MATEMÁTICA


                                                                   FUNÇÕES
1. PAR ORDENADO                                                                            I) Listagem dos pares ordenados envolvidos na
                                                                                    relação.
      É uma seqüência de dois elementos em uma                                             II) Diagrama de flechas entre os conjuntos A e
dada ordem.                                                                         B.
1.1 Igualdade                                                                              III) Representação gráfica no plano cartesiano.
      (a, b) = (c, d) ⇔ a = c e b = d                                               Exemplo:
Exemplos:                                                                                  Considere a relação R = {(x, y ) ∈ AxB / y = x + 1} em
      E.1) (2,3) = (a + 1, b) ⇒ a + 1 = 2 e b = 3 , logo                            que A = {2,3,5,6} e B = {3,4,7,10,11} . Represente a rela-
a =1 e b = 3.                                                                       ção R.
                                                       a + 2b = 3                         Resolução:
        E.2)        (a + 2b, a − b ) = (3,6) ⇒                    ,    logo
                                                       a − b = 6                          I) Representação dos pares ordenados.
a=5    e b = −1.
                                                                                                       R = {(2,3), (3,4), (6,7 )} .
2. PRODUTO CARTESIANO

2.1 Representação                                                                          II) Representação com diagrama de flechas.
      O produto cartesiano será simbolizado por                                                        A                         B
AxB.                                                                                                            y=x+1
                                                                                                                                 3
2.2 Definição                                                                                          5
      Dados os conjuntos A e B, não vazios, define-                                                                              4
se como produto cartesiano (AxB) o conjunto de todos                                                   2
                                                                                                                                 7
os pares ordenados (x, y ) , tais que x ∈ A e y ∈ B . Em
                                                                                                       3
símbolos, temos:                                                                                                                10
                                                                                                       6
                      AxB = {(x, y ) / x ∈ A e y ∈ B}                                                                           11


      Se A ou B forem vazios, afirmamos que                                                III) Representação no gráfico cartesiano.
AxB = φ .
Exemplos:
      E.1) Dados A = { ,2} e B = {3,4} , determine AxB
                     1                                                                            7
e BxA.
      Resolução:
        AxB = {(1,3 ) , (1, 4 ) , ( 2,3 ) , ( 2,4 )}
                                                                                                  4
        BxA = {(3,1), (4,1), (3,2), (4,2)}
        E.2) Determine A 2 = AxA , em que A = { ,2,3} .
                                              1
                                                                                                  3
        Resolução:
  A 2 = AxA = {(11), (1 2), (1 3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)}
                 , ,          ,
2.3 Propriedade
                                                                                                            2      3                  6
        n(AxB) = n(A ) ⋅ n(B ) ,
                      em que n(AxB) , n(A ) e n(B) re-
presentam, respectivamente, o número de elementos
em AxB , A e B.                                                                     3.3 Domínio, Imagem e Contra-domínio
                                                                                          Dada uma relação R de A em B (R : A → B) .
3. RELAÇÃO BINÁRIA
                                                                                    Define-se como:
3.1 Definição                                                                                Contra-domínio da relação R o conjunto de
      Define-se como relação binária de A em B a                                             chegada da relação R, ou seja, o conjunto
qualquer subconjunto de AxB.                                                                 B.
                                                                                             Domínio da relação R o conjunto formado
3.2 Representação
                                                                                             pelos elementos relacionados pela relação
      A relação binária de A em B pode ser repre-
                                                                                             R no conjunto de partida (conjunto A).
sentada como:
                                                                                             Imagem da relação R ao conjunto formado
                                                                                             pelos elementos relacionados pela relação
Editora Exato                                                                  20
R no conjunto de chegada (conjunto B), ou                                  A                    B
     seja, os segundos elementos de todos os pa-
     res ordenados de R.
Exemplo:

                A                       B
                1                       10
                3                       2                                          satisfaz à
                5                                                                propriedade I
                                        3
                7
                                        5                        II) Cada elemento do domínio possui um único
                8
                                                           correspondente no contra-domínio.
                9                       7                  Exemplo:
                                                                 E.1)
   I) Domínio da relação R: D(R ) = { ,3,5,8} .
                                      1
   II) Contra-domínio da relação R (conjunto de
      chegada): CD(R ) = B .
   III) Imagem da relação R : Im(R ) = {2,3,5,10} .
4. FUNÇÃO

4.1 Definição
      Define-se como função de A em B a toda rela-                                  não satisfaz à
                                                                                    propriedade II
ção binária de A em B que satisfaz as propriedades
abaixo.
      I) Todo elemento do domínio possui um cor-                    E.2)
respondente no contra-domínio, ou seja, no conjunto
de partida não existe elemento sem correspondente.
Exemplo:
      E.1)

                    A               B
                                                                                      satisfaz à
                                                                                    propriedade II

                                                                    E.3)


                      não satisfaz
                    à propriedade I

      E.2)

                    A                                                                 satisfaz à
                                    B                                               propriedade II


                                                           4.2 Função Inversa
                                                                 Dada uma função f de A em B, bijetora, defi-
                                                           ne-se como função inversa de f a toda função g em B
                                                           em A, tal que:

                      satisfaz à                                              fog ( x ) = go f ( x ) = x .
                    propriedade I
                                                                    Símbolo: A função inversa de f é indicada por
      E.3)                                                 f −1 .

Editora Exato                                         21
Exemplo:                                                                       7. CONCAVIDADE E RAÍZES
       Dada f ( x ) = 3x + 5 , determine sua função inver-                           A função polinomial do 2º grau possui como
sa.                                                                            representação gráfica a curva denominada de parábo-
Resolução:                                                                     la.
       Na prática, para determinarmos a função inver-                                   concavidade 
                                                                                                         a > 0 ⇒ voltada para cima
sa de f, devemos trocar o x por y, o y por x e depois                                               a < 0 ⇒ voltada para baixo
isolar o y.                                                                                      ∆ > 0 ⇒ 2 raízes reais e distintas
                                                x−5    y                                         
          f (x ) = 3x + 5 ⇒ x = 3y + 5 ⇒ −1 =
                    {                                            , logo                 raízes   ∆ = 0 ⇒ 2 raízes reais e iguais
          {                              f (x )  3                                               ∆ < 0 ⇒ não existem raízes reais
                    y
             x
                                                                                                 
                                            x −5
                               f −1(x ) =          .
                                              3                                8. GRÁFICOS

5. FUNÇÃO POLINOMIAL DO 1º GRAU                                                       Devemos observar que o número de possibili-
                                                                               dades para a construção do gráfico da função quadrá-
5.1 Definição                                                                  tica é 6, levando em consideração as possibilidades
      Define-se como função polinomial do 1º grau                              da concavidade e raízes.
ou função afim a toda função f de R em R que asso-                             8.1 a>0 e ∆>0
cia a cada número x ∈ D ( f ) um número f ( x ) ∈ CD ( f ) ,                             Concavidade voltada para cima e duas raí-
tal que f ( x )=ax+b (com a ∈ R* e b ∈ R).                                               zes reais distintas.
5.2 Gráficos
     Dada a função f: R → R, tal que f (x ) = ax + b
(com a ≠ 0 ).                                                                                           x1          x2
     Gráficos

                                                                               8.2 a>0 e ∆=0
                        a>0                                a<0                        Concavidade voltada para cima e duas raí-
                       y                                   y
                                                                                      zes reais iguais.




                       O         x                         O     x
                                                                                                              x1 = x2

                                                                               8.3 a>0 e ∆<0
             função crescente               função decrescente                        Concavidade voltada para cima e não pos-
                                                                                      sui raízes reais.

          Propriedades
       O coeficiente a é denominado de coeficiente
angular e representa a tangente do ângulo de inclina-
ção.
       O coeficiente b é denominado de coeficiente
linear e representa o ponto de encontro da função
com o eixo y, ou seja, o ponto (0, b ) pertence ao grá-
fico da função f.
6. FUNÇÃO QUADRÁTICA                                                           8.4 a<0 e ∆>0
      Define-se como função polinomial do 2º grau a                                   Concavidade voltada para baixo e duas raí-
função quadrática a toda função f de R em R que as-                                   zes reais distintas.
socia a cada número x ∈ D ( f ) um número
f ( x ) ∈ CD ( f ) ,   tal que f (x ) = ax 2 + bx + c (com a∈R* e b,
                                                                                                         x1       x2
c ∈R).



Editora Exato                                                             22
8.5 a<0 e ∆=0                                                              9.1 Valor máximo e mínimo
       Concavidade voltada para baixo e duas raí-                               Para uma função polinomial do 2º grau pode-
       zes reais iguais.                                                   mos determinar o valor máximo ou mínimo da ima-
                                                                           gem determinando o valor da imagem da função no
                                                                           vértice da parábola  y v =
                                                                                                       −∆
                                 x1= x2                                                                 .
                                                                                                            4a 
                                                                                         Se a > 0, então o valor encontrado no yv se-
                                                                                         rá mínimo.
                                                                                         Se a < 0, então o valor encontrado no yv se-
                                                                                         rá máximo.

8.6 a<0 e ∆<0                                                              10.      FUNÇÃO MODULAR
       Concavidade voltada para baixo e não pos-                           10.1. Definição
       sui raízes reais.                                                              Define-se como função modular a toda função
                                                                           f de R em R que associa a cada x ∈ D ( f ) um número
                                                                            f ( x ) ∈ CD ( f ) , tal que, f ( x ) = x . Em símbolos, temos:


                                                                                                                    x, se x ≥ 0
                                                                                                 f:R →R     f(x) =              .
                                                                                                                   -x, se x<0


                                                                           10.2. Elementos
9. VÉRTICE DA PARÁBOLA
                                                                                Dada a função módulo f(x) = x .
      Dada a função f ( x )=ax 2+bx+c (com a ≠ 0 ) a                              Domínio de f : D(f) = R .
coordenada do vértice da parábola v(x v , y v ) pode ser                          Contra domínio de f: CD(f) = R .
determinada pelas relações abaixo.                                                Imagem de f: Im(f) = R + .
                                                                           10.3. Equações Modulares
                             −b                −∆
                       xv=         e yv =
                             2a                4a
                                                                                                             x = k
                                                                                                             
                                                                                                     x = k ⇔  ou
Exemplo:                                                                                                     
      Dada a função f(x) = 2x 2 − 5x − 10 , determine a                                                       x = −k

coordenada do vértice da parábola e faça a represen-
tação gráfica da função f no plano cartesiano.                             Exemplo:
                                                                                 E.1) Determine o valor de x na equação
Resolução:
                                                                           x −3 = 5.
    xv = −
             (−5) = 5 e   yv =
                                  ((− 5)  2
                                                        )
                                              − 4 ⋅ 2(− 10 )
                                                             =−
                                                                105
             2.2   4                          4⋅2                8         Resolução
       Devemos observar que                   ∆ > 0 e a > 0 ; logo,
                                                  a                                            x − 3 = 5 → x = 8
                                                                                               
parábola possui concavidade voltada para cima e du-                                 x −3 = 5 ⇒           ou
as raízes reais distintas.                                                                      x − 3 = −5 ⇒ x = −2
                                                                                               
                                                                                         Propriedades
                             y                                                      x ≥ 0.
                                                                                    x⋅y = x ⋅ y .
                                                                                    x  x
                                                                                      = , para y ≠ 0.
                                                                                    y  y
                                                                                             n
                                                                                   nn = x .
                                  5
                                                                                     n
                                  4                                                 x = x n , para n par.
                                                            x
                   105                                                                   EXERCÍCIOS RESOLVIDOS
                    8           5 105 
                             V  ,−
                             v         
                               4   8                                     1     Qual dos gráficos abaixo representa uma função?
                                                                                  a)


Editora Exato                                                         23
y                                                     a) substituir na função o valor atribuído a x
                     y                                                                             2
                                                                          f ( 0 ) = 03 − 2 ( 0 ) + 0 + 1 = 1
                     1

                    y
                     2
                                                                          b)
                                                                                  3           2
                                                                          ( −1)       − 2 ( −1) + ( −1) + 1 =
                                                                          −1− 2 − 1 + 1 = −3
                                                                                  / /
                                  x1        x
                                                                                                  EXERCÍCIOS
      b)                                                         1   (FMU-SP) Seja a função f definida por
                                                                                              Então f ( 0 ) + f ( −1) + f   é:
                                                                                                                            1
                    y                                                f ( x ) = 2x 3 − 1 .                                 
                     y                                                                                                  2
                     1                                                      3                                          19
                                                                     a)   −                                     d)   −
                                                                            4                                           4
                                                                            15                                         13
                    y
                                                                     b)   −                                     e)   −
                     2                                                       4                                          4
                                                                            17
                                       x1   x                        c)   −
                                                                             4

      c)
                                                                 2   (MACK-SP) Se f ( x − 1) = x , então o valor de
                                                                                                                 2


                          y
                                                                     f ( 2 ) é:
                                                                     a) 9
                                                                     b) 6
                                                                     c) 4
                              y
                              1                                      d) 1
                                       x1                            e) 0
                                            x

      d)                                                         3   (FGV-SP) A população de uma cidade daqui a t
                                                                                                                     4
                          y                                          anos é estimada em P ( t ) = 30 −                   milhares de pes-
                                                                                                                     t
                                                                     soas. Durante o 5º ano, o crescimento da popula-
                                                                     ção será de:
                          y                                          a) 300 pessoas.
                          1                                          b) 200 pessoas.
                                                                     c) 133 pessoas.
                     x1                     x                        d) 30 pessoas.
                                                                     e) 2 pessoas.


                                                                 4   (UFMG) Suponha que o número f(x) de funcio-
                                                                     nários necessários para distribuir, em um dia,
                                                                     contas de luz entre x por cento de moradores,
       Resolução:                                                    numa determinada cidade, seja dado pela função
       c) e d)                                                                  300x
       Observe que a definição de função compreen-                   f (x) =                 . Se o número de funcionários ne-
                                                                               150 − x
de dar um valor x e encontrar um, e somente um, va-                  cessários para distribuir, em um dia, as contas de
lor para y.                                                          luz foi 75, a porcentagem de moradores que as
       Dica: fazer uma reta vertical em qualquer pon-                receberam é:
to do gráfico e não corresponder dois ou mais valores                a) 30.
em y.                                                                b) 40.
                                                                     c) 45.
2   Seja a função f ( x ) = x 3 − 2x 2 + x + 1, calcular:            d) 50.
                                                                     e) 55.
      a) f(0)
      b) f ( −1)
      Resolução:

Editora Exato                                               24
5    (UEL-PR) Para que os pontos (1;3 ) e ( 3; −1) per-             d)
     tençam ao gráfico da função dada f(x) = ax + b , o
     valor de b − a deve ser:                                                       y
    a) 7.
    b) 5.
    c) 3.
    d) –3.
    e) –7.
                                                                                                             x

6    (CESCEM) Se f(x) = 2x , então, os valores de:
                                     3
                                                                    e)
    f(0); f ( −1) ; f ( 2 ) ; f ( −2 ) ; e −f  −  são:
                                                  
                                                 1
                                               2
                                                                                  y
    a) 2, 2, 4, -4, -1/4.
    b) 0, -2, 16, -16, 1/4.
    c) 0, -6, 16, -16, 1/3.
    d) 2, -2, 2, -2,-1/3.
    e) 0, 2, 16, 16, 1/4.
                                                                                                             x
7   (PUC) Qual dos gráficos não representa uma
    função?
    a)                                                          8   (ESC. AERON) Determinar o campo de existên-
                                                                    cia da função y = 4 − x :     2



                    y                                               a) ( −4,4 )
                                                                    b) [ −2,4]
                                                                    c) ( 2, −2 )
                                                                    d) [ −2,2]
                                                                    e) Nenhuma.
                                             x

    b)                                                          9   (PUC-RS) O domínio da função real dada por
                                                                                   1
                                                                    f (x) =                  é o conjunto:
                    y                                                        2x 2 + 5x − 3
                                                                                 1
                                                                    a)   R − −3, 
                                                                                 2

                                                                    b) R − − ,3
                                                                              1
                                             x                                 
                                                                            2      
                                                                            1
                                                                    c)   R− 
                                                                           2

                                                                    d) −3, 
                                                                           1
    c)                                                                      
                                                                           2
                                                                          1 
                                y                                   e)   − ,2
                                                                          2 


                                             x                  10 (FMU-SP)             O     domínio    real    da   função
                                                                                2
                                                                               x −4
                                                                    f (x) =            é o conjunto:
                                                                               x−2
                                                                    a)   {x ∈ R / x ≤ −2 ou x ≥ 2}
                                                                    b) {x ∈ R / − 2 ≤ x<2}
                                                                    c) {x ∈ R / − 2 ≤ x ≤ 2}
                                                                    d) {x ∈ R / x ≤ −2 ou x>2}
                                                                    e) {x ∈ R / x > 2}

Editora Exato                                              25
11 (PELOTAS) Se f e g são funções definidas em R                         17 A função y = 2x − x + 1 é uma parábola que:
                                                                                              2



   por f ( x ) = x + 2 e g ( x ) = 3x + 5 , então g  f ( x ) é:
                                                                          a) corta o eixo x em dois pontos.
   a) 3x+11                                                                 b) passa pela origem.
   b) 3x2 + 10                                                              c) não corta o eixo x.
   c) 3x2 + 11x + 10                                                        d) tem concavidade voltada para baixo.
   d) 4x+7                                                                  e) nenhuma.
   e) f g ( x )
               
                                                                         18 Dada a função f ( x ) = mx + n , conhecendo-se
12 (USP) Se f ( x ) = 5x e g ( x ) = 3x , então f g ( x )
                                            2                               f ( 0 ) = 2 e f (1) = 3 , então o valor de m e n é:
                                                         
   será igual a:                                                            a) 1 e 2.
   a) 15x + 3x2                                                             b) 2 e 1.
   b) 15x2                                                                  c) 3 e 1.
   c) 8x3                                                                   d) 2 e 3.
   d) 15x                                                                   e) 0 e 1.
   e) 15x3
                                                                         19 (PUC) Sendo m ∈ R , então as raízes da equação
13 (PUC-SP) Sendo f ( x ) = x + 1 e g ( x ) = x − 2 , então
                                   3                                         x − ( m − 1) x − m = 0 serão reais e iguais se, e so-
                                                                              2




   gof ( 0 ) é igual a:                                                     mente se,
                                                                            a) m ≠ 1 .
   a) 1                                                                     b) m=1.
   b) 3                                                                     c) m ≠ −1 .
   c) 0                                                                     d) m=-1.
   d) 2                                                                     e) m=0.
   e) –1

                                                                         20 (PUC) Para que as raízes ou zeros da função
                                                                             y = x − mx + 4 sejam reais, é necessário que:
                                                                                  2



                                                                            a) m ∈ R e [m ≤ -4 ou m>4] .
14 (UFPR) Para cada valor real de x, sejam                                  b) m ∈ R e m>4 .
   f ( x ) = x e g ( x ) = f  f ( x )  . Calcular o valor de
                    2
                                                                          c) m ∈ R e [m ≤ -4 ou m ≤ 4] .
     f g ( 3 ) 
                                                                          d) m ∈ R e [-4 ≤ m ≤ 4] .
                        .
       g ( 3)
                                                                            e) m ∈ R e [-4 < m <4] .
    a) 20.
    b) 21.
    c) 31.                                                               21 (UFPR) O vértice da parábola y = −2x + 8x − 82



    d) 81.                                                                  tem coordenadas:
    e) 80.                                                                  a) ( 0, −8 ) .
                                                                            b) (1, −2 ) .
15 Uma função do 2º grau, nos dá sempre                                     c) ( 2,0 ) .
   a) uma reta.
                                                                            d) ( 3,0 ) .
   b) uma hipérbole.
   c) uma parábola.                                                         e) ( 3. − 2 ) .
   d) uma elipse.
   e) nenhuma.

                                                                                              GABARITO
16 O vértice da parábola y = − x + 4x + 5 é:
                                       2



   a) V ( 2,9 ) .                                                        1   D
   b) V ( 5, −1) .                                                       2   A
   c) V ( −1, −5 ) .                                                     3   B
   d) V ( 0,0 ) .
                                                                         4   A
   e) Nenhuma.
                                                                         5   B

Editora Exato                                                       26
6   B
7   B
8   D
9   A
10 D
11 A
12 B
13 E
14 D
15 C
16 A
17 C
18 A
19 D
20 C
21 C




Editora Exato   27

Apostila 002 funções

  • 1.
    MATEMÁTICA FUNÇÕES 1. PAR ORDENADO I) Listagem dos pares ordenados envolvidos na relação. É uma seqüência de dois elementos em uma II) Diagrama de flechas entre os conjuntos A e dada ordem. B. 1.1 Igualdade III) Representação gráfica no plano cartesiano. (a, b) = (c, d) ⇔ a = c e b = d Exemplo: Exemplos: Considere a relação R = {(x, y ) ∈ AxB / y = x + 1} em E.1) (2,3) = (a + 1, b) ⇒ a + 1 = 2 e b = 3 , logo que A = {2,3,5,6} e B = {3,4,7,10,11} . Represente a rela- a =1 e b = 3. ção R. a + 2b = 3 Resolução: E.2) (a + 2b, a − b ) = (3,6) ⇒  , logo a − b = 6 I) Representação dos pares ordenados. a=5 e b = −1. R = {(2,3), (3,4), (6,7 )} . 2. PRODUTO CARTESIANO 2.1 Representação II) Representação com diagrama de flechas. O produto cartesiano será simbolizado por A B AxB. y=x+1 3 2.2 Definição 5 Dados os conjuntos A e B, não vazios, define- 4 se como produto cartesiano (AxB) o conjunto de todos 2 7 os pares ordenados (x, y ) , tais que x ∈ A e y ∈ B . Em 3 símbolos, temos: 10 6 AxB = {(x, y ) / x ∈ A e y ∈ B} 11 Se A ou B forem vazios, afirmamos que III) Representação no gráfico cartesiano. AxB = φ . Exemplos: E.1) Dados A = { ,2} e B = {3,4} , determine AxB 1 7 e BxA. Resolução: AxB = {(1,3 ) , (1, 4 ) , ( 2,3 ) , ( 2,4 )} 4 BxA = {(3,1), (4,1), (3,2), (4,2)} E.2) Determine A 2 = AxA , em que A = { ,2,3} . 1 3 Resolução: A 2 = AxA = {(11), (1 2), (1 3), (2,1), (2,2), (2,3), (3,1), (3,2), (3,3)} , , , 2.3 Propriedade 2 3 6 n(AxB) = n(A ) ⋅ n(B ) , em que n(AxB) , n(A ) e n(B) re- presentam, respectivamente, o número de elementos em AxB , A e B. 3.3 Domínio, Imagem e Contra-domínio Dada uma relação R de A em B (R : A → B) . 3. RELAÇÃO BINÁRIA Define-se como: 3.1 Definição Contra-domínio da relação R o conjunto de Define-se como relação binária de A em B a chegada da relação R, ou seja, o conjunto qualquer subconjunto de AxB. B. Domínio da relação R o conjunto formado 3.2 Representação pelos elementos relacionados pela relação A relação binária de A em B pode ser repre- R no conjunto de partida (conjunto A). sentada como: Imagem da relação R ao conjunto formado pelos elementos relacionados pela relação Editora Exato 20
  • 2.
    R no conjuntode chegada (conjunto B), ou A B seja, os segundos elementos de todos os pa- res ordenados de R. Exemplo: A B 1 10 3 2 satisfaz à 5 propriedade I 3 7 5 II) Cada elemento do domínio possui um único 8 correspondente no contra-domínio. 9 7 Exemplo: E.1) I) Domínio da relação R: D(R ) = { ,3,5,8} . 1 II) Contra-domínio da relação R (conjunto de chegada): CD(R ) = B . III) Imagem da relação R : Im(R ) = {2,3,5,10} . 4. FUNÇÃO 4.1 Definição Define-se como função de A em B a toda rela- não satisfaz à propriedade II ção binária de A em B que satisfaz as propriedades abaixo. I) Todo elemento do domínio possui um cor- E.2) respondente no contra-domínio, ou seja, no conjunto de partida não existe elemento sem correspondente. Exemplo: E.1) A B satisfaz à propriedade II E.3) não satisfaz à propriedade I E.2) A satisfaz à B propriedade II 4.2 Função Inversa Dada uma função f de A em B, bijetora, defi- ne-se como função inversa de f a toda função g em B em A, tal que: satisfaz à fog ( x ) = go f ( x ) = x . propriedade I Símbolo: A função inversa de f é indicada por E.3) f −1 . Editora Exato 21
  • 3.
    Exemplo: 7. CONCAVIDADE E RAÍZES Dada f ( x ) = 3x + 5 , determine sua função inver- A função polinomial do 2º grau possui como sa. representação gráfica a curva denominada de parábo- Resolução: la. Na prática, para determinarmos a função inver- concavidade  a > 0 ⇒ voltada para cima sa de f, devemos trocar o x por y, o y por x e depois a < 0 ⇒ voltada para baixo isolar o y. ∆ > 0 ⇒ 2 raízes reais e distintas x−5 y  f (x ) = 3x + 5 ⇒ x = 3y + 5 ⇒ −1 = { , logo raízes ∆ = 0 ⇒ 2 raízes reais e iguais { f (x ) 3 ∆ < 0 ⇒ não existem raízes reais y x  x −5 f −1(x ) = . 3 8. GRÁFICOS 5. FUNÇÃO POLINOMIAL DO 1º GRAU Devemos observar que o número de possibili- dades para a construção do gráfico da função quadrá- 5.1 Definição tica é 6, levando em consideração as possibilidades Define-se como função polinomial do 1º grau da concavidade e raízes. ou função afim a toda função f de R em R que asso- 8.1 a>0 e ∆>0 cia a cada número x ∈ D ( f ) um número f ( x ) ∈ CD ( f ) , Concavidade voltada para cima e duas raí- tal que f ( x )=ax+b (com a ∈ R* e b ∈ R). zes reais distintas. 5.2 Gráficos Dada a função f: R → R, tal que f (x ) = ax + b (com a ≠ 0 ). x1 x2 Gráficos 8.2 a>0 e ∆=0 a>0 a<0 Concavidade voltada para cima e duas raí- y y zes reais iguais. O x O x x1 = x2 8.3 a>0 e ∆<0 função crescente função decrescente Concavidade voltada para cima e não pos- sui raízes reais. Propriedades O coeficiente a é denominado de coeficiente angular e representa a tangente do ângulo de inclina- ção. O coeficiente b é denominado de coeficiente linear e representa o ponto de encontro da função com o eixo y, ou seja, o ponto (0, b ) pertence ao grá- fico da função f. 6. FUNÇÃO QUADRÁTICA 8.4 a<0 e ∆>0 Define-se como função polinomial do 2º grau a Concavidade voltada para baixo e duas raí- função quadrática a toda função f de R em R que as- zes reais distintas. socia a cada número x ∈ D ( f ) um número f ( x ) ∈ CD ( f ) , tal que f (x ) = ax 2 + bx + c (com a∈R* e b, x1 x2 c ∈R). Editora Exato 22
  • 4.
    8.5 a<0 e∆=0 9.1 Valor máximo e mínimo Concavidade voltada para baixo e duas raí- Para uma função polinomial do 2º grau pode- zes reais iguais. mos determinar o valor máximo ou mínimo da ima- gem determinando o valor da imagem da função no vértice da parábola  y v = −∆ x1= x2  .  4a  Se a > 0, então o valor encontrado no yv se- rá mínimo. Se a < 0, então o valor encontrado no yv se- rá máximo. 8.6 a<0 e ∆<0 10. FUNÇÃO MODULAR Concavidade voltada para baixo e não pos- 10.1. Definição sui raízes reais. Define-se como função modular a toda função f de R em R que associa a cada x ∈ D ( f ) um número f ( x ) ∈ CD ( f ) , tal que, f ( x ) = x . Em símbolos, temos:  x, se x ≥ 0 f:R →R f(x) =  . -x, se x<0 10.2. Elementos 9. VÉRTICE DA PARÁBOLA Dada a função módulo f(x) = x . Dada a função f ( x )=ax 2+bx+c (com a ≠ 0 ) a Domínio de f : D(f) = R . coordenada do vértice da parábola v(x v , y v ) pode ser Contra domínio de f: CD(f) = R . determinada pelas relações abaixo. Imagem de f: Im(f) = R + . 10.3. Equações Modulares −b −∆ xv= e yv = 2a 4a x = k  x = k ⇔  ou Exemplo:  Dada a função f(x) = 2x 2 − 5x − 10 , determine a  x = −k coordenada do vértice da parábola e faça a represen- tação gráfica da função f no plano cartesiano. Exemplo: E.1) Determine o valor de x na equação Resolução: x −3 = 5. xv = − (−5) = 5 e yv = ((− 5) 2 ) − 4 ⋅ 2(− 10 ) =− 105 2.2 4 4⋅2 8 Resolução Devemos observar que ∆ > 0 e a > 0 ; logo, a x − 3 = 5 → x = 8  parábola possui concavidade voltada para cima e du- x −3 = 5 ⇒  ou as raízes reais distintas.  x − 3 = −5 ⇒ x = −2  Propriedades y x ≥ 0. x⋅y = x ⋅ y . x x = , para y ≠ 0. y y n nn = x . 5 n 4 x = x n , para n par. x 105 EXERCÍCIOS RESOLVIDOS 8  5 105  V  ,− v  4 8  1 Qual dos gráficos abaixo representa uma função? a) Editora Exato 23
  • 5.
    y a) substituir na função o valor atribuído a x y 2 f ( 0 ) = 03 − 2 ( 0 ) + 0 + 1 = 1 1 y 2 b) 3 2 ( −1) − 2 ( −1) + ( −1) + 1 = −1− 2 − 1 + 1 = −3 / / x1 x EXERCÍCIOS b) 1 (FMU-SP) Seja a função f definida por Então f ( 0 ) + f ( −1) + f   é: 1 y f ( x ) = 2x 3 − 1 .  y 2 1 3 19 a) − d) − 4 4 15 13 y b) − e) − 2 4 4 17 x1 x c) − 4 c) 2 (MACK-SP) Se f ( x − 1) = x , então o valor de 2 y f ( 2 ) é: a) 9 b) 6 c) 4 y 1 d) 1 x1 e) 0 x d) 3 (FGV-SP) A população de uma cidade daqui a t 4 y anos é estimada em P ( t ) = 30 − milhares de pes- t soas. Durante o 5º ano, o crescimento da popula- ção será de: y a) 300 pessoas. 1 b) 200 pessoas. c) 133 pessoas. x1 x d) 30 pessoas. e) 2 pessoas. 4 (UFMG) Suponha que o número f(x) de funcio- nários necessários para distribuir, em um dia, contas de luz entre x por cento de moradores, Resolução: numa determinada cidade, seja dado pela função c) e d) 300x Observe que a definição de função compreen- f (x) = . Se o número de funcionários ne- 150 − x de dar um valor x e encontrar um, e somente um, va- cessários para distribuir, em um dia, as contas de lor para y. luz foi 75, a porcentagem de moradores que as Dica: fazer uma reta vertical em qualquer pon- receberam é: to do gráfico e não corresponder dois ou mais valores a) 30. em y. b) 40. c) 45. 2 Seja a função f ( x ) = x 3 − 2x 2 + x + 1, calcular: d) 50. e) 55. a) f(0) b) f ( −1) Resolução: Editora Exato 24
  • 6.
    5 (UEL-PR) Para que os pontos (1;3 ) e ( 3; −1) per- d) tençam ao gráfico da função dada f(x) = ax + b , o valor de b − a deve ser: y a) 7. b) 5. c) 3. d) –3. e) –7. x 6 (CESCEM) Se f(x) = 2x , então, os valores de: 3 e) f(0); f ( −1) ; f ( 2 ) ; f ( −2 ) ; e −f  −  são:  1  2   y a) 2, 2, 4, -4, -1/4. b) 0, -2, 16, -16, 1/4. c) 0, -6, 16, -16, 1/3. d) 2, -2, 2, -2,-1/3. e) 0, 2, 16, 16, 1/4. x 7 (PUC) Qual dos gráficos não representa uma função? a) 8 (ESC. AERON) Determinar o campo de existên- cia da função y = 4 − x : 2 y a) ( −4,4 ) b) [ −2,4] c) ( 2, −2 ) d) [ −2,2] e) Nenhuma. x b) 9 (PUC-RS) O domínio da função real dada por 1 f (x) = é o conjunto: y 2x 2 + 5x − 3  1 a) R − −3,   2 b) R − − ,3 1 x    2   1 c) R−  2 d) −3,  1 c)    2  1  y e) − ,2  2  x 10 (FMU-SP) O domínio real da função 2 x −4 f (x) = é o conjunto: x−2 a) {x ∈ R / x ≤ −2 ou x ≥ 2} b) {x ∈ R / − 2 ≤ x<2} c) {x ∈ R / − 2 ≤ x ≤ 2} d) {x ∈ R / x ≤ −2 ou x>2} e) {x ∈ R / x > 2} Editora Exato 25
  • 7.
    11 (PELOTAS) Sef e g são funções definidas em R 17 A função y = 2x − x + 1 é uma parábola que: 2 por f ( x ) = x + 2 e g ( x ) = 3x + 5 , então g  f ( x ) é:   a) corta o eixo x em dois pontos. a) 3x+11 b) passa pela origem. b) 3x2 + 10 c) não corta o eixo x. c) 3x2 + 11x + 10 d) tem concavidade voltada para baixo. d) 4x+7 e) nenhuma. e) f g ( x )   18 Dada a função f ( x ) = mx + n , conhecendo-se 12 (USP) Se f ( x ) = 5x e g ( x ) = 3x , então f g ( x ) 2 f ( 0 ) = 2 e f (1) = 3 , então o valor de m e n é:   será igual a: a) 1 e 2. a) 15x + 3x2 b) 2 e 1. b) 15x2 c) 3 e 1. c) 8x3 d) 2 e 3. d) 15x e) 0 e 1. e) 15x3 19 (PUC) Sendo m ∈ R , então as raízes da equação 13 (PUC-SP) Sendo f ( x ) = x + 1 e g ( x ) = x − 2 , então 3 x − ( m − 1) x − m = 0 serão reais e iguais se, e so- 2 gof ( 0 ) é igual a: mente se, a) m ≠ 1 . a) 1 b) m=1. b) 3 c) m ≠ −1 . c) 0 d) m=-1. d) 2 e) m=0. e) –1 20 (PUC) Para que as raízes ou zeros da função y = x − mx + 4 sejam reais, é necessário que: 2 a) m ∈ R e [m ≤ -4 ou m>4] . 14 (UFPR) Para cada valor real de x, sejam b) m ∈ R e m>4 . f ( x ) = x e g ( x ) = f  f ( x )  . Calcular o valor de 2   c) m ∈ R e [m ≤ -4 ou m ≤ 4] . f g ( 3 )    d) m ∈ R e [-4 ≤ m ≤ 4] . . g ( 3) e) m ∈ R e [-4 < m <4] . a) 20. b) 21. c) 31. 21 (UFPR) O vértice da parábola y = −2x + 8x − 82 d) 81. tem coordenadas: e) 80. a) ( 0, −8 ) . b) (1, −2 ) . 15 Uma função do 2º grau, nos dá sempre c) ( 2,0 ) . a) uma reta. d) ( 3,0 ) . b) uma hipérbole. c) uma parábola. e) ( 3. − 2 ) . d) uma elipse. e) nenhuma. GABARITO 16 O vértice da parábola y = − x + 4x + 5 é: 2 a) V ( 2,9 ) . 1 D b) V ( 5, −1) . 2 A c) V ( −1, −5 ) . 3 B d) V ( 0,0 ) . 4 A e) Nenhuma. 5 B Editora Exato 26
  • 8.
    6 B 7 B 8 D 9 A 10 D 11 A 12 B 13 E 14 D 15 C 16 A 17 C 18 A 19 D 20 C 21 C Editora Exato 27