Aprenda de Verdade – Professor Railson Melo
                         Função do 1° Grau ou Função Afim

Definição: É toda função de domínio real e contradomínio real cuja regra de
associação que relaciona os elementos do domínio com os elementos do
contradomínio é (ou pode ser reduzida à) da forma ( ) =             + , onde a e b são
números reais e a não pode ser zero.

                                                                           Regra de
Em notação matemática:                                                    Associação
                                      Domínio       Contradomínio


                                      :    ℝ    ⟶   ℝ
                                                ⟼   ( )=      +


                            Elementos do            Elementos do Contradomínio que
                                                    são imagens dos elementos do
                                 Domínio            Domínio


Onde ,     ∈ℝ      ≠      ( Se    for zero, a função será constante e não do 1° grau).


       Note que        representa genericamente, isto é, de forma geral, os
elementos do domínio da função . Isso quer dizer que                pode ser qualquer
elemento do domínio.
       Note também que           ( ) representa genericamente (de forma geral) os
elementos do contradomínio que se relacionam com os elementos do domínio
pela função . O que estou a dizer é que ( ) representa a imagem do elemento
 do domínio pela função , qualquer que seja o valor de .
       Os coeficientes      e      da regra de associação de qualquer função do
primeiro grau tem nomes específicos, a saber:
      O   é chamado coeficiente angular;
      O   é chamado de coeficiente linear.
Aprenda de Verdade – Professor Railson Melo
Gráfico de uma função do 1° Grau:
        O gráfico de uma função afim ou do 1° grau é uma reta. Para esboçar o
gráfico de uma função do 1° grau precisamos apenas de dois pontos distintos,
um sobre o eixo x e outro sobre o eixo y.
        Como fazer para saber que pontos são esses? Muito Fácil!
        1- O coeficiente linear (termo ) é o ponto de interseção do gráfico com
            o eixo y. Daí é só marcar no eixo y (eixo das ordenadas) o valor de .


        2- Para encontrar o ponto de interseção do Gráfico com o eixo x (eixo
            das abscissas), basta trocar o sinal de   (coeficiente linear) e dividi-lo

            pelo   (coeficiente angular). Daí é só marcar no eixo x o valor de     .


        3- Depois dos passos anteriores é só traçar uma reta que passe pelos
            dois pontos.



Exemplo 1: Esboce os gráficos das funções a seguir:
   a)    ( )= 2 +3                                    b) ( ) = −3 − 4




        −




                                                 −




O eixo horizontal é o x.
O eixo vertical é o y.
Aprenda de Verdade – Professor Railson Melo
Observação 1: O coeficiente angular serve para determinar a inclinação do
gráfico da função em relação ao eixo das abscissas (eixo Ox). Note que o gráfico
da função forma com o eixo x um ângulo. O valor da tangente desse ângulo é
igual ao coeficiente angular.



           ( )=2 +3


                                                       =      =




                                                   ∆




                                    ∆




Observação 2: Se    > 0, a função é crescente.


Observação 3: Se    < 0, a função é decrescente.


Observação 4: O coeficiente angular também representa a taxa de variação da
função afim, isto é, para cada acréscimo ou decréscimo no valor de , o valor da
função    ( ) será acrescida ou decrescida da mesma quantidade, só que
multiplicada pelo coeficiente angular.
Aprenda de Verdade – Professor Railson Melo
Exemplo: Na função acima o coeficiente angular é 2. Assim, para cada
acréscimo (ou diminuição) no valor de x, o valor de f(x) terá o mesmo acréscimo
(ou diminuição), só que multiplicado por 2.
                                                        ( )=     +
0                                          (0) = 2 ∙ 0 + 3 = 0 + 3 = 3
1                                          (1) = 2 ∙ 1 + 3 = 2 + 3 = 5
2                                          (2) = 2 ∙ 2 + 3 = 4 + 3 = 7

Note que para cada acréscimo de uma unidade em x, f(x) aumentou a mesma
quantidade, só que multiplicada pelo coeficiente angular que nesse caso é 2.

Isso vale para todas as funções do primeiro grau. Fácil, não é mesmo?!

Casos especiais de função afim:

Caso 1: Função Linear ( ≠ 1 e         = 0): Dizemos que uma função é linear
quando o coeficiente angular é diferente de 1 e o coeficiente linear é igual a 0. O
gráfico dessa função passa pela origem.
                                  :   ℝ   ⟶     ℝ
                                          ⟼     ( )=
       ( )=2                                                   ( ) = −3
Aprenda de Verdade – Professor Railson Melo
Caso 2: Função Identidade ( = 1 e           = 0): Dizemos que uma função é
identidade quando o coeficiente angular é igual a 1 e coeficiente linear é igual a
0. Veja que a função identidade é um caso particular de função linear. O gráfico
dessa função passa pela origem e tem coordenadas iguais, isto é,     = ( ), para
quaisquer valores de .
                                 :   ℝ   ⟶     ℝ
                                          ⟼     ( )=




Caso 3: Translação ( = 1 e     ∈ ℝ): Dizemos que uma função é uma translação
quando o coeficiente angular é igual a 1 e coeficiente linear é diferente de 0. O
gráfico dessa função é o mesmo da função identidade, só que deslocado para
cima caso    > 0 ou deslocado para baixo, caso      < 0. O gráfico dessa função
intersecta os eixos coordenados em valores de opostos.
                                 :   ℝ   ⟶     ℝ
                                          ⟼     ( )=     +


     ( )=     +2                                             ( )=   −3
Aprenda de Verdade – Professor Railson Melo
Caso 4: Função Constante ( = 0 e     ∈ ℝ): Dizemos que uma função é constante
quando o coeficiente angular é igual a 0 e coeficiente linear é diferente de 0. O
gráfico dessa função é uma reta paralela ao eixo x que intersecta o eixo y no
ponto que determina a função
                                 :   ℝ    ⟶    ℝ
                                          ⟼    ( )=


       ( )=2                                                ( ) = −3




Valor Numérico de uma função do 1° Grau:

       Para sabermos o valor numérico de uma função do 1° grau, basta
substituir o   pelo número escolhido dentro da função. Exemplo:


Se                               :   ℝ    ⟶    ℝ
                                          ⟼     ( )= 2 −3
qual o valor da função quando    = 8?

                          (8) = 2 ∙ 8 − 3 = 16 − 3 = 13

Assim, quando     = 8, ( ) = 13. Fácil.
Aprenda de Verdade – Professor Railson Melo
Zero de uma função do 1° Grau:

       Zero de uma função é o valor de            para o qual ( ) se anula, isto é,
quando aplicamos um valor na função e o resultado for 0. O valor aplicado será
dito zero da função

       Para sabermos o valor do zero de uma função do 1° grau ( ) =               + ,
basta trocar o sinal do coeficiente linear       e dividir pelo coeficiente linear . O
valor dessa divisão é o zero da função. Assim, o zero da função será

                                             −
                                       =


Estudo do Sinal de uma função do 1° Grau:

       Estudar o sinal de uma função significa descobrir os valores para os
quais a função é positiva, negativa ou nula. No tópico anterior já aprendemos

que uma função do 1° grau só será nula quando            =    . Agora resta-nos saber

quando ela será positiva ou negativa. Daí teremos duas situações:

      Se a função for crescente ( > 0), teremos:

                                                               ( )>0



                  ( )<0                                      Se   =    , então ( ) = 0
                                        −
                                                             Se   >    , então ( ) > 0

                                                             Se   <    , então ( ) < 0



Quando     é igual a   , a função ( ) é nula;

Quando     é maior que    , a função ( ) é positiva;

Quando     é menor que     , a função ( ) é negativa;
Aprenda de Verdade – Professor Railson Melo

      Se a função for decrescente ( < 0), teremos:


             ( )>0



                                                                  ( )<0
                                    −


                                                       Se   =   , então ( ) = 0

                                                       Se   <   , então ( ) > 0

                                                       Se   >   , então ( ) < 0




Quando    é igual a   , a função ( ) é nula;

Quando    é menor que     , a função ( ) é positiva;

Quando    é maior que    , a função ( ) é negativa;



      Com isso finalizo essa iniciação em função afim ou do 1° grau. Sei que
não esgotei o conteúdo, mas já é um bom começo. Um abraço.

                      Rio Branco-AC, 08 de maio de 2011

Função afim

  • 1.
    Aprenda de Verdade– Professor Railson Melo Função do 1° Grau ou Função Afim Definição: É toda função de domínio real e contradomínio real cuja regra de associação que relaciona os elementos do domínio com os elementos do contradomínio é (ou pode ser reduzida à) da forma ( ) = + , onde a e b são números reais e a não pode ser zero. Regra de Em notação matemática: Associação Domínio Contradomínio : ℝ ⟶ ℝ ⟼ ( )= + Elementos do Elementos do Contradomínio que são imagens dos elementos do Domínio Domínio Onde , ∈ℝ ≠ ( Se for zero, a função será constante e não do 1° grau). Note que representa genericamente, isto é, de forma geral, os elementos do domínio da função . Isso quer dizer que pode ser qualquer elemento do domínio. Note também que ( ) representa genericamente (de forma geral) os elementos do contradomínio que se relacionam com os elementos do domínio pela função . O que estou a dizer é que ( ) representa a imagem do elemento do domínio pela função , qualquer que seja o valor de . Os coeficientes e da regra de associação de qualquer função do primeiro grau tem nomes específicos, a saber:  O é chamado coeficiente angular;  O é chamado de coeficiente linear.
  • 2.
    Aprenda de Verdade– Professor Railson Melo Gráfico de uma função do 1° Grau: O gráfico de uma função afim ou do 1° grau é uma reta. Para esboçar o gráfico de uma função do 1° grau precisamos apenas de dois pontos distintos, um sobre o eixo x e outro sobre o eixo y. Como fazer para saber que pontos são esses? Muito Fácil! 1- O coeficiente linear (termo ) é o ponto de interseção do gráfico com o eixo y. Daí é só marcar no eixo y (eixo das ordenadas) o valor de . 2- Para encontrar o ponto de interseção do Gráfico com o eixo x (eixo das abscissas), basta trocar o sinal de (coeficiente linear) e dividi-lo pelo (coeficiente angular). Daí é só marcar no eixo x o valor de . 3- Depois dos passos anteriores é só traçar uma reta que passe pelos dois pontos. Exemplo 1: Esboce os gráficos das funções a seguir: a) ( )= 2 +3 b) ( ) = −3 − 4 − − O eixo horizontal é o x. O eixo vertical é o y.
  • 3.
    Aprenda de Verdade– Professor Railson Melo Observação 1: O coeficiente angular serve para determinar a inclinação do gráfico da função em relação ao eixo das abscissas (eixo Ox). Note que o gráfico da função forma com o eixo x um ângulo. O valor da tangente desse ângulo é igual ao coeficiente angular. ( )=2 +3 = = ∆ ∆ Observação 2: Se > 0, a função é crescente. Observação 3: Se < 0, a função é decrescente. Observação 4: O coeficiente angular também representa a taxa de variação da função afim, isto é, para cada acréscimo ou decréscimo no valor de , o valor da função ( ) será acrescida ou decrescida da mesma quantidade, só que multiplicada pelo coeficiente angular.
  • 4.
    Aprenda de Verdade– Professor Railson Melo Exemplo: Na função acima o coeficiente angular é 2. Assim, para cada acréscimo (ou diminuição) no valor de x, o valor de f(x) terá o mesmo acréscimo (ou diminuição), só que multiplicado por 2. ( )= + 0 (0) = 2 ∙ 0 + 3 = 0 + 3 = 3 1 (1) = 2 ∙ 1 + 3 = 2 + 3 = 5 2 (2) = 2 ∙ 2 + 3 = 4 + 3 = 7 Note que para cada acréscimo de uma unidade em x, f(x) aumentou a mesma quantidade, só que multiplicada pelo coeficiente angular que nesse caso é 2. Isso vale para todas as funções do primeiro grau. Fácil, não é mesmo?! Casos especiais de função afim: Caso 1: Função Linear ( ≠ 1 e = 0): Dizemos que uma função é linear quando o coeficiente angular é diferente de 1 e o coeficiente linear é igual a 0. O gráfico dessa função passa pela origem. : ℝ ⟶ ℝ ⟼ ( )= ( )=2 ( ) = −3
  • 5.
    Aprenda de Verdade– Professor Railson Melo Caso 2: Função Identidade ( = 1 e = 0): Dizemos que uma função é identidade quando o coeficiente angular é igual a 1 e coeficiente linear é igual a 0. Veja que a função identidade é um caso particular de função linear. O gráfico dessa função passa pela origem e tem coordenadas iguais, isto é, = ( ), para quaisquer valores de . : ℝ ⟶ ℝ ⟼ ( )= Caso 3: Translação ( = 1 e ∈ ℝ): Dizemos que uma função é uma translação quando o coeficiente angular é igual a 1 e coeficiente linear é diferente de 0. O gráfico dessa função é o mesmo da função identidade, só que deslocado para cima caso > 0 ou deslocado para baixo, caso < 0. O gráfico dessa função intersecta os eixos coordenados em valores de opostos. : ℝ ⟶ ℝ ⟼ ( )= + ( )= +2 ( )= −3
  • 6.
    Aprenda de Verdade– Professor Railson Melo Caso 4: Função Constante ( = 0 e ∈ ℝ): Dizemos que uma função é constante quando o coeficiente angular é igual a 0 e coeficiente linear é diferente de 0. O gráfico dessa função é uma reta paralela ao eixo x que intersecta o eixo y no ponto que determina a função : ℝ ⟶ ℝ ⟼ ( )= ( )=2 ( ) = −3 Valor Numérico de uma função do 1° Grau: Para sabermos o valor numérico de uma função do 1° grau, basta substituir o pelo número escolhido dentro da função. Exemplo: Se : ℝ ⟶ ℝ ⟼ ( )= 2 −3 qual o valor da função quando = 8? (8) = 2 ∙ 8 − 3 = 16 − 3 = 13 Assim, quando = 8, ( ) = 13. Fácil.
  • 7.
    Aprenda de Verdade– Professor Railson Melo Zero de uma função do 1° Grau: Zero de uma função é o valor de para o qual ( ) se anula, isto é, quando aplicamos um valor na função e o resultado for 0. O valor aplicado será dito zero da função Para sabermos o valor do zero de uma função do 1° grau ( ) = + , basta trocar o sinal do coeficiente linear e dividir pelo coeficiente linear . O valor dessa divisão é o zero da função. Assim, o zero da função será − = Estudo do Sinal de uma função do 1° Grau: Estudar o sinal de uma função significa descobrir os valores para os quais a função é positiva, negativa ou nula. No tópico anterior já aprendemos que uma função do 1° grau só será nula quando = . Agora resta-nos saber quando ela será positiva ou negativa. Daí teremos duas situações:  Se a função for crescente ( > 0), teremos: ( )>0 ( )<0 Se = , então ( ) = 0 − Se > , então ( ) > 0 Se < , então ( ) < 0 Quando é igual a , a função ( ) é nula; Quando é maior que , a função ( ) é positiva; Quando é menor que , a função ( ) é negativa;
  • 8.
    Aprenda de Verdade– Professor Railson Melo  Se a função for decrescente ( < 0), teremos: ( )>0 ( )<0 − Se = , então ( ) = 0 Se < , então ( ) > 0 Se > , então ( ) < 0 Quando é igual a , a função ( ) é nula; Quando é menor que , a função ( ) é positiva; Quando é maior que , a função ( ) é negativa; Com isso finalizo essa iniciação em função afim ou do 1° grau. Sei que não esgotei o conteúdo, mas já é um bom começo. Um abraço. Rio Branco-AC, 08 de maio de 2011