OPERAÇÕES MATEMÁTICAS 
FUNDAMENTAIS: AÇÕES DE SOMAR, 
SUBTRAIR, MULTIPLICAR E DIVIDIR 
Aula 29/10/2012 – 5º e 6º de Pedagogia 
Prof.ª Elisa Maria Gomide 
1
A CONSTRUÇÃO CONCEITUAL DAS OPERAÇÕES 
OPERAÇÃO 
Operar + Ação 
TRANSFORMAÇÃO 
Transformar + Ação 
 Sem ação não acontece uma transformação; e, da mesma forma, 
sem ação não ocorre operação. 
 Agora, você verá o conceito de ações de somar ou ideias de 
adição. São vários os conceitos que as crianças começam a 
assimilar, como as palavras: juntar, tirar, ganhar, perder e 
comparar, esses verbos relacionados à adição e a subtração 
envolvem as duas operações básicas para a realização de 
contas “de mais” ou “de menos”. 
 A autora demonstra neste tema alguns exemplos que devem ficar 
claros para as crianças, as ações de acrescentar e ações de 
reunir: 
2
AÇÕES DE SOMAR OU IDEIAS DE ADIÇÃO 
 Ações de acrescentar: Em uma piscina, havia 13 boias e outras 5 
foram jogadas nela. Quantas boias existem na piscina? 
 Ações de reunir: Em uma garagem, há 45 carros e 30 motos. Qual 
o total de veículos? 
A adição 
 Ideia de juntar: Marcos tem 8 bolinhas e João tem 5. Quantas 
bolinhas os dois têm juntos? 
 Ideia de acrescentar: Marcos tinha 8 bolinhas e ganhou mais 5 de 
sua tia. Com quantas bolinhas ficou? 
 Em geral, pensa-se que primeiro a criança deve aprender a contar e 
escrever os números para que depois aprenda as operações, mas 
quando se observa a maneira de representar os números vê-se 
presente a adição. 
 As ideias da adição estão presentes mesmo no nome dos números 
(12 = doze) – na formação da sequência numérica usada na 
contagem observa-se a ideia de somar a unidade: 1, 1+1=2; 2+1=3; 
3+1=4; 
 É possível perceber e compreender que as ações de acrescentar e 
reunir, mesmo sendo ambas aditivas, constituem ações diferentes e 
exigem da criança diferentes competências e habilidades. 3
AÇÕES DE SUBTRAIR OU IDEIAS DE SUBTRAÇÃO 
 A ideia de tirar, separar ou decompor, é aquela que as crianças 
identificam mais facilmente com a subtração. No entanto, a 
ideia de tirar não é a única associada à subtração. 
 As ideias de completar e de comparar também estão presentes 
na subtração. Esses três tipos que devem ser trabalhados 
correspondem à subtração. 
 Ideia subtrativa (tirar): Marcelo tinha 8 figurinhas e perdeu 5 
4 
no jogo. 
 Ideia aditiva (completar): Marcelo já leu 20 das 80 páginas do 
livro. Quantas ainda precisa ler? 
 Ideia comparativa (comparar): Marcelo tem 12 anos e Pedro 
tem 9 anos. Quantos anos Marcelo tem a mais que Pedro?
AÇÕES DE SUBTRAIR OU IDEIAS DE SUBTRAÇÃO 
 Ações de retirar: No parque havia 29 crianças e 
saíram 17. Quantas crianças ficaram no parque? 
 Ações de completar: No meu álbum, cabem 50 
figurinhas e já colei 35. Quantas figurinhas ainda 
devo colar para que ele fique completo? 
 Ação de comparar: Nas ações de comparar ou 
achar a diferença, observe que há dois todos, dois 
universos a considerar – devem ser feitos os 
questionamentos: “quantos a mais” ou “quantos a 
menos”. 
Exemplos: 
 João tem 6 figurinhas e Maria tem 4. Quantas 
figurinhas Maria tem a menos que João? 
 A fila A tem 9 alunos e a fila B tem 6 alunos. Qual a 
diferença de idade entre as filas? 5
A CONSTRUÇÃO CONCEITUAL DAS OPERAÇÕES 
 O domínio das operações de adição e subtração 
não é pré-requisito para compreender as 
propriedades do campo multiplicativo que deve ser 
trabalhado desde o primeiro ano. 
 Os conceitos ligados à multiplicação, como os de 
adição, são fundamentais para o desenvolvimento 
de muitos outros conceitos aritméticos. Caso não 
domine o conceito da operação, a criança 
conseguirá, no máximo, memorizar os fatos 
básicos e realizar de forma mecânica o algoritmo 
posteriormente. 
 A dificuldade nesta memorização será muito 
grande e a insegurança ficará clara diante de um 
problema: quando ela não for capaz de se decidir 
sobre qual operação realizar. 6
 Atividades que levam à formação de um conceito 
devem ser baseadas em experiências concretas, 
nas quais os alunos terão oportunidade de 
construir e, com o tempo, aperfeiçoar e transferir 
tais conceitos. 
 A professora ou o professor deve proporcionar à 
criança múltiplas oportunidades de trabalho com 
material concreto para que ela chegue à 
representação de seus fatos básicos, 
compreendendo o significado da operação. 
7
ALGUNS OBJETIVOS BÁSICOS QUE SE DEVE ALCANÇAR PARA A 
COMPREENSÃO DA MULTIPLICAÇÃO: 
 Desenvolver o sentido da multiplicação a partir de 
problemas simples e significativos, com números 
acessíveis. 
 Introduzir a escrita da multiplicação com significado 
a partir da relação entre a multiplicação e a adição. 
 Resolver problemas de multiplicação antes da 
aprendizagem formal do algoritmo da multiplicação. 
 A multiplicação funciona como uma forma simplificada 
de adição quando os números são repetidos. 
8
MULTIPLICAÇÃO 
 Podem-se multiplicar todos os números naturais. Vamos 
recordar os números naturais: 
N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,...} 
 Assim, cada número natural pode ser repetido por 
muitas vezes. Ao repetir o mesmo número por duas, três 
ou mais vezes, multiplica-se o número natural N. 
 A multiplicação tem o sentido de crescer, expandir, 
multiplicar-se. Quando se multiplica um número pelo 
outro, aumenta-se seu tamanho, a quantidade que ele 
representa. Na matemática para representar a 
multiplicação, usa-se dois símbolos: x ou . (7 x 2 ou 7 . 
2). 
9
MULTIPLICAÇÃO COMBINATÓRIA 
 A Análise Combinatória é um conteúdo matemático que 
apresenta grande dificuldade em relação à formulação e, 
principalmente, interpretação dos seus enunciados. É um 
ramo da Matemática que permite que se escolha, arrume e 
conte o número de elementos de determinado conjunto, sem 
que haja necessidade de enumerá-los. 
 As operações combinatórias são essenciais para o 
desenvolvimento cognitivo, por isso seria de extrema 
importância que o aluno tivesse contato com esse tópico 
desde os primeiros anos da escola básica, para familiarizar-se 
com problemas de contagem, descrevendo os casos 
possíveis e contando-os através de uma representação por 
ele escolhida, sem regras em princípio, de modo que ele 
adquirisse um método sistemático e gradativo para a 
resolução dos problemas, visando uma posterior 
formalização no ensino médio. 
10
MULTIPLICAÇÃO COMBINATÓRIA 
 A primeira técnica matemática aprendida por uma criança é 
“contar”, ou seja, enumerar elementos de um conjunto de 
forma a determinar quantos são os seus elementos. 
Na multiplicação combinatória, a criança já desenvolve outro 
raciocínio, veja no exemplo: 
 Em uma lanchonete, são vendidos apenas sanduíches de 
queijo, presunto e mortadela com pão de forma ou de batata. 
Uma pessoa que deseja consumir um desses sanduíches, 
de quantas opções diferentes dispõe? 
 Veja a esquema da solução desse problema de acordo com 
a figura a seguir: 
11
POR OBSERVAÇÃO, VÊ-SE QUE O TOTAL DE CASOS POSSÍVEIS SERÁ DADO PELA 
MULTIPLICAÇÃO ENTRE O TOTAL DE ESCOLHAS PARA O TIPO DE PÃO E O TOTAL 
DE ESCOLHAS PARA O RECHEIO UTILIZADO. 
Forma 
Batata 
Mortadela 
F + M 
B + M 
Queijo 
F + Q 
B + Q 
Presunto F+ P 
B + P 12 
T = 3 X 2 = 6
CONFIGURAÇÃO RETANGULAR OU MULTIPLICAÇÃO EM 
LINHAS E COLUNAS 
Nessa fase, devem-se alcançar os seguintes objetivos: 
 Reconhecer situações de multiplicação a partir da adição de 
parcelas iguais. 
 Trabalhar a multiplicação antes da aprendizagem formal do 
algoritmo. 
 Trabalhar o sentido aditivo proporcional da multiplicação e a 
utilização de tabelas. 
 Reconhecer situações de multiplicação partindo de disposição 
retangular de objetos. 
 Utilizar diferentes estratégias de contagem usando a 
multiplicação. 
Num exemplo, há 5 fileiras e em cada uma 3 carteiras. 
Ou seja: 
 5 fileiras x 3 carteiras = 15 lugares ou 
 3 carteiras x 5 fileiras = 15 lugares 13
AS TABELAS DE MULTIPLICAÇÃO: TABUADAS 
 A tabuada é uma forma de facilitar a memorização 
dos resultados das multiplicações de unidades. O 
fato de sabê-la de cor facilita na hora de resolver 
uma conta de multiplicar e em diversas situações 
do cotidiano, porém, o importante não é decorá-la, 
mas entender como ela funciona. 
 Um grande estudioso chamado Pitágoras, para 
facilitar aos seus alunos o entendimento da 
multiplicação, criou uma forma diferente de mostrar 
o assunto: 
14
15

Operacoes-fundamentais-matematicas

  • 1.
    OPERAÇÕES MATEMÁTICAS FUNDAMENTAIS:AÇÕES DE SOMAR, SUBTRAIR, MULTIPLICAR E DIVIDIR Aula 29/10/2012 – 5º e 6º de Pedagogia Prof.ª Elisa Maria Gomide 1
  • 2.
    A CONSTRUÇÃO CONCEITUALDAS OPERAÇÕES OPERAÇÃO Operar + Ação TRANSFORMAÇÃO Transformar + Ação  Sem ação não acontece uma transformação; e, da mesma forma, sem ação não ocorre operação.  Agora, você verá o conceito de ações de somar ou ideias de adição. São vários os conceitos que as crianças começam a assimilar, como as palavras: juntar, tirar, ganhar, perder e comparar, esses verbos relacionados à adição e a subtração envolvem as duas operações básicas para a realização de contas “de mais” ou “de menos”.  A autora demonstra neste tema alguns exemplos que devem ficar claros para as crianças, as ações de acrescentar e ações de reunir: 2
  • 3.
    AÇÕES DE SOMAROU IDEIAS DE ADIÇÃO  Ações de acrescentar: Em uma piscina, havia 13 boias e outras 5 foram jogadas nela. Quantas boias existem na piscina?  Ações de reunir: Em uma garagem, há 45 carros e 30 motos. Qual o total de veículos? A adição  Ideia de juntar: Marcos tem 8 bolinhas e João tem 5. Quantas bolinhas os dois têm juntos?  Ideia de acrescentar: Marcos tinha 8 bolinhas e ganhou mais 5 de sua tia. Com quantas bolinhas ficou?  Em geral, pensa-se que primeiro a criança deve aprender a contar e escrever os números para que depois aprenda as operações, mas quando se observa a maneira de representar os números vê-se presente a adição.  As ideias da adição estão presentes mesmo no nome dos números (12 = doze) – na formação da sequência numérica usada na contagem observa-se a ideia de somar a unidade: 1, 1+1=2; 2+1=3; 3+1=4;  É possível perceber e compreender que as ações de acrescentar e reunir, mesmo sendo ambas aditivas, constituem ações diferentes e exigem da criança diferentes competências e habilidades. 3
  • 4.
    AÇÕES DE SUBTRAIROU IDEIAS DE SUBTRAÇÃO  A ideia de tirar, separar ou decompor, é aquela que as crianças identificam mais facilmente com a subtração. No entanto, a ideia de tirar não é a única associada à subtração.  As ideias de completar e de comparar também estão presentes na subtração. Esses três tipos que devem ser trabalhados correspondem à subtração.  Ideia subtrativa (tirar): Marcelo tinha 8 figurinhas e perdeu 5 4 no jogo.  Ideia aditiva (completar): Marcelo já leu 20 das 80 páginas do livro. Quantas ainda precisa ler?  Ideia comparativa (comparar): Marcelo tem 12 anos e Pedro tem 9 anos. Quantos anos Marcelo tem a mais que Pedro?
  • 5.
    AÇÕES DE SUBTRAIROU IDEIAS DE SUBTRAÇÃO  Ações de retirar: No parque havia 29 crianças e saíram 17. Quantas crianças ficaram no parque?  Ações de completar: No meu álbum, cabem 50 figurinhas e já colei 35. Quantas figurinhas ainda devo colar para que ele fique completo?  Ação de comparar: Nas ações de comparar ou achar a diferença, observe que há dois todos, dois universos a considerar – devem ser feitos os questionamentos: “quantos a mais” ou “quantos a menos”. Exemplos:  João tem 6 figurinhas e Maria tem 4. Quantas figurinhas Maria tem a menos que João?  A fila A tem 9 alunos e a fila B tem 6 alunos. Qual a diferença de idade entre as filas? 5
  • 6.
    A CONSTRUÇÃO CONCEITUALDAS OPERAÇÕES  O domínio das operações de adição e subtração não é pré-requisito para compreender as propriedades do campo multiplicativo que deve ser trabalhado desde o primeiro ano.  Os conceitos ligados à multiplicação, como os de adição, são fundamentais para o desenvolvimento de muitos outros conceitos aritméticos. Caso não domine o conceito da operação, a criança conseguirá, no máximo, memorizar os fatos básicos e realizar de forma mecânica o algoritmo posteriormente.  A dificuldade nesta memorização será muito grande e a insegurança ficará clara diante de um problema: quando ela não for capaz de se decidir sobre qual operação realizar. 6
  • 7.
     Atividades quelevam à formação de um conceito devem ser baseadas em experiências concretas, nas quais os alunos terão oportunidade de construir e, com o tempo, aperfeiçoar e transferir tais conceitos.  A professora ou o professor deve proporcionar à criança múltiplas oportunidades de trabalho com material concreto para que ela chegue à representação de seus fatos básicos, compreendendo o significado da operação. 7
  • 8.
    ALGUNS OBJETIVOS BÁSICOSQUE SE DEVE ALCANÇAR PARA A COMPREENSÃO DA MULTIPLICAÇÃO:  Desenvolver o sentido da multiplicação a partir de problemas simples e significativos, com números acessíveis.  Introduzir a escrita da multiplicação com significado a partir da relação entre a multiplicação e a adição.  Resolver problemas de multiplicação antes da aprendizagem formal do algoritmo da multiplicação.  A multiplicação funciona como uma forma simplificada de adição quando os números são repetidos. 8
  • 9.
    MULTIPLICAÇÃO  Podem-semultiplicar todos os números naturais. Vamos recordar os números naturais: N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,...}  Assim, cada número natural pode ser repetido por muitas vezes. Ao repetir o mesmo número por duas, três ou mais vezes, multiplica-se o número natural N.  A multiplicação tem o sentido de crescer, expandir, multiplicar-se. Quando se multiplica um número pelo outro, aumenta-se seu tamanho, a quantidade que ele representa. Na matemática para representar a multiplicação, usa-se dois símbolos: x ou . (7 x 2 ou 7 . 2). 9
  • 10.
    MULTIPLICAÇÃO COMBINATÓRIA A Análise Combinatória é um conteúdo matemático que apresenta grande dificuldade em relação à formulação e, principalmente, interpretação dos seus enunciados. É um ramo da Matemática que permite que se escolha, arrume e conte o número de elementos de determinado conjunto, sem que haja necessidade de enumerá-los.  As operações combinatórias são essenciais para o desenvolvimento cognitivo, por isso seria de extrema importância que o aluno tivesse contato com esse tópico desde os primeiros anos da escola básica, para familiarizar-se com problemas de contagem, descrevendo os casos possíveis e contando-os através de uma representação por ele escolhida, sem regras em princípio, de modo que ele adquirisse um método sistemático e gradativo para a resolução dos problemas, visando uma posterior formalização no ensino médio. 10
  • 11.
    MULTIPLICAÇÃO COMBINATÓRIA A primeira técnica matemática aprendida por uma criança é “contar”, ou seja, enumerar elementos de um conjunto de forma a determinar quantos são os seus elementos. Na multiplicação combinatória, a criança já desenvolve outro raciocínio, veja no exemplo:  Em uma lanchonete, são vendidos apenas sanduíches de queijo, presunto e mortadela com pão de forma ou de batata. Uma pessoa que deseja consumir um desses sanduíches, de quantas opções diferentes dispõe?  Veja a esquema da solução desse problema de acordo com a figura a seguir: 11
  • 12.
    POR OBSERVAÇÃO, VÊ-SEQUE O TOTAL DE CASOS POSSÍVEIS SERÁ DADO PELA MULTIPLICAÇÃO ENTRE O TOTAL DE ESCOLHAS PARA O TIPO DE PÃO E O TOTAL DE ESCOLHAS PARA O RECHEIO UTILIZADO. Forma Batata Mortadela F + M B + M Queijo F + Q B + Q Presunto F+ P B + P 12 T = 3 X 2 = 6
  • 13.
    CONFIGURAÇÃO RETANGULAR OUMULTIPLICAÇÃO EM LINHAS E COLUNAS Nessa fase, devem-se alcançar os seguintes objetivos:  Reconhecer situações de multiplicação a partir da adição de parcelas iguais.  Trabalhar a multiplicação antes da aprendizagem formal do algoritmo.  Trabalhar o sentido aditivo proporcional da multiplicação e a utilização de tabelas.  Reconhecer situações de multiplicação partindo de disposição retangular de objetos.  Utilizar diferentes estratégias de contagem usando a multiplicação. Num exemplo, há 5 fileiras e em cada uma 3 carteiras. Ou seja:  5 fileiras x 3 carteiras = 15 lugares ou  3 carteiras x 5 fileiras = 15 lugares 13
  • 14.
    AS TABELAS DEMULTIPLICAÇÃO: TABUADAS  A tabuada é uma forma de facilitar a memorização dos resultados das multiplicações de unidades. O fato de sabê-la de cor facilita na hora de resolver uma conta de multiplicar e em diversas situações do cotidiano, porém, o importante não é decorá-la, mas entender como ela funciona.  Um grande estudioso chamado Pitágoras, para facilitar aos seus alunos o entendimento da multiplicação, criou uma forma diferente de mostrar o assunto: 14
  • 15.