Aula 1 - Matemática Aplicada

3.919 visualizações

Publicada em

Publicada em: Educação
0 comentários
1 gostou
Estatísticas
Notas
  • Seja o primeiro a comentar

Sem downloads
Visualizações
Visualizações totais
3.919
No SlideShare
0
A partir de incorporações
0
Número de incorporações
6
Ações
Compartilhamentos
0
Downloads
63
Comentários
0
Gostaram
1
Incorporações 0
Nenhuma incorporação

Nenhuma nota no slide

Aula 1 - Matemática Aplicada

  1. 1. Conjuntos numéricos A história nos mostra que desde muito tempo o homem sempre teve a preocupação em contar objetos e ter registros numéricos. Seja através de pedras, ossos, desenhos, dos dedos ou outra forma qualquer, em que procurava abstrair a natureza por meio de processos de determinação de quantidades. E essa procura pela abstração da natureza foi fundamental para a evolução, não só, mas também, dos conjuntos numéricos
  2. 2. Naturais (N) N = {0,1,2,3,4,...} Problemas do conjunto: - Subtração: 3 – 4 = ? - Divisão: 1 : 2 = ? Como o zero originou-se depois dos outros números e possui algumas propriedades próprias, algumas vezes teremos a necessidade de representar o conjunto dos números naturais sem incluir o zero. Para isso foi definido que o símbolo * (asterisco) empregado ao lado do símbolo do conjunto, iria representar a ausência do zero.Veja o exemplo abaixo:
  3. 3. Inteiros (Z) Z = {...,-2,-1,0,1,2,...} Problema no conjunto: Divisão: 1 : 2 = ? Assim como no conjunto dos naturais, podemos representar todos os inteiros sem o ZERO com a mesma notação usada para os NATURAIS. Inteiros não negativos sem o zero Inteiros não positivos sem o zero
  4. 4. Racionais (Q). Q = {a/b | a, b  Z e b  0}. Todo número que pode ser escrito em forma de fração. Exemplos: - Decimais finitos; - Dízimas periódicas; - Raízes exatas; Problema no Conjunto: Como escrever  em forma de fração?
  5. 5. 3,14159265... Este não é um número Racional, pois possui infinitos algarismos após a vírgula (representados pelas reticências) 2,252 Este é um número Racional, pois possui finitos algarismos após a vírgula. 2,252525... Este número possui infinitos números após a vírgula, mas é racional, é chamado de dízima periódica. Reconhecemos um número destes quando, após a vírgula, ele sempre repetir um número (no caso 25). = {Todos os racionais sem o zero} = {Todos os racionais NÃO NEGATIVOS} = {Todos os racionais NÃO NEGATIVOS sem o zero, ou seja, os positivos} = {Todos os racionais NÃO POSITIVOS} = {Todos os racionais NÃO POSITIVOS sem o zero, ou seja, os negativos}
  6. 6. Irracionais (I). O "IRRACIONAIS“ é formado por todos os números que, ao contrário dos racionais, NÃO podem ser representados por uma fração de números inteiros. São eles:  Raízes inexatas;  Decimais infinitos e não periódicos;   = 3,14...;  e = 2,72...
  7. 7. Reais (R). o conjunto dos números Reais é formado por todos os números Racionais junto com os números Irracionais, portanto: Q  I = R.
  8. 8. Conjuntos Zenão de Eléia (filósofo grego) , viveu entre 490 e 430 a. C., já estudava e se preocupava com o conceito de conjuntos e a sua imensidão. Em 1872 Georg Cantor (1845 – 1918), definiu e classificou os conjuntos através da “Teoria dos conjuntos”. Além da definição e de muitas outras contribuições, a teoria dos conjuntos unificou a linguagem em todos os ramos da matemática.
  9. 9. Definição Conjunto: representa uma coleção de objetos, geralmente representado por letras maiúsculas; Ex: A = {1, 2, 3}, “está entre chaves” Elemento: qualquer um dos componentes de um conjunto, geralmente representado por letras minúsculas. Ex: 1, 2, 3 “não tem chaves”
  10. 10. Pertinências  Pertence ou não pertence ( ) É usado entre elemento e conjunto.  Contido ou não contido ( ) É usado entre subconjunto e conjunto.  Contém e não contém ( ) É usado entre conjunto e subconjunto.
  11. 11. Igualdade de conjuntos  Dois conjuntos são iguais quando possuem os mesmos elementos. Ex: {1, 2} = {1, 1, 1, 2, 2, 2} OBS: A quantidade de vezes que os elementos dos conjuntos aparem não importa.
  12. 12. Conjuntos vazio unitário e Universo Conjunto vazio ( { } ou Ø ) É o conjunto que não possui elementos. Conjunto Unitário ( { a }, { Ø } ) É conjunto formado por um elemento. Conjunto Universo ( U ) É conjunto formado por todos elementos de um assunto trabalhado. os
  13. 13. Subconjuntos e a relação de inclusão Dizemos que um conjunto A é subconjunto de outro conjunto B quando todos os elementos de A também pertencem a B. Por exemplo: A = { 1,2,3 } e B = { 1,2,3,4,5,6 }  Nesse caso A é subconjunto de B, ( ).  O conjunto B é subconjunto de si mesmo, pois todo conjunto é subconjunto de si mesmo.  OBS: O conjunto vazio, { } ou Ø, é um subconjunto de todos os conjuntos. 
  14. 14. Conjunto das partes ou potência Dado um conjunto A, definimos o conjunto das partes de A, P(A) , como o conjunto que contém todos os subconjuntos de A (incluindo o conjunto vazio e o próprio conjunto A). Uma maneira prática de determinar P(A) é pensar em todos os subconjuntos com um e l e m e n t o , d e p o i s t o d o s o s s u b c o n j u n t o s c o m d o i s e l e m e n t o s , e a s s i m p o r d i a n t e . Exemplo: S e A = { 1 , 2 , 3 } , e n t ã o P ( A ) = { , {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3} }. Observação: S e o c o n j u n t o A tem n elementos, o conjunto P(A) terá 2n elementos. Ou seja: n P(A) = 2
  15. 15. Complementar de um conjunto Dado um universo U, diz-se complementar de um conjunto A, em relação ao universo U, o conjunto que contém todos os elementos presentes no universo e que não pertençam a A. Também define-se complementar para dois conjuntos, contanto que um deles seja subconjunto do outro. Nesse caso, diz-se, por exemplo, complementar de B em relação a A (sendo B um subconjunto de A) — é o complementar relativo — e usa-se o símbolo . Matematicamente: Exemplo: Dados U = {1, 2, 3,4} e A = {1, 2} determine : ={3, 4}
  16. 16. Operações entre conjuntos União ou reunião Dados dois conjuntos quaisquer A e B, chama-se união ou reunião de A e B o conjunto formado pelos elementos que pertencem a pelo menos um desses conjuntos (podendo, evidentemente, pertencer aos dois), isto é, o conjunto formado pelos elementos que pertencem a A ou a B. Em símbolos: Exemplos:   {1; 2} U {3; 4} = {1; 2; 3; 4} {n, e, w, t, o, n} U {h, o, r, t, a} = {a, e, h, n, o, r, t, w}
  17. 17. Intersecção Seja A o conjunto dos eleitores que votaram em Lula para Presidente e B o conjunto dos eleitores que votaram em Arlete para Governadora do DF, no primeiro turno das eleições de 2006. É certo supor que houve eleitores que votaram simultaneamente nos dois candidatos no primeiro turno. Assim somos levados a definir um novo conjunto, cujos elementos são aqueles que pertencem ao conjunto A e ao conjunto B. Esse novo conjunto nos leva à seguinte definição geral. Sejam A e B dois conjuntos quaisquer. Chamaremos intersecção de A e de B (ou de A com B) a um novo conjunto, assim definido: Exemplos:  OBS:Quando dois conjuntos quaisquer A e B não têm elemento comum, dizemos que A e B são conjuntos disjuntos. Em outras palavras, dois conjuntos são disjuntos quando a intersecção entre eles é igual ao conjunto vazio.
  18. 18. Diferença Seja A o conjunto dos eleitores que votaram em Lula para Presidente e B o conjunto dos eleitores que votaram em Arlete para Governadora do DF, no primeiro turno das eleições de 2006. É certo pensar que teve eleitores que votaram em Lula mas não votaram em Arlete. Isto nos leva ao conjunto dos elementos de A que não são elementos de B. Sejam A e B dois conjuntos quaisquer. Chamaremos a diferença entre A e B o conjunto dos elementos de A que não pertencem a B. Exemplos:    {a, b, c} - {a, c, d, e, f} = {b} {a, b} - {e, f, g, h, i} = {a, b} {a, b} - {a, b, c, d, e} = Ø
  19. 19. Número de elementos da reunião de conjuntos Sejam A e B dois conjuntos, tais que o número de elementos de A seja n(A) e o número de elementos de B seja n(B). Nota: o número de elementos de um conjunto, é também conhecido com cardinal do conjunto. Representando o número de elementos da interseção A Ç B por n(A Ç B) e o número de elementos da união A È B por n(A È B) , podemos escrever a seguinte fórmula: n(A  B) = n(A) + n(B) - n(A  B)

×