tg ®.
          ¢x!0 ¢x

Assim, com este argumento geom¶trico e intuitivo, interpretamos f 0 (x0 ) = tg ® como
                                  e
sendo o coe¯ciente angular (ou a inclina»~o) da reta t, tangente ao gr¶¯co de f (ou
                                        ca                              a
seja, tangente µ curva y = f (x)) no ponto P0 = (x0 ; f (x0 )).
               a
     Sabemos que a equa»~o de uma reta, de coe¯ciente angular m, passando por um
                            ca
ponto P0 = (x0 ; y0 ), ¶ dada por
                       e

                                y ¡ y0 = m(x ¡ x0 ):

Assim sendo, temos que a equa»~o da reta t, tangente µ curva y = f (x) no ponto
                                     ca              a
P0 = (x0 ; y0 ) = (x0 ; f (x0 )) ¶ dada por
                                 e

                             y ¡ y0 = f 0 (x0 ) ¢ (x ¡ x0 )
      Em geral, se queremos aproximar a fun»~o f (x), nas proximidades de x0 , por uma
                                           ca
fun»~o da forma g(x) = ax + b, tomamos g(x) = f(x0 ) + f 0 (x0 ) ¢ (x ¡ x0 ). O gr¶¯co
   ca                                                                             a
»~
Derivadas e retas tangentes. Novas regras de derivacao                            13


de g ser¶ ent~o a reta tangente ao gr¶¯co de f no ponto P0 . Dizemos que g(x) ¶ uma
         a   a                       a                                        e
lineariza»~o de f (x) nas proximidades de x0 .
         ca
     A reta normal µ curva y = f(x), no ponto P0 dessa curva, ¶ a reta que passa por
                   a                                          e
P0 perpendicularmente µ curva. Isto, ¶, r ¶ normal µ curva y = f (x), no ponto P0 ,
                       a              e    e        a
quando r ¶ perpendicular µ reta tangente µ curva nesse ponto.
         e               a               a
      Lembre-se que se duas retas s~o perpendiculares, tendo coe¯cientes angulares m
                                   a
   0          0
e m , ent~o m = ¡1=m.
         a
Assim, se f 0 (x0 ) 6 0, a equa»~o da reta r, normal µ curva y = f (x) no ponto
                    =          ca                        a
P0 = (x0 ; y0 ) ¶
                e
                                           1
                             y ¡ y0 = ¡ 0       (x ¡ x0 )
                                        f (x0 )


Exemplo 2.1 Qual ¶ a equa»~o da reta t, que tangencia a par¶bola y = x2 , no ponto
                   e       ca                               a
P = (¡1; 1)? Qual ¶ a equa»~o da reta r, normal µ par¶bola nesse ponto?
                  e       ca                    a    a

                                              y




                             t


                                                      r

                                   P     1

                                    -1            1       x
                                         -1




Figura 2.2. Representa»~o gr¶¯ca da curva y = x2 e das retas t e r, tangente e normal
                      ca    a
µ curva no ponto P = (¡1; 1).
a

                                    dy
     Solu»~o. Sendo y = x2 , temos
          ca                           = 2x. Em P , temos x0 = ¡1. O coe¯ciente
                                    dx
angular da reta t ¶ dado por
                  e
                                ¯
                             dy ¯
                                ¯     = 2 ¢ (¡1) = ¡2:
                             dx ¯x=¡1
»~
Derivadas e retas tangentes. Novas regras de derivacao                            14


      Assim, a reta t, tangente µ curva y = x2 no ponto P , tem equa»~o
                                a                                   ca

                              y ¡ 1 = (¡2)(x ¡ (¡1))

ou seja, y = ¡2x ¡ 1.
      Para escrever a equa»~o da reta r, normal µ curva no ponto P , fazemos uso do
                           ca                   a
fato de que a declividade da reta r ¶ mr = ¡ mt = 1 .
                                    e        1
                                                  2

      Portanto, r tem equa»~o y ¡ 1 = 1 (x + 1), ou ainda y = 1 x + 3 .
                          ca          2                       2     2

    Na ¯gura 2.2 temos a representa»~o da curva y = x2 e das retas t e r, respecti-
                                    ca
vamente tangente e normal µ curva no ponto P = (¡1; 1).
                          a

Exemplo 2.2 Determine o coe¯ciente angular da reta tangente ao gr¶¯co de y =
                                                                    a
         2
f (x) = x ¡ 4x, no ponto de abscissa (primeira coordenada) p. Em qual ponto a reta
tangente ao gr¶¯co ¶ horizontal?
              a    e
     Solu»~o. O coe¯ciente angular da reta tangente µ curva y = x2 ¡ 4x, no ponto
          ca                                        a
                      0           0
de abscissa p, ¶ m = f (p). Como f (x) = 2x ¡ 4, temos m = 2p ¡ 4.
               e
        No ponto (p; f(p)) em que a reta tangente ¶ horizontal, temos m = 0, ou seja,
                                                  e
f 0 (p) = 0. Logo, p = 2. Assim, o ponto procurado ¶ (2; ¡4).
                                                   e


2.2     Novas regras de deriva»~o
                              ca

Regra 2.1 (Derivada de um produto)

                                  (f g)0 = f 0 g + f g 0
Demonstra»~o. Temos
         ca
      ¢f = f(x + ¢x) ¡ f (x), ¢g = g(x + ¢x) ¡ g(x).
      Portanto
      f (x + ¢x) = f (x) + ¢f , g(x + ¢x) = g(x) + ¢g.
      Assim sendo

        ¢(f g) = f(x + ¢x)g(x + ¢x) ¡ f(x)g(x)
               = (f(x) + ¢f )(g(x) + ¢g) ¡ f(x)g(x)
               = f(x)g(x) + f (x)(¢g) + (¢f )g(x) + (¢f )(¢g) ¡ f(x)g(x)
               = f(x)(¢g) + (¢f )g(x) + (¢f )(¢g)

      Portanto
»~
Derivadas e retas tangentes. Novas regras de derivacao                             15



                      ¢(f g)        ¢g ¢f                   ¢f
                             = f(x)   +   g(x) +               (¢g)
                       ¢x           ¢x ¢x                   ¢x
                                    ¢g ¢f                   ¢f ¢g
                             = f(x)   +   g(x) +                  ¢x
                                    ¢x ¢x                   ¢x ¢x

      E assim,

                                  µ                                        ¶
                   ¢(fg)                 ¢g ¢f                 ¢f ¢g
               lim       = lim f (x)            +     g(x) +             ¢x
              ¢x!0 ¢x      ¢x!0          ¢x ¢x                 ¢x ¢x
                         = f (x)g 0 (x) + f 0 (x)g(x) + f 0 (x)g 0 (x) ¢ 0
                         = f 0 (x)g(x) + g 0 (x)f (x)

      Portanto, (f (x)g(x))0 = f 0 (x)g(x) + f(x)g 0 (x).

                                  ³¯co de x, digamos x = x0 , temos
Observa»~o 2.1 Para um valor espec¶
       ca
      ¢f = f(x0 + ¢x) ¡ f(x0 ).
      Embora n~o tenhamos ainda mencionado, ¶ fato que se podemos calcular o limite
              a                             e
 lim ¢f     0
        = f (x0 ), ent~o temos lim ¢f = 0.
                      a
¢x!0 ¢x                           ¢x!0

      De fato,
                                        ¢f
                       lim ¢f = lim        ¢ ¢x = f 0 (x0 ) ¢ 0 = 0:
                      ¢x!0         ¢x!0 ¢x


Exemplo 2.3 Daremos um exemplo para ilustrar a regra da derivada de um produto,
que acabamos de deduzir. Considere p(x) = (x2 + x + 2)(3x ¡ 1)
    Expandindo p(x), obtemos p(x) = 3x3 + 2x2 + 5x ¡ 2, de onde obtemos p0 (x) =
  2
9x + 4x + 5.
      Por outro lado, se aplicarmos a f¶rmula da derivada de um produto, obtemos
                                       o

                 p0 (x) = (x2 + x + 2)0 (3x ¡ 1) + (x2 + x + 2)(3x ¡ 1)0
                        = (2x + 1)(3x ¡ 1) + (x2 + x + 2) ¢ 3
                        = 9x2 + 4x + 5


Regra 2.2 Sendo g uma fun»~o deriv¶vel, quando g 60 temos
                         ca       a              =
                               µ ¶0
                                 1         g0
                                      = ¡ 2:
                                 g         g
Demonstra»~o. Como na dedu»~o da propriedade 2.1, temos g(x + ¢x) = g(x) + ¢g.
         ca               ca
»~
Derivadas e retas tangentes. Novas regras de derivacao                           16


        Sendo y = 1=g(x), temos
                                         1          1
                              ¢y =             ¡
                                    g(x + ¢x) g(x)
                                         1          1
                                  =            ¡
                                    g(x) + ¢g g(x)
                                    g(x) ¡ (g(x) + ¢g)
                                  =
                                     (g(x) + ¢g) ¢ g(x)
                                           ¡¢g
                                  =
                                    (g(x) + ¢g) ¢ g(x)

Logo,
                            ¢y   ¡¢g       1
                               =     ¢
                            ¢x   ¢x (g(x) + ¢g)g(x)
e portanto
                          dy          ¢y
                             = lim
                          dx ¢x!0 ¢x
                                      ¡¢g             1
                             = lim           ¢
                               ¢x!0 ¢x         (g(x) + ¢g)g(x)
                                              1         g 0 (x)
                             = ¡g 0 (x) ¢          =¡
                                          (g(x))2      (g(x))2

Aqui, ¯zemos uso da observa»~o 2.1: sendo g deriv¶vel, temos lim ¢g = 0.
                           ca                    a
                                                                  ¢x!0


Exemplo 2.4 Veri¯que que, sendo n um inteiro positivo, (x¡n )0 = ¡nx¡n¡1 .
Solu»~o. Aplicando o resultado da propriedade 2.2, temos
    ca
                          µ ¶0
                   ¡n 0      1        (xn )0     nxn¡1
                 (x ) =           = ¡ n 2 = ¡ 2n = ¡nx¡n¡1
                            xn        (x )         x


Regra 2.3 (Derivada de um quociente)
                           µ ¶0
                             f     f 0g ¡ f g0
                                 =
                             g          g2
Demonstra»~o.
          ca     Deixamos a dedu»~o desta regra para o leitor. Para deduzi-la, basta
                                ca
        f         1
escrever = f     ¢ e ent~o combinar as regras (propriedades) 2.1 e 2.2.
                        a
        g         g

                                       x3 ¡ 1
Exemplo 2.5 Calcular y 0 , sendo y =
                                       x3 + 1
»~
Derivadas e retas tangentes. Novas regras de derivacao                                  17


Solu»~o. Aplicando a f¶rmula para a derivada de um quociente, temos
    ca                o
                   µ 3      ¶0
               0     x ¡1        (x3 ¡ 1)0 (x3 + 1) ¡ (x3 + 1)0 (x3 ¡ 1)
              y =              =
                     x3 + 1                     (x3 + 1)2
                   3x2 (x3 + 1) ¡ 3x2 (x3 ¡ 1)
                 =
                            (x3 + 1)2
                      6x2
                 = 3
                   (x + 1)2


2.3     Problemas
  1. Utilizando regras de deriva»~o previamente estabelecidas, calcule as derivadas das
                                ca
     seguintes fun»~es.
                  co
                     4x ¡ 5
       (a) f(x) =
                     3x + 2
                     8 ¡ z + 3z 2
       (b)   f(z) =
                        2 ¡ 9z
                        2w
       (c)   f(w) = 3
                      w ¡7
                          1
       (d)   s(t) = t2 + 2
                          t
                              1
       (e)   f(x) =
                     1 + x + x2 + x3
                     x2 + 9x + 2
       (f)   f(x) =
                            7
  2. Deduza a seguinte f¶rmula de deriva»~o:
                        o               ca

                                 (f gh)0 = f 0 gh + f g 0 h + f gh0

      D^ um bom palpite (chute) sobre como seria a f¶rmula para (f1 f2 ¢ ¢ ¢ fn¡1 fn )0 .
       e                                            o
                                                                   5
  3. Ache as equa»~es das retas tangentes ao gr¶¯co de y =
                 co                            a                        , nos pontos
                                                                 1 + x2
      P = (0; 5), Q = (1; 5=2) e R = (¡2; 1). Esboce (caprichadamente) o gr¶¯co a
      dessa curva, plotando pontos com os seguintes valores de x: ¡3, ¡2, ¡1, 0, 1,
      2 e 3. No mesmo sistema cartesiano, esboce tamb¶m as retas tangentes µ curva
                                                       e                     a
      nos pontos P , Q e R.

  4. Escreva as equa»~es das retas tangente e normal µ curva y = x3 ¡ 3x2 ¡ x + 5
                    co                               a
     no ponto de abcissa x = 3.

  5. Determine as equa»~es das retas t e n, respectivamente tangente e normal µ curva
                      co                                                      a
          2
     y = x , no ponto de abcissa p.
»~
Derivadas e retas tangentes. Novas regras de derivacao                                               18


  6. (Teste sua sensibilidade sobre derivadas) Esboce o gr¶¯co de y = x2 ¡ 4, plotando
                                                          a
     os pontos de abcissas (valores de x) ¡2, ¡1, 0, 1, 2 e 3. Em cada um desses
     pontos, esboce a reta tangente ao gr¶¯co, e tente adivinhar o seu coe¯ciente
                                             a
     angular. Marque seu chute ao lado do ponto. Em seguida, calcule cada coe¯ciente
     angular usando a derivada y 0 . Compare seu chute com a resposta exata.


2.3.1      Respostas e sugest~es
                             o
                           23
  1.    (a) f 0 (x) =
                        (3x + 2)2
                        ¡27z 2 + 12z + 70
        (b) f 0 (z) =
                           (2 ¡ 9z)2
                      ¡4w3 ¡ 14
        (c) f 0 (w) =
                       (w3 ¡ 7)2
                           2
        (d) s0 (t) = 2t ¡ 3
                           t
                            1 + 2x + 3x2
        (e) f 0 (x) = ¡
                        (1 + x + x2 + x3 )2
                      2x + 9                                           ³ ´0
                                                                                          f0
        (f) f 0 (x) =          (Quando c ¶ uma constante, temos a regra f =
                                         e                              c                 c)
                         7
  2. (f1 f2 ¢ ¢ ¢ fn¡1 fn )0 = f1 f2 ¢ ¢ ¢ fn¡1 fn + f1 f2 ¢ ¢ ¢ fn¡1 fn + ¢ ¢ ¢ + f1 f2 ¢ ¢ ¢ fn¡1 fn +
                                0                        0                                      0
                       0.
     f1 f2 ¢ ¢ ¢ fn¡1 fn

  3. As equa»~es das tr^s retas s~o, respectivamente, y = 5, 5x+2y¡10 = 0, e 4x¡5y+13 =
            co         e         a
     0.

  4. Reta tangente: y = 8x ¡ 22. Reta normal: x + 8y ¡ 19 = 0.

  5. t : y = 2px ¡ p2 ;
                x    1
     n : y = ¡ + + p2 (se p 60); n : x = 0 (se p = 0).
                            =
               2p 2

Calculo1 aula02

  • 1.
    Aula 2 Derivadas eretas tangentes. Novas regras de deriva»~o ca 2.1 A derivada como inclina»~o de uma reta tangente ca ao gr¶¯co da fun»~o a ca Na aula anterior, o conceito de derivada foi apresentado atrav¶s do conceito de velocidade e instant^nea. Veremos agora uma interpreta»~o geom¶trica da derivada, em rela»~o ao a ca e ca gr¶¯co da fun»~o y = f (x). Esta ¶ uma id¶ia de Fermat. a ca e e y y = f(x) r P f( x 0 + ∆ x) ∆y t P0 f( x 0) 0 α β x0 x0 + ∆ x x ∆x Figura 2.1. A derivada da fun»~o f , em x0 , ¶ a inclina»~o da reta t, tangente ao gr¶¯co ca e ca a de f em P0 . Fixado um valor x0 , sendo de¯nido f (x0 ), seja ¢x 60 um acr¶scimo (ou de- = e 11
  • 2.
    »~ Derivadas e retastangentes. Novas regras de derivacao 12 cr¶scimo) dado a x0 . Sendo x1 = x0 + ¢x, temos que a raz~o e a ¢y f (x0 + ¢x) ¡ f (x0 ) f(x1 ) ¡ f (x0 ) = = ¢x ¢x x1 ¡ x0 ¶ o coe¯ciente angular da reta r, secante ao gr¶¯co da curva y = f (x), passando pelos e a pontos P0 = (x0 ; f(x0 )) e P = (x1 ; f(x1 )). Observando os elementos geom¶tricos da ¯gura 2.1, temos que quando ¢x tende e a 0, o ponto P tem como posi»~o limite o ponto P0 , e a reta secante P0 P ter¶ como ca a posi»~o limite a reta t, tangente ao gr¶¯co de f no ponto P0 . ca a Na ¯gura, temos ainda, da geometria anal¶ ³tica elementar, tg ¯ = tangente do ^ngulo ¯ a = coe¯ciente angular (ou inclina»~o) da reta secante P0 P ca ¢y = : ¢x tg ® = tangente do ^ngulo ® a = coe¯ciente angular da reta t, tangente ao gr¶¯co de f , no ponto P0 : a Note aqui diferentes empregos (com diferentes signi¯cados) da palavra tangente: a tan- gente (trigonom¶trica) do ^ngulo ®, nos d¶ a inclina»~o, ou declividade, ou coe¯ciente e a a ca angular, da reta t, que ¶ (geometricamente) tangente ao gr¶¯co de f (ou que tangencia e a o gr¶¯co de f) no ponto P0 . a ¢y Quando ¢x tende a 0, ¯ tende a ®, e ent~o a ¢x = tg ¯ tende a tg ®. ¢y Da¶ lim ³, = tg ®. ¢x!0 ¢x Assim, com este argumento geom¶trico e intuitivo, interpretamos f 0 (x0 ) = tg ® como e sendo o coe¯ciente angular (ou a inclina»~o) da reta t, tangente ao gr¶¯co de f (ou ca a seja, tangente µ curva y = f (x)) no ponto P0 = (x0 ; f (x0 )). a Sabemos que a equa»~o de uma reta, de coe¯ciente angular m, passando por um ca ponto P0 = (x0 ; y0 ), ¶ dada por e y ¡ y0 = m(x ¡ x0 ): Assim sendo, temos que a equa»~o da reta t, tangente µ curva y = f (x) no ponto ca a P0 = (x0 ; y0 ) = (x0 ; f (x0 )) ¶ dada por e y ¡ y0 = f 0 (x0 ) ¢ (x ¡ x0 ) Em geral, se queremos aproximar a fun»~o f (x), nas proximidades de x0 , por uma ca fun»~o da forma g(x) = ax + b, tomamos g(x) = f(x0 ) + f 0 (x0 ) ¢ (x ¡ x0 ). O gr¶¯co ca a
  • 3.
    »~ Derivadas e retastangentes. Novas regras de derivacao 13 de g ser¶ ent~o a reta tangente ao gr¶¯co de f no ponto P0 . Dizemos que g(x) ¶ uma a a a e lineariza»~o de f (x) nas proximidades de x0 . ca A reta normal µ curva y = f(x), no ponto P0 dessa curva, ¶ a reta que passa por a e P0 perpendicularmente µ curva. Isto, ¶, r ¶ normal µ curva y = f (x), no ponto P0 , a e e a quando r ¶ perpendicular µ reta tangente µ curva nesse ponto. e a a Lembre-se que se duas retas s~o perpendiculares, tendo coe¯cientes angulares m a 0 0 e m , ent~o m = ¡1=m. a Assim, se f 0 (x0 ) 6 0, a equa»~o da reta r, normal µ curva y = f (x) no ponto = ca a P0 = (x0 ; y0 ) ¶ e 1 y ¡ y0 = ¡ 0 (x ¡ x0 ) f (x0 ) Exemplo 2.1 Qual ¶ a equa»~o da reta t, que tangencia a par¶bola y = x2 , no ponto e ca a P = (¡1; 1)? Qual ¶ a equa»~o da reta r, normal µ par¶bola nesse ponto? e ca a a y t r P 1 -1 1 x -1 Figura 2.2. Representa»~o gr¶¯ca da curva y = x2 e das retas t e r, tangente e normal ca a µ curva no ponto P = (¡1; 1). a dy Solu»~o. Sendo y = x2 , temos ca = 2x. Em P , temos x0 = ¡1. O coe¯ciente dx angular da reta t ¶ dado por e ¯ dy ¯ ¯ = 2 ¢ (¡1) = ¡2: dx ¯x=¡1
  • 4.
    »~ Derivadas e retastangentes. Novas regras de derivacao 14 Assim, a reta t, tangente µ curva y = x2 no ponto P , tem equa»~o a ca y ¡ 1 = (¡2)(x ¡ (¡1)) ou seja, y = ¡2x ¡ 1. Para escrever a equa»~o da reta r, normal µ curva no ponto P , fazemos uso do ca a fato de que a declividade da reta r ¶ mr = ¡ mt = 1 . e 1 2 Portanto, r tem equa»~o y ¡ 1 = 1 (x + 1), ou ainda y = 1 x + 3 . ca 2 2 2 Na ¯gura 2.2 temos a representa»~o da curva y = x2 e das retas t e r, respecti- ca vamente tangente e normal µ curva no ponto P = (¡1; 1). a Exemplo 2.2 Determine o coe¯ciente angular da reta tangente ao gr¶¯co de y = a 2 f (x) = x ¡ 4x, no ponto de abscissa (primeira coordenada) p. Em qual ponto a reta tangente ao gr¶¯co ¶ horizontal? a e Solu»~o. O coe¯ciente angular da reta tangente µ curva y = x2 ¡ 4x, no ponto ca a 0 0 de abscissa p, ¶ m = f (p). Como f (x) = 2x ¡ 4, temos m = 2p ¡ 4. e No ponto (p; f(p)) em que a reta tangente ¶ horizontal, temos m = 0, ou seja, e f 0 (p) = 0. Logo, p = 2. Assim, o ponto procurado ¶ (2; ¡4). e 2.2 Novas regras de deriva»~o ca Regra 2.1 (Derivada de um produto) (f g)0 = f 0 g + f g 0 Demonstra»~o. Temos ca ¢f = f(x + ¢x) ¡ f (x), ¢g = g(x + ¢x) ¡ g(x). Portanto f (x + ¢x) = f (x) + ¢f , g(x + ¢x) = g(x) + ¢g. Assim sendo ¢(f g) = f(x + ¢x)g(x + ¢x) ¡ f(x)g(x) = (f(x) + ¢f )(g(x) + ¢g) ¡ f(x)g(x) = f(x)g(x) + f (x)(¢g) + (¢f )g(x) + (¢f )(¢g) ¡ f(x)g(x) = f(x)(¢g) + (¢f )g(x) + (¢f )(¢g) Portanto
  • 5.
    »~ Derivadas e retastangentes. Novas regras de derivacao 15 ¢(f g) ¢g ¢f ¢f = f(x) + g(x) + (¢g) ¢x ¢x ¢x ¢x ¢g ¢f ¢f ¢g = f(x) + g(x) + ¢x ¢x ¢x ¢x ¢x E assim, µ ¶ ¢(fg) ¢g ¢f ¢f ¢g lim = lim f (x) + g(x) + ¢x ¢x!0 ¢x ¢x!0 ¢x ¢x ¢x ¢x = f (x)g 0 (x) + f 0 (x)g(x) + f 0 (x)g 0 (x) ¢ 0 = f 0 (x)g(x) + g 0 (x)f (x) Portanto, (f (x)g(x))0 = f 0 (x)g(x) + f(x)g 0 (x). ³¯co de x, digamos x = x0 , temos Observa»~o 2.1 Para um valor espec¶ ca ¢f = f(x0 + ¢x) ¡ f(x0 ). Embora n~o tenhamos ainda mencionado, ¶ fato que se podemos calcular o limite a e lim ¢f 0 = f (x0 ), ent~o temos lim ¢f = 0. a ¢x!0 ¢x ¢x!0 De fato, ¢f lim ¢f = lim ¢ ¢x = f 0 (x0 ) ¢ 0 = 0: ¢x!0 ¢x!0 ¢x Exemplo 2.3 Daremos um exemplo para ilustrar a regra da derivada de um produto, que acabamos de deduzir. Considere p(x) = (x2 + x + 2)(3x ¡ 1) Expandindo p(x), obtemos p(x) = 3x3 + 2x2 + 5x ¡ 2, de onde obtemos p0 (x) = 2 9x + 4x + 5. Por outro lado, se aplicarmos a f¶rmula da derivada de um produto, obtemos o p0 (x) = (x2 + x + 2)0 (3x ¡ 1) + (x2 + x + 2)(3x ¡ 1)0 = (2x + 1)(3x ¡ 1) + (x2 + x + 2) ¢ 3 = 9x2 + 4x + 5 Regra 2.2 Sendo g uma fun»~o deriv¶vel, quando g 60 temos ca a = µ ¶0 1 g0 = ¡ 2: g g Demonstra»~o. Como na dedu»~o da propriedade 2.1, temos g(x + ¢x) = g(x) + ¢g. ca ca
  • 6.
    »~ Derivadas e retastangentes. Novas regras de derivacao 16 Sendo y = 1=g(x), temos 1 1 ¢y = ¡ g(x + ¢x) g(x) 1 1 = ¡ g(x) + ¢g g(x) g(x) ¡ (g(x) + ¢g) = (g(x) + ¢g) ¢ g(x) ¡¢g = (g(x) + ¢g) ¢ g(x) Logo, ¢y ¡¢g 1 = ¢ ¢x ¢x (g(x) + ¢g)g(x) e portanto dy ¢y = lim dx ¢x!0 ¢x ¡¢g 1 = lim ¢ ¢x!0 ¢x (g(x) + ¢g)g(x) 1 g 0 (x) = ¡g 0 (x) ¢ =¡ (g(x))2 (g(x))2 Aqui, ¯zemos uso da observa»~o 2.1: sendo g deriv¶vel, temos lim ¢g = 0. ca a ¢x!0 Exemplo 2.4 Veri¯que que, sendo n um inteiro positivo, (x¡n )0 = ¡nx¡n¡1 . Solu»~o. Aplicando o resultado da propriedade 2.2, temos ca µ ¶0 ¡n 0 1 (xn )0 nxn¡1 (x ) = = ¡ n 2 = ¡ 2n = ¡nx¡n¡1 xn (x ) x Regra 2.3 (Derivada de um quociente) µ ¶0 f f 0g ¡ f g0 = g g2 Demonstra»~o. ca Deixamos a dedu»~o desta regra para o leitor. Para deduzi-la, basta ca f 1 escrever = f ¢ e ent~o combinar as regras (propriedades) 2.1 e 2.2. a g g x3 ¡ 1 Exemplo 2.5 Calcular y 0 , sendo y = x3 + 1
  • 7.
    »~ Derivadas e retastangentes. Novas regras de derivacao 17 Solu»~o. Aplicando a f¶rmula para a derivada de um quociente, temos ca o µ 3 ¶0 0 x ¡1 (x3 ¡ 1)0 (x3 + 1) ¡ (x3 + 1)0 (x3 ¡ 1) y = = x3 + 1 (x3 + 1)2 3x2 (x3 + 1) ¡ 3x2 (x3 ¡ 1) = (x3 + 1)2 6x2 = 3 (x + 1)2 2.3 Problemas 1. Utilizando regras de deriva»~o previamente estabelecidas, calcule as derivadas das ca seguintes fun»~es. co 4x ¡ 5 (a) f(x) = 3x + 2 8 ¡ z + 3z 2 (b) f(z) = 2 ¡ 9z 2w (c) f(w) = 3 w ¡7 1 (d) s(t) = t2 + 2 t 1 (e) f(x) = 1 + x + x2 + x3 x2 + 9x + 2 (f) f(x) = 7 2. Deduza a seguinte f¶rmula de deriva»~o: o ca (f gh)0 = f 0 gh + f g 0 h + f gh0 D^ um bom palpite (chute) sobre como seria a f¶rmula para (f1 f2 ¢ ¢ ¢ fn¡1 fn )0 . e o 5 3. Ache as equa»~es das retas tangentes ao gr¶¯co de y = co a , nos pontos 1 + x2 P = (0; 5), Q = (1; 5=2) e R = (¡2; 1). Esboce (caprichadamente) o gr¶¯co a dessa curva, plotando pontos com os seguintes valores de x: ¡3, ¡2, ¡1, 0, 1, 2 e 3. No mesmo sistema cartesiano, esboce tamb¶m as retas tangentes µ curva e a nos pontos P , Q e R. 4. Escreva as equa»~es das retas tangente e normal µ curva y = x3 ¡ 3x2 ¡ x + 5 co a no ponto de abcissa x = 3. 5. Determine as equa»~es das retas t e n, respectivamente tangente e normal µ curva co a 2 y = x , no ponto de abcissa p.
  • 8.
    »~ Derivadas e retastangentes. Novas regras de derivacao 18 6. (Teste sua sensibilidade sobre derivadas) Esboce o gr¶¯co de y = x2 ¡ 4, plotando a os pontos de abcissas (valores de x) ¡2, ¡1, 0, 1, 2 e 3. Em cada um desses pontos, esboce a reta tangente ao gr¶¯co, e tente adivinhar o seu coe¯ciente a angular. Marque seu chute ao lado do ponto. Em seguida, calcule cada coe¯ciente angular usando a derivada y 0 . Compare seu chute com a resposta exata. 2.3.1 Respostas e sugest~es o 23 1. (a) f 0 (x) = (3x + 2)2 ¡27z 2 + 12z + 70 (b) f 0 (z) = (2 ¡ 9z)2 ¡4w3 ¡ 14 (c) f 0 (w) = (w3 ¡ 7)2 2 (d) s0 (t) = 2t ¡ 3 t 1 + 2x + 3x2 (e) f 0 (x) = ¡ (1 + x + x2 + x3 )2 2x + 9 ³ ´0 f0 (f) f 0 (x) = (Quando c ¶ uma constante, temos a regra f = e c c) 7 2. (f1 f2 ¢ ¢ ¢ fn¡1 fn )0 = f1 f2 ¢ ¢ ¢ fn¡1 fn + f1 f2 ¢ ¢ ¢ fn¡1 fn + ¢ ¢ ¢ + f1 f2 ¢ ¢ ¢ fn¡1 fn + 0 0 0 0. f1 f2 ¢ ¢ ¢ fn¡1 fn 3. As equa»~es das tr^s retas s~o, respectivamente, y = 5, 5x+2y¡10 = 0, e 4x¡5y+13 = co e a 0. 4. Reta tangente: y = 8x ¡ 22. Reta normal: x + 8y ¡ 19 = 0. 5. t : y = 2px ¡ p2 ; x 1 n : y = ¡ + + p2 (se p 60); n : x = 0 (se p = 0). = 2p 2