SlideShare uma empresa Scribd logo
1 de 17
Baixar para ler offline
FÍSICA
PROFESSORA : ADRIANNE MENDONÇA
GRANDEZAS FÍSICAS


Podemos dizer de modo mais usual que grandeza é tudo aquilo que pode variar quantitativamente.


                Deste modo, grandezas físicas são as que podem ser medidas.


                      São divididas em dois grupos: escalares e vetoriais.
GRANDEZAS ESCALARES E VETORIAIS


                   Grandezas escalares: ficam totalmente expressas por um valor e uma unidade.
                                 Exemplos: temperatura, massa, calor, tempo, etc.


Grandezas vetoriais: são aquelas que não ficam totalmente determinadas com um valor e uma unidade, para que fiquem
          totalmente definidas necessitam de módulo (número com unidade de medida), direção e sentido.
                                   Exemplos: velocidade, força, aceleração, etc.
VETORES


Ente matemático abstrato, definido por um valor real (módulo
  ou intensidade) associado a uma direção e um sentido.
REPRESENTAÇÃO GRÁFICA DE UM VETOR
 Para representar graficamente um vetor usamos um segmento de reta
  orientado.




 O módulo do vetor, representa numericamente o comprimento de sua seta.
 O vetor acima tem módulo igual a 3 u, que é igual a distância entre os pontos
  A e B.
 Para indicar vetores usamos as seguintes notações:
    V     AB
                 onde: A é a origem e B é a extremidade
PRINCIPAIS CARACTERÍSTICAS DE UM VETOR


 • Módulo: comprimento do segmento (através de uma
   escala pré-estabelecida).
   O módulo de um vetor é indicado utilizando-se duas barras verticais.
                    |A| (Lê-se: módulo de A)


 • Direção: reta que contém o segmento

 • Sentido: orientação do segmento
VETOR OPOSTO
O vetor oposto é aquele que possui o mesmo módulo, a mesma
direção e o sentido oposto. Veja a seguir um exemplo com o vetor
e o seu respectivo oposto.

           A          -A
ADIÇÃO VETORIAL

• Determinação do vetor soma, ou vetor resultante a partir de dois ou
  mais vetores.


• Pode ser efetuada através do método gráfico e do método analítico.
MÉTODO GRÁFICO
1) Regra do polígono: Ligam-se os vetores origem com extremidade. O vetor soma (R) é o que tem
    origem na origem do 1º vetor e extremidade na extremidade do último vetor.


   Dado os vetores abaixo:


               A                     B          C            D



                                         A          B
                                                                 C

                                 R
                                                    D
MÉTODO GRÁFICO

2) Regra do Paralelogramo: os dois vetores a serem somados devem estar unidos pela
origem.

                   A                             B




                       A
                                                     R
                    B
MÉTODO ANALÍTICO
     Podemos encontrar o módulo da resultante de dois vetores, sabendo-se apenas
     o módulo dos vetores e o ângulo entre eles.

     Exemplos: Sejam dois vetores de módulos A e B, e que formam entre si um
     ângulo θ.


1)     Se θ = 0º, os vetores são paralelos, têm a mesma direção e mesmo
       sentido, conforme figura abaixo:
                                                     R = A+ B
 


                                      A                                                         B


       O módulo do vetor resultante entre estes dois vetores será a soma dos
       módulo dos dois, chamado de resultante máxima.

                                                          R = A+ B
2) Se θ = 180º, os vetores são paralelos, têm a mesma direção e sentidos
opostos, conforme figura abaixo:

             A                                            B

O módulo do vetor resultante entre estes dois vetores será a diferença dos
módulo dos dois, chamado de resultante mínima.

                            R = A− B

 3) Se θ = 90º, os vetores são perpendiculares, conforme figura abaixo:

                                   A

                       B
 O módulo do vetor resultante entre estes dois vetores será a raiz
 quadrada da soma dos quadrados dos módulo dos dois (teorema de
 Pitágoras).
                           R= A + B2     2
4) Se θ, for um ângulo qualquer, diferente dos mencionados anteriormente,
os vetores são oblíquos, conforme figura abaixo:


               θ

          A                    B

O módulo do vetor resultante entre estes dois vetores será dada pela lei dos
cosenos:



              R = A2 + B 2 + 2 ⋅ A ⋅ B ⋅ cos α
DECOMPOSIÇÃO VETORIAL
 A decomposição de vetores é usada para facilitar o cálculo do vetor
 resultante.




Deste modo, podemos escrever ainda:
                  A2 = Ax2 +Ay2
MULTIPLICAÇÃO DE UM VETOR POR
           UM NÚMERO REAL
    Ao multiplicarmos um vetor qualquer (A) por um número real (n) positivo ou negativo,
     inteiro ou fracionário, obtemos como resultado um vetor produto (P), com as
     seguintes condições:


    O módulo do vetor P é igual a n x |A|.
    A direção é a mesma de A.
    O sentido é igual ao de A se n for positivo ou sentido oposto ao de
     A se n for negativo.
DIVISÃO DE UM VETOR POR UM
              NÚMERO REAL
    Ao dividirmos um vetor qualquer (A) por um número real (n) obtemos como resultado
     um vetor quociente (Q), com as seguintes condições:


    O módulo do vetor Q é igual a |A|/n.
    A direção é a mesma de A.
    O sentido é igual ao de A se n for positivo ou sentido oposto ao de
     A se n for negativo.
http://br.geocities.com/saladefisica3/laboratorio/vetores/vetores.htm
http://br.geocities.com/saladefisica3/laboratorio/vetores2/vetores2.ht

Mais conteúdo relacionado

Mais procurados (20)

Potencia e energia eletrica
Potencia  e   energia eletricaPotencia  e   energia eletrica
Potencia e energia eletrica
 
Leis De Kepler
Leis De KeplerLeis De Kepler
Leis De Kepler
 
Vetores
VetoresVetores
Vetores
 
Aula estatica
Aula estaticaAula estatica
Aula estatica
 
Corrente elétrica
Corrente elétricaCorrente elétrica
Corrente elétrica
 
Cinemática Vetorial
Cinemática VetorialCinemática Vetorial
Cinemática Vetorial
 
Movimento Circular Uniforme
Movimento Circular UniformeMovimento Circular Uniforme
Movimento Circular Uniforme
 
Magnetismo
MagnetismoMagnetismo
Magnetismo
 
TERMOLOGIA
TERMOLOGIATERMOLOGIA
TERMOLOGIA
 
Eletricidade
EletricidadeEletricidade
Eletricidade
 
Movimento uniformemente variado
Movimento uniformemente variadoMovimento uniformemente variado
Movimento uniformemente variado
 
Óptica introdução
Óptica introduçãoÓptica introdução
Óptica introdução
 
Física - Lançamento Vertical
Física - Lançamento VerticalFísica - Lançamento Vertical
Física - Lançamento Vertical
 
Dilatação térmica dos líquidos
Dilatação térmica dos líquidosDilatação térmica dos líquidos
Dilatação térmica dos líquidos
 
Associação de resistores
Associação de resistoresAssociação de resistores
Associação de resistores
 
Eletromagnetismo
EletromagnetismoEletromagnetismo
Eletromagnetismo
 
Ondulatória
OndulatóriaOndulatória
Ondulatória
 
Leis de ohm
Leis de ohmLeis de ohm
Leis de ohm
 
Movimento retilíeno uniformemente variado - MRUV
Movimento retilíeno uniformemente variado - MRUVMovimento retilíeno uniformemente variado - MRUV
Movimento retilíeno uniformemente variado - MRUV
 
Cinemática introdução
Cinemática introduçãoCinemática introdução
Cinemática introdução
 

Destaque (20)

Fisica vetores
Fisica vetoresFisica vetores
Fisica vetores
 
Resolução dos exercícios de vetores na regra do paralelogramo.
Resolução dos exercícios de vetores na regra do paralelogramo.Resolução dos exercícios de vetores na regra do paralelogramo.
Resolução dos exercícios de vetores na regra do paralelogramo.
 
Vetores
VetoresVetores
Vetores
 
Vetores
VetoresVetores
Vetores
 
Aula 21 vetores
Aula 21   vetoresAula 21   vetores
Aula 21 vetores
 
Física grandezas escalares e vetoriais
Física  grandezas  escalares e vetoriaisFísica  grandezas  escalares e vetoriais
Física grandezas escalares e vetoriais
 
Mecanica exercicios resolvidos
Mecanica exercicios resolvidosMecanica exercicios resolvidos
Mecanica exercicios resolvidos
 
Resumo vetores
Resumo vetoresResumo vetores
Resumo vetores
 
Vetores
VetoresVetores
Vetores
 
Física 1º ano prof. pedro ivo - (vetores)
Física 1º ano   prof. pedro ivo - (vetores)Física 1º ano   prof. pedro ivo - (vetores)
Física 1º ano prof. pedro ivo - (vetores)
 
Grandezas escalares e vetoriais
Grandezas escalares e vetoriais  Grandezas escalares e vetoriais
Grandezas escalares e vetoriais
 
Geometria analítica caderno de atividades enem unidade 37 módulo 5
Geometria analítica caderno de atividades enem unidade 37 módulo 5Geometria analítica caderno de atividades enem unidade 37 módulo 5
Geometria analítica caderno de atividades enem unidade 37 módulo 5
 
Vetores
VetoresVetores
Vetores
 
Cinematica vetorial
Cinematica vetorialCinematica vetorial
Cinematica vetorial
 
Parte i – cinemática tópico 5
Parte i – cinemática tópico 5Parte i – cinemática tópico 5
Parte i – cinemática tópico 5
 
Aula 1 resultante de um sistema de forças
Aula 1   resultante de um sistema de forçasAula 1   resultante de um sistema de forças
Aula 1 resultante de um sistema de forças
 
Controle vetorial
Controle vetorialControle vetorial
Controle vetorial
 
Física: Dinámica
Física: Dinámica Física: Dinámica
Física: Dinámica
 
História da filosofia 1 idade antiga
História da filosofia 1 idade antigaHistória da filosofia 1 idade antiga
História da filosofia 1 idade antiga
 
Blog
BlogBlog
Blog
 

Semelhante a Grandezas físicas vetoriais e escalares

vetores-revisao-2008 (1).ppt
vetores-revisao-2008 (1).pptvetores-revisao-2008 (1).ppt
vetores-revisao-2008 (1).pptsilvania81
 
GEOMETRIA ANALÍTICA cap 01
GEOMETRIA ANALÍTICA cap  01GEOMETRIA ANALÍTICA cap  01
GEOMETRIA ANALÍTICA cap 01Andrei Bastos
 
Cap. 1. calculo vetorial e geometria analítica
Cap. 1. calculo vetorial e geometria analíticaCap. 1. calculo vetorial e geometria analítica
Cap. 1. calculo vetorial e geometria analíticaDuke Wdealmei
 
120662893 fisica-para-concursos-militares
120662893 fisica-para-concursos-militares120662893 fisica-para-concursos-militares
120662893 fisica-para-concursos-militaresCreusa Nascimento
 
2 - Geometria Analítica Vetores Completo.pdf
2 - Geometria Analítica Vetores Completo.pdf2 - Geometria Analítica Vetores Completo.pdf
2 - Geometria Analítica Vetores Completo.pdfIndiaAndreiaCostaSiq
 
Aula 03 mecância - vetores
Aula 03   mecância - vetoresAula 03   mecância - vetores
Aula 03 mecância - vetoresJonatas Carlos
 
Física - Mecânica - Vetores
Física - Mecânica - VetoresFísica - Mecânica - Vetores
Física - Mecânica - VetoresCarson Souza
 
Aula 03 mecância - vetores
Aula 03   mecância - vetoresAula 03   mecância - vetores
Aula 03 mecância - vetoresBruno San
 
Ft aula 07 ( 30 de abril ) 2013
Ft aula 07 ( 30 de abril ) 2013Ft aula 07 ( 30 de abril ) 2013
Ft aula 07 ( 30 de abril ) 2013Ivys Urquiza
 
Apostilageometriaanalticaplana 2ed-130825062334-phpapp01
Apostilageometriaanalticaplana 2ed-130825062334-phpapp01Apostilageometriaanalticaplana 2ed-130825062334-phpapp01
Apostilageometriaanalticaplana 2ed-130825062334-phpapp01Carlos Andrade
 

Semelhante a Grandezas físicas vetoriais e escalares (20)

Ap01
Ap01Ap01
Ap01
 
Ap01
Ap01Ap01
Ap01
 
Vetores2
Vetores2Vetores2
Vetores2
 
Vetores helena
Vetores helenaVetores helena
Vetores helena
 
Aula fisica vetores
Aula fisica   vetoresAula fisica   vetores
Aula fisica vetores
 
Vetores alex gaspar
Vetores alex gasparVetores alex gaspar
Vetores alex gaspar
 
vetores-revisao-2008 (1).ppt
vetores-revisao-2008 (1).pptvetores-revisao-2008 (1).ppt
vetores-revisao-2008 (1).ppt
 
Angulos e vetores
Angulos e vetoresAngulos e vetores
Angulos e vetores
 
Vetores bianca
Vetores biancaVetores bianca
Vetores bianca
 
GEOMETRIA ANALÍTICA cap 01
GEOMETRIA ANALÍTICA cap  01GEOMETRIA ANALÍTICA cap  01
GEOMETRIA ANALÍTICA cap 01
 
Cap. 1. calculo vetorial e geometria analítica
Cap. 1. calculo vetorial e geometria analíticaCap. 1. calculo vetorial e geometria analítica
Cap. 1. calculo vetorial e geometria analítica
 
120662893 fisica-para-concursos-militares
120662893 fisica-para-concursos-militares120662893 fisica-para-concursos-militares
120662893 fisica-para-concursos-militares
 
2 - Geometria Analítica Vetores Completo.pdf
2 - Geometria Analítica Vetores Completo.pdf2 - Geometria Analítica Vetores Completo.pdf
2 - Geometria Analítica Vetores Completo.pdf
 
Aula 03 mecância - vetores
Aula 03   mecância - vetoresAula 03   mecância - vetores
Aula 03 mecância - vetores
 
Caderno deexercicios1 2
Caderno deexercicios1 2Caderno deexercicios1 2
Caderno deexercicios1 2
 
Física - Mecânica - Vetores
Física - Mecânica - VetoresFísica - Mecânica - Vetores
Física - Mecânica - Vetores
 
Aula 03 mecância - vetores
Aula 03   mecância - vetoresAula 03   mecância - vetores
Aula 03 mecância - vetores
 
Ft aula 07 ( 30 de abril ) 2013
Ft aula 07 ( 30 de abril ) 2013Ft aula 07 ( 30 de abril ) 2013
Ft aula 07 ( 30 de abril ) 2013
 
Vetores.pptx
Vetores.pptxVetores.pptx
Vetores.pptx
 
Apostilageometriaanalticaplana 2ed-130825062334-phpapp01
Apostilageometriaanalticaplana 2ed-130825062334-phpapp01Apostilageometriaanalticaplana 2ed-130825062334-phpapp01
Apostilageometriaanalticaplana 2ed-130825062334-phpapp01
 

Mais de Adrianne Mendonça (20)

Lei de hess
Lei de hessLei de hess
Lei de hess
 
Fissão e fusão nuclear
Fissão e fusão nuclearFissão e fusão nuclear
Fissão e fusão nuclear
 
Ponto crítico de uma função derivável
Ponto crítico de uma função derivávelPonto crítico de uma função derivável
Ponto crítico de uma função derivável
 
Cálculo (DERIVADAS)
Cálculo (DERIVADAS)Cálculo (DERIVADAS)
Cálculo (DERIVADAS)
 
Alzheimer ppt
Alzheimer pptAlzheimer ppt
Alzheimer ppt
 
Determinação de calcio no leite
Determinação de  calcio no leiteDeterminação de  calcio no leite
Determinação de calcio no leite
 
Determinação da dureza total de água com EDTA
Determinação da dureza total de água com EDTADeterminação da dureza total de água com EDTA
Determinação da dureza total de água com EDTA
 
Cnidários ou celenterados
Cnidários  ou  celenteradosCnidários  ou  celenterados
Cnidários ou celenterados
 
Biologia molecular bioquímica (compostos inorgânicos)
Biologia molecular   bioquímica (compostos inorgânicos)Biologia molecular   bioquímica (compostos inorgânicos)
Biologia molecular bioquímica (compostos inorgânicos)
 
Anagramas
AnagramasAnagramas
Anagramas
 
Produto de solubilidade
Produto de solubilidadeProduto de solubilidade
Produto de solubilidade
 
Reaçoes quimicas
Reaçoes quimicasReaçoes quimicas
Reaçoes quimicas
 
Matemática financeira
Matemática financeiraMatemática financeira
Matemática financeira
 
Tecido ósseo pdf
Tecido ósseo pdfTecido ósseo pdf
Tecido ósseo pdf
 
Ciclos biogeoquímicos pdf
Ciclos biogeoquímicos pdfCiclos biogeoquímicos pdf
Ciclos biogeoquímicos pdf
 
Relações ecológicas
Relações ecológicasRelações ecológicas
Relações ecológicas
 
Equilíbrio químico
Equilíbrio químicoEquilíbrio químico
Equilíbrio químico
 
Mruv – exercícios
Mruv – exercíciosMruv – exercícios
Mruv – exercícios
 
Nomenclatura dos COMPOSTOS ORGÂNICOS
Nomenclatura dos COMPOSTOS  ORGÂNICOS Nomenclatura dos COMPOSTOS  ORGÂNICOS
Nomenclatura dos COMPOSTOS ORGÂNICOS
 
Química orgânica módulo 2
Química  orgânica módulo 2Química  orgânica módulo 2
Química orgânica módulo 2
 

Último

A Inteligência Artificial na Educação e a Inclusão Linguística
A Inteligência Artificial na Educação e a Inclusão LinguísticaA Inteligência Artificial na Educação e a Inclusão Linguística
A Inteligência Artificial na Educação e a Inclusão LinguísticaFernanda Ledesma
 
Jogo de Revisão Segunda Série (Primeiro Trimestre)
Jogo de Revisão Segunda Série (Primeiro Trimestre)Jogo de Revisão Segunda Série (Primeiro Trimestre)
Jogo de Revisão Segunda Série (Primeiro Trimestre)Paula Meyer Piagentini
 
Revolução Industrial - Revolução Industrial .pptx
Revolução Industrial - Revolução Industrial .pptxRevolução Industrial - Revolução Industrial .pptx
Revolução Industrial - Revolução Industrial .pptxHlioMachado1
 
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptxSlides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptxLuizHenriquedeAlmeid6
 
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptxAULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptxGislaineDuresCruz
 
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdfTIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdfmarialuciadasilva17
 
Jogo de Revisão Terceira Série (Primeiro Trimestre)
Jogo de Revisão Terceira Série (Primeiro Trimestre)Jogo de Revisão Terceira Série (Primeiro Trimestre)
Jogo de Revisão Terceira Série (Primeiro Trimestre)Paula Meyer Piagentini
 
organizaao-do-clube-de-lideres-ctd-aamar_compress.pdf
organizaao-do-clube-de-lideres-ctd-aamar_compress.pdforganizaao-do-clube-de-lideres-ctd-aamar_compress.pdf
organizaao-do-clube-de-lideres-ctd-aamar_compress.pdfCarlosRodrigues832670
 
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbv19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbyasminlarissa371
 
Mini livro sanfona - Povos Indigenas Brasileiros
Mini livro sanfona  - Povos Indigenas BrasileirosMini livro sanfona  - Povos Indigenas Brasileiros
Mini livro sanfona - Povos Indigenas BrasileirosMary Alvarenga
 
POETAS CONTEMPORANEOS_TEMATICAS_explicacao.pptx
POETAS CONTEMPORANEOS_TEMATICAS_explicacao.pptxPOETAS CONTEMPORANEOS_TEMATICAS_explicacao.pptx
POETAS CONTEMPORANEOS_TEMATICAS_explicacao.pptxJMTCS
 
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptxSlides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptxLuizHenriquedeAlmeid6
 
Estudo Dirigido de Literatura / Primeira Série do E.M.
Estudo Dirigido de Literatura / Primeira Série do E.M.Estudo Dirigido de Literatura / Primeira Série do E.M.
Estudo Dirigido de Literatura / Primeira Série do E.M.Paula Meyer Piagentini
 
Orientações para a análise do poema Orfeu Rebelde.pptx
Orientações para a análise do poema Orfeu Rebelde.pptxOrientações para a análise do poema Orfeu Rebelde.pptx
Orientações para a análise do poema Orfeu Rebelde.pptxJMTCS
 
Mini livro sanfona - Diga não ao bullying
Mini livro sanfona - Diga não ao  bullyingMini livro sanfona - Diga não ao  bullying
Mini livro sanfona - Diga não ao bullyingMary Alvarenga
 
A área de ciências da religião no brasil 2023.ppsx
A área de ciências da religião no brasil  2023.ppsxA área de ciências da religião no brasil  2023.ppsx
A área de ciências da religião no brasil 2023.ppsxGilbraz Aragão
 
Sistema de Bibliotecas UCS - A descoberta da terra
Sistema de Bibliotecas UCS  - A descoberta da terraSistema de Bibliotecas UCS  - A descoberta da terra
Sistema de Bibliotecas UCS - A descoberta da terraBiblioteca UCS
 
Projeto leitura HTPC abril - FORMAÇÃP SOBRE O PROJETO
Projeto leitura HTPC abril - FORMAÇÃP SOBRE O PROJETOProjeto leitura HTPC abril - FORMAÇÃP SOBRE O PROJETO
Projeto leitura HTPC abril - FORMAÇÃP SOBRE O PROJETODouglasVasconcelosMa
 
As teorias de Lamarck e Darwin. Evolução
As teorias de Lamarck e Darwin. EvoluçãoAs teorias de Lamarck e Darwin. Evolução
As teorias de Lamarck e Darwin. Evoluçãoprofleticiasantosbio
 

Último (20)

A Inteligência Artificial na Educação e a Inclusão Linguística
A Inteligência Artificial na Educação e a Inclusão LinguísticaA Inteligência Artificial na Educação e a Inclusão Linguística
A Inteligência Artificial na Educação e a Inclusão Linguística
 
Jogo de Revisão Segunda Série (Primeiro Trimestre)
Jogo de Revisão Segunda Série (Primeiro Trimestre)Jogo de Revisão Segunda Série (Primeiro Trimestre)
Jogo de Revisão Segunda Série (Primeiro Trimestre)
 
Revolução Industrial - Revolução Industrial .pptx
Revolução Industrial - Revolução Industrial .pptxRevolução Industrial - Revolução Industrial .pptx
Revolução Industrial - Revolução Industrial .pptx
 
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptxSlides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
 
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptxAULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
 
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdfTIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
TIPOS DE DISCURSO - TUDO SALA DE AULA.pdf
 
Jogo de Revisão Terceira Série (Primeiro Trimestre)
Jogo de Revisão Terceira Série (Primeiro Trimestre)Jogo de Revisão Terceira Série (Primeiro Trimestre)
Jogo de Revisão Terceira Série (Primeiro Trimestre)
 
organizaao-do-clube-de-lideres-ctd-aamar_compress.pdf
organizaao-do-clube-de-lideres-ctd-aamar_compress.pdforganizaao-do-clube-de-lideres-ctd-aamar_compress.pdf
organizaao-do-clube-de-lideres-ctd-aamar_compress.pdf
 
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbv19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
 
Mini livro sanfona - Povos Indigenas Brasileiros
Mini livro sanfona  - Povos Indigenas BrasileirosMini livro sanfona  - Povos Indigenas Brasileiros
Mini livro sanfona - Povos Indigenas Brasileiros
 
POETAS CONTEMPORANEOS_TEMATICAS_explicacao.pptx
POETAS CONTEMPORANEOS_TEMATICAS_explicacao.pptxPOETAS CONTEMPORANEOS_TEMATICAS_explicacao.pptx
POETAS CONTEMPORANEOS_TEMATICAS_explicacao.pptx
 
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptxSlides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
Slides Lição 2, Central Gospel, A Volta Do Senhor Jesus , 1Tr24.pptx
 
“O AMANHÃ EXIGE O MELHOR DE HOJE” _
“O AMANHÃ EXIGE O MELHOR DE HOJE”       _“O AMANHÃ EXIGE O MELHOR DE HOJE”       _
“O AMANHÃ EXIGE O MELHOR DE HOJE” _
 
Estudo Dirigido de Literatura / Primeira Série do E.M.
Estudo Dirigido de Literatura / Primeira Série do E.M.Estudo Dirigido de Literatura / Primeira Série do E.M.
Estudo Dirigido de Literatura / Primeira Série do E.M.
 
Orientações para a análise do poema Orfeu Rebelde.pptx
Orientações para a análise do poema Orfeu Rebelde.pptxOrientações para a análise do poema Orfeu Rebelde.pptx
Orientações para a análise do poema Orfeu Rebelde.pptx
 
Mini livro sanfona - Diga não ao bullying
Mini livro sanfona - Diga não ao  bullyingMini livro sanfona - Diga não ao  bullying
Mini livro sanfona - Diga não ao bullying
 
A área de ciências da religião no brasil 2023.ppsx
A área de ciências da religião no brasil  2023.ppsxA área de ciências da religião no brasil  2023.ppsx
A área de ciências da religião no brasil 2023.ppsx
 
Sistema de Bibliotecas UCS - A descoberta da terra
Sistema de Bibliotecas UCS  - A descoberta da terraSistema de Bibliotecas UCS  - A descoberta da terra
Sistema de Bibliotecas UCS - A descoberta da terra
 
Projeto leitura HTPC abril - FORMAÇÃP SOBRE O PROJETO
Projeto leitura HTPC abril - FORMAÇÃP SOBRE O PROJETOProjeto leitura HTPC abril - FORMAÇÃP SOBRE O PROJETO
Projeto leitura HTPC abril - FORMAÇÃP SOBRE O PROJETO
 
As teorias de Lamarck e Darwin. Evolução
As teorias de Lamarck e Darwin. EvoluçãoAs teorias de Lamarck e Darwin. Evolução
As teorias de Lamarck e Darwin. Evolução
 

Grandezas físicas vetoriais e escalares

  • 2. GRANDEZAS FÍSICAS Podemos dizer de modo mais usual que grandeza é tudo aquilo que pode variar quantitativamente. Deste modo, grandezas físicas são as que podem ser medidas. São divididas em dois grupos: escalares e vetoriais.
  • 3. GRANDEZAS ESCALARES E VETORIAIS Grandezas escalares: ficam totalmente expressas por um valor e uma unidade. Exemplos: temperatura, massa, calor, tempo, etc. Grandezas vetoriais: são aquelas que não ficam totalmente determinadas com um valor e uma unidade, para que fiquem totalmente definidas necessitam de módulo (número com unidade de medida), direção e sentido. Exemplos: velocidade, força, aceleração, etc.
  • 4. VETORES Ente matemático abstrato, definido por um valor real (módulo ou intensidade) associado a uma direção e um sentido.
  • 5. REPRESENTAÇÃO GRÁFICA DE UM VETOR  Para representar graficamente um vetor usamos um segmento de reta orientado.  O módulo do vetor, representa numericamente o comprimento de sua seta.  O vetor acima tem módulo igual a 3 u, que é igual a distância entre os pontos A e B.  Para indicar vetores usamos as seguintes notações: V AB onde: A é a origem e B é a extremidade
  • 6. PRINCIPAIS CARACTERÍSTICAS DE UM VETOR • Módulo: comprimento do segmento (através de uma escala pré-estabelecida). O módulo de um vetor é indicado utilizando-se duas barras verticais. |A| (Lê-se: módulo de A) • Direção: reta que contém o segmento • Sentido: orientação do segmento
  • 7. VETOR OPOSTO O vetor oposto é aquele que possui o mesmo módulo, a mesma direção e o sentido oposto. Veja a seguir um exemplo com o vetor e o seu respectivo oposto. A -A
  • 8. ADIÇÃO VETORIAL • Determinação do vetor soma, ou vetor resultante a partir de dois ou mais vetores. • Pode ser efetuada através do método gráfico e do método analítico.
  • 9. MÉTODO GRÁFICO 1) Regra do polígono: Ligam-se os vetores origem com extremidade. O vetor soma (R) é o que tem origem na origem do 1º vetor e extremidade na extremidade do último vetor. Dado os vetores abaixo: A B C D A B C R D
  • 10. MÉTODO GRÁFICO 2) Regra do Paralelogramo: os dois vetores a serem somados devem estar unidos pela origem. A B A R B
  • 11. MÉTODO ANALÍTICO Podemos encontrar o módulo da resultante de dois vetores, sabendo-se apenas o módulo dos vetores e o ângulo entre eles. Exemplos: Sejam dois vetores de módulos A e B, e que formam entre si um ângulo θ. 1) Se θ = 0º, os vetores são paralelos, têm a mesma direção e mesmo sentido, conforme figura abaixo: R = A+ B                                  A                                                         B O módulo do vetor resultante entre estes dois vetores será a soma dos módulo dos dois, chamado de resultante máxima. R = A+ B
  • 12. 2) Se θ = 180º, os vetores são paralelos, têm a mesma direção e sentidos opostos, conforme figura abaixo: A B O módulo do vetor resultante entre estes dois vetores será a diferença dos módulo dos dois, chamado de resultante mínima. R = A− B 3) Se θ = 90º, os vetores são perpendiculares, conforme figura abaixo: A B O módulo do vetor resultante entre estes dois vetores será a raiz quadrada da soma dos quadrados dos módulo dos dois (teorema de Pitágoras). R= A + B2 2
  • 13. 4) Se θ, for um ângulo qualquer, diferente dos mencionados anteriormente, os vetores são oblíquos, conforme figura abaixo: θ A B O módulo do vetor resultante entre estes dois vetores será dada pela lei dos cosenos: R = A2 + B 2 + 2 ⋅ A ⋅ B ⋅ cos α
  • 14. DECOMPOSIÇÃO VETORIAL A decomposição de vetores é usada para facilitar o cálculo do vetor resultante. Deste modo, podemos escrever ainda: A2 = Ax2 +Ay2
  • 15. MULTIPLICAÇÃO DE UM VETOR POR UM NÚMERO REAL Ao multiplicarmos um vetor qualquer (A) por um número real (n) positivo ou negativo, inteiro ou fracionário, obtemos como resultado um vetor produto (P), com as seguintes condições:  O módulo do vetor P é igual a n x |A|.  A direção é a mesma de A.  O sentido é igual ao de A se n for positivo ou sentido oposto ao de A se n for negativo.
  • 16. DIVISÃO DE UM VETOR POR UM NÚMERO REAL Ao dividirmos um vetor qualquer (A) por um número real (n) obtemos como resultado um vetor quociente (Q), com as seguintes condições:  O módulo do vetor Q é igual a |A|/n.  A direção é a mesma de A.  O sentido é igual ao de A se n for positivo ou sentido oposto ao de A se n for negativo.