SlideShare uma empresa Scribd logo
1 de 4
Baixar para ler offline
Exercícios Resolvidos de Fatoração Algébrica


Exemplo 19) Fatore c2 - 2bc - a2 + b2
                                                                                     2           2       2       2                   2       2
Reagrupando o polinômio, teremos : b - 2bc + c - a = (b - 2bc + c ) - a
                             2                       2                                                       2
O trinômio b - 2bc + c pode ser fatorado como : (b - c)
                                                                                                                     2       2
E dessa forma, teremos a diferença de dois quadrados (b - c) - a , e finalmente, teremos :
             2   2
(b - c) - a = (b - c + a) (b - c - a)
                                                         8                   4
Exemplo 20) Fatore: 5m + 10m - 15

Percebemos que o fator 5 pode ser evidenciado, Assim:
     8               4                           8                   4
5m + 10m - 15 = 5(m + 2m - 3)
                             8           4
O trinômio m + 2m - 3 não é um trinômio quadrado perfeito, mas poderá ser um trinômio de Stevin.
E realmente o é, pois os números 3 e -1, têm por soma 2 e por produto - 3, e a soma aparece multiplicada pela
raiz quadrada m4
      8
de m .
                                                                 8               4           8       4                   4               4
Dessa forma, teremos : 5m + 10m - 15 = 5(m + 2m - 3) = 5(m + 3) (m - 1)
                     4                       2                       2                       2                                                   8       4   4   2
E como (m - 1) = (m + 1) (m - 1) , e como (m - 1) (m + 1)(m - 1) teremos : 5m + 10m - 15 = 5(m + 3)(m + 1)(m
+ 1)(m - 1)
                                                                 2
Exemplo 21) Fatore: (x - y) + 2(y - x) - 24
                                                                                         2           2
Antes de mais nada, lembremos que (x - y) = (y - x) ( verifique se isso é verdade )
                                                                                                                     2
Com isso podemos escrever a expressão dada como : (y - x) + 2(y - x) - 24

Para facilitar o reconhecimento do caso de fatoração, chamemos o binômio (y - x) de A, então :
         2                                               2
(y - x) + 2(y - x) - 24 = A + 2A - 24

O trinômio não é quadrado perfeito, mas parece ser de Stevin.
Verificando, percebemos que os números - 4 e + 6 têm por soma + 2 e por produto - 24 e a soma + 2 aparece
multiplicada pela raiz
                 2
quadrada A de A .
                         2                                                                                                                           2
E assim : A + 2A - 24 = (A + 6) (A - 4) e como A = y - x, finalmente teremos: (x - y) + 2(y - x) - 24 = (y - x + 6) (y -
x - 4)
                                                 6           6
Exemplo 22) Fatore x - y

1ª Resolução: Considerando uma diferença de dois cubos

Como ambos são termos cúbicos, essa diferença poderá ser fatorada.
                                             6   2                                         2   2
A raiz cúbica de x6 é x2 e a raiz cúbica de y é y . Assim já temos o nosso primeiro fator x - y
                                                                    2   4                   2    2 2 2
A partir dele montaremos o nosso segundo fator. O quadrado de x é x ; o produto entre x e y é x y e o
quadrado do
             2   4
segundo é y é y .

E dessa forma, teremos:
 6       6       2               2   4               2 2                 4                                                       2       2
x - y = (x - y ) ( x + x y + y ). Como a diferença de quadrados (x - y ) ainda pode ser fatorado, teremos :
6   6                                     4       2 2         4
x - y = (x + y) (x - y) ( x + x y + y ).
                                                       4       2 2             4
Se escrevermos o trinômio ( x + x y + y ) de uma outra forma, perceberemos que ele também poderá ser
fatorado. Vejamos :
 4       2 2       4       4           2 2         4       2 2             2       2 2     2 2
x + x y + y = x + 2x y + y - x y = (x + y ) - x y , que é uma diferença de dois quadrados.
               2       2 2         2 2             2       2                   2       2                 2       2       2       2
Assim : (x + y ) - x y = ( x + y + xy) ( x + y - xy) = ( x - xy + y ) ( x + xy + y ). E finalmente :
 6   6                                     2               2           2               2
x - y = (x + y) (x - y) ( x - xy + y ) ( x + xy + y )

2ª Resolução: Considerando uma diferença de dois quadrados. Como ambos são quadrados, temos uma
diferença de dois
quadrados.
                                   6           3                                           6     3
A raiz quadrada de x é x e a raiz quadrada de y é y .
                                                                               3       3                             3       3
Assim já temos o nosso primeiro fator (x + y ) e o segundo fator (x - y ).

Assim, teremos : x6 - y6 = (x3 + y3) (x3 - y3) .
                                                 3 3 3   3
Como a soma e a diferença de dois cubos (x + y ) e (x - y ) ainda podem ser fatorados, teremos :
 6   6         3       3       3       3                           2               2                 2       2
x - y = (x + y ) (x - y ) = (x + y) ( x - xy + y ) (x - y) ( x + xy + y ) , ou ainda :
 6   6                                     2               2           2               2
x - y = (x + y) (x - y) ( x - xy + y ) ( x + xy + y )

OBSERVAÇÃO MUITO IMPORTANTE

Sempre que fatoramos uma expressão algébrica ou quando efetuamos um produto notável devemos utilizar o
sinal de identidade
que é uma ampliação do conceito de igualdade.

Vamos entender melhor essa diferenciação:

Quando afirmamos que 3x + 4 = 19, sabemos que apenas o valor de x = 5 tornará verdadeira essa sentença.
Nesse caso utilizaremos o sinal de igualdade.

Quando afirmamos que 2(x + 3) = 2x + 6, percebemos que qualquer valor de x, torna essa sentença verdadeira.

Nesse caso devemos utilizar o sinal de identidade                                                    .


E escrevermos :

Assim o correto seria utilizarmos o sinal de identidade para todos os casos de produtos notáveis e, também,
de fatoração.

Assim, por exemplo :




                                   Fatoração Algébrica - Exercícios Propostos


I - Fatore colocando em evidência
II - Fatore os trinômios quadrados perfeitos




III - Fatore as diferenças entre quadrados




IV - Fatore os trinômios de Stevin




V - Fatore as Somas ou diferenças entre dois cubos




VI - Fatore por agrupamento




VII - Fatore as expressões algébricas




           Resposta dos Exercícios Propostos de Fatoração Algébrica
Exercícios Resolvidos de Fatoração

Mais conteúdo relacionado

Mais procurados

Recuperação lista exercicios 9º ano 1º bimestre
Recuperação lista exercicios 9º ano 1º bimestreRecuperação lista exercicios 9º ano 1º bimestre
Recuperação lista exercicios 9º ano 1º bimestreRafael Marques
 
Exercícios resolvidos sobre fatoração de polinômios
Exercícios resolvidos sobre fatoração de polinômiosExercícios resolvidos sobre fatoração de polinômios
Exercícios resolvidos sobre fatoração de polinômiosAndré Luís Nogueira
 
9ano sug atividades_unid_3
9ano sug atividades_unid_39ano sug atividades_unid_3
9ano sug atividades_unid_3Erivaldo Duarte
 
Avaliação parcial 7 ano - pdf
Avaliação parcial   7 ano - pdfAvaliação parcial   7 ano - pdf
Avaliação parcial 7 ano - pdfjonihson
 
Mat utfrs 10. produtos notaveis e fatoracao exercicios
Mat utfrs 10. produtos notaveis e fatoracao exerciciosMat utfrs 10. produtos notaveis e fatoracao exercicios
Mat utfrs 10. produtos notaveis e fatoracao exerciciostrigono_metria
 
Lista de exercícios 8º ano - 3ª etapa - produto notável
Lista de exercícios   8º ano - 3ª etapa - produto notávelLista de exercícios   8º ano - 3ª etapa - produto notável
Lista de exercícios 8º ano - 3ª etapa - produto notávelAlessandra Dias
 
Exercícios função de 2° grau 2p
Exercícios função de 2° grau 2pExercícios função de 2° grau 2p
Exercícios função de 2° grau 2pJean Silveira
 
4ª Lista de Exercícios – Logaritmos
4ª Lista de Exercícios – Logaritmos4ª Lista de Exercícios – Logaritmos
4ª Lista de Exercícios – Logaritmosceliomelosouza
 
Lista de exercícios - 8° ANO - unidade ii
Lista de exercícios - 8° ANO - unidade iiLista de exercícios - 8° ANO - unidade ii
Lista de exercícios - 8° ANO - unidade iiRodrigo Borges
 
2ª lista de exercícios 9º ano (eq. 2º grau)
2ª lista de exercícios   9º ano (eq. 2º grau)2ª lista de exercícios   9º ano (eq. 2º grau)
2ª lista de exercícios 9º ano (eq. 2º grau)Ilton Bruno
 
3ª lista de exercícios complementares de matemática (expressões algébricas) p...
3ª lista de exercícios complementares de matemática (expressões algébricas) p...3ª lista de exercícios complementares de matemática (expressões algébricas) p...
3ª lista de exercícios complementares de matemática (expressões algébricas) p...Josie Michelle Soares
 
Lista 01 exercícios de função do 1º grau
Lista 01 exercícios de função do 1º grauLista 01 exercícios de função do 1º grau
Lista 01 exercícios de função do 1º grauManoel Silva
 
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...Secretaria de Estado de Educação do Pará
 
Listão 9º ano - Função de 1º e 2º grau e Probabilidade
Listão 9º ano - Função de 1º e 2º grau e ProbabilidadeListão 9º ano - Função de 1º e 2º grau e Probabilidade
Listão 9º ano - Função de 1º e 2º grau e ProbabilidadeAndréia Rodrigues
 
Prova do 9º ano auzanir lacerda
Prova do 9º ano auzanir lacerdaProva do 9º ano auzanir lacerda
Prova do 9º ano auzanir lacerdaalunosderoberto
 
8º ano monômios junho de 2012
8º ano monômios junho de 20128º ano monômios junho de 2012
8º ano monômios junho de 2012Rita de Cássia
 

Mais procurados (20)

Recuperação lista exercicios 9º ano 1º bimestre
Recuperação lista exercicios 9º ano 1º bimestreRecuperação lista exercicios 9º ano 1º bimestre
Recuperação lista exercicios 9º ano 1º bimestre
 
Exercícios resolvidos sobre fatoração de polinômios
Exercícios resolvidos sobre fatoração de polinômiosExercícios resolvidos sobre fatoração de polinômios
Exercícios resolvidos sobre fatoração de polinômios
 
9ano sug atividades_unid_3
9ano sug atividades_unid_39ano sug atividades_unid_3
9ano sug atividades_unid_3
 
Soma dos ângulos internos de um triângulo
Soma dos ângulos internos de um triânguloSoma dos ângulos internos de um triângulo
Soma dos ângulos internos de um triângulo
 
Avaliação parcial 7 ano - pdf
Avaliação parcial   7 ano - pdfAvaliação parcial   7 ano - pdf
Avaliação parcial 7 ano - pdf
 
Matemática – produtos notáveis 02 2013
Matemática – produtos notáveis 02  2013Matemática – produtos notáveis 02  2013
Matemática – produtos notáveis 02 2013
 
Mat utfrs 10. produtos notaveis e fatoracao exercicios
Mat utfrs 10. produtos notaveis e fatoracao exerciciosMat utfrs 10. produtos notaveis e fatoracao exercicios
Mat utfrs 10. produtos notaveis e fatoracao exercicios
 
Lista de exercícios 8º ano - 3ª etapa - produto notável
Lista de exercícios   8º ano - 3ª etapa - produto notávelLista de exercícios   8º ano - 3ª etapa - produto notável
Lista de exercícios 8º ano - 3ª etapa - produto notável
 
Exercícios função de 2° grau 2p
Exercícios função de 2° grau 2pExercícios função de 2° grau 2p
Exercícios função de 2° grau 2p
 
L ista de exercícios operacoes com monômios
L ista de exercícios   operacoes com monômiosL ista de exercícios   operacoes com monômios
L ista de exercícios operacoes com monômios
 
4ª Lista de Exercícios – Logaritmos
4ª Lista de Exercícios – Logaritmos4ª Lista de Exercícios – Logaritmos
4ª Lista de Exercícios – Logaritmos
 
Lista de exercícios - 8° ANO - unidade ii
Lista de exercícios - 8° ANO - unidade iiLista de exercícios - 8° ANO - unidade ii
Lista de exercícios - 8° ANO - unidade ii
 
2ª lista de exercícios 9º ano (eq. 2º grau)
2ª lista de exercícios   9º ano (eq. 2º grau)2ª lista de exercícios   9º ano (eq. 2º grau)
2ª lista de exercícios 9º ano (eq. 2º grau)
 
3ª lista de exercícios complementares de matemática (expressões algébricas) p...
3ª lista de exercícios complementares de matemática (expressões algébricas) p...3ª lista de exercícios complementares de matemática (expressões algébricas) p...
3ª lista de exercícios complementares de matemática (expressões algébricas) p...
 
Soma dos ângulos internos de um triângulo gabarito
Soma dos ângulos internos de um triângulo gabaritoSoma dos ângulos internos de um triângulo gabarito
Soma dos ângulos internos de um triângulo gabarito
 
Lista 01 exercícios de função do 1º grau
Lista 01 exercícios de função do 1º grauLista 01 exercícios de função do 1º grau
Lista 01 exercícios de função do 1º grau
 
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
Ângulos Adjacentes, Complementares e Suplementares, O.P.V., Bissetriz (Exercí...
 
Listão 9º ano - Função de 1º e 2º grau e Probabilidade
Listão 9º ano - Função de 1º e 2º grau e ProbabilidadeListão 9º ano - Função de 1º e 2º grau e Probabilidade
Listão 9º ano - Função de 1º e 2º grau e Probabilidade
 
Prova do 9º ano auzanir lacerda
Prova do 9º ano auzanir lacerdaProva do 9º ano auzanir lacerda
Prova do 9º ano auzanir lacerda
 
8º ano monômios junho de 2012
8º ano monômios junho de 20128º ano monômios junho de 2012
8º ano monômios junho de 2012
 

Semelhante a Exercícios Resolvidos de Fatoração

Apostilanivelamentocal 120531061351-phpapp02
Apostilanivelamentocal 120531061351-phpapp02Apostilanivelamentocal 120531061351-phpapp02
Apostilanivelamentocal 120531061351-phpapp02Ezsilvasilva Silva
 
Apostila nivelamento cal
Apostila nivelamento calApostila nivelamento cal
Apostila nivelamento calAndré Piazza
 
Resolução I - Polinômios e números complexos
Resolução I - Polinômios e números complexosResolução I - Polinômios e números complexos
Resolução I - Polinômios e números complexosFeefelipeeRS
 
Fisica exercicios resolvidos 011
Fisica exercicios resolvidos  011Fisica exercicios resolvidos  011
Fisica exercicios resolvidos 011comentada
 
Mat em geometria sol vol6 cap1
Mat em geometria sol vol6 cap1Mat em geometria sol vol6 cap1
Mat em geometria sol vol6 cap1trigono_metrico
 
Gabarito 1ª Fase - Nível 3 - 2012
Gabarito 1ª Fase - Nível 3 - 2012Gabarito 1ª Fase - Nível 3 - 2012
Gabarito 1ª Fase - Nível 3 - 2012oim_matematica
 
Polinomios 7 serie_matematica
Polinomios 7 serie_matematicaPolinomios 7 serie_matematica
Polinomios 7 serie_matematicaalexandregross
 
Função quadrática
Função quadráticaFunção quadrática
Função quadráticajwfb
 
Mat funcao polinomial 2 grau
Mat funcao polinomial 2 grauMat funcao polinomial 2 grau
Mat funcao polinomial 2 grautrigono_metria
 
Equação do primeiro e segundo grau1
Equação do primeiro e segundo grau1Equação do primeiro e segundo grau1
Equação do primeiro e segundo grau1Alexandre Bonifácio
 
Prova do Colégio Militar do Rio de Janeiro, COMENTADA
Prova do Colégio Militar do Rio de Janeiro, COMENTADAProva do Colégio Militar do Rio de Janeiro, COMENTADA
Prova do Colégio Militar do Rio de Janeiro, COMENTADAthieresaulas
 
00 introdução à cálculos
00 introdução à cálculos00 introdução à cálculos
00 introdução à cálculosRegina Pereira
 
EquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
EquaçãO Do 2º Grau Autor Antonio Carlos C BarrosoEquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
EquaçãO Do 2º Grau Autor Antonio Carlos C BarrosoAntonio Carneiro
 

Semelhante a Exercícios Resolvidos de Fatoração (20)

Apostila nivelamento calculo
Apostila nivelamento calculoApostila nivelamento calculo
Apostila nivelamento calculo
 
Apostilanivelamentocal 120531061351-phpapp02
Apostilanivelamentocal 120531061351-phpapp02Apostilanivelamentocal 120531061351-phpapp02
Apostilanivelamentocal 120531061351-phpapp02
 
Apostila nivelamento cal
Apostila nivelamento calApostila nivelamento cal
Apostila nivelamento cal
 
Resolução I - Polinômios e números complexos
Resolução I - Polinômios e números complexosResolução I - Polinômios e números complexos
Resolução I - Polinômios e números complexos
 
Apostila nivelamento
Apostila nivelamentoApostila nivelamento
Apostila nivelamento
 
Apostila nivelamento cal
Apostila nivelamento calApostila nivelamento cal
Apostila nivelamento cal
 
Fisica exercicios resolvidos 011
Fisica exercicios resolvidos  011Fisica exercicios resolvidos  011
Fisica exercicios resolvidos 011
 
Mat em geometria sol vol6 cap1
Mat em geometria sol vol6 cap1Mat em geometria sol vol6 cap1
Mat em geometria sol vol6 cap1
 
Gabarito 1ª Fase - Nível 3 - 2012
Gabarito 1ª Fase - Nível 3 - 2012Gabarito 1ª Fase - Nível 3 - 2012
Gabarito 1ª Fase - Nível 3 - 2012
 
Mat73a
Mat73aMat73a
Mat73a
 
Técnicas de-fatoração
Técnicas de-fatoraçãoTécnicas de-fatoração
Técnicas de-fatoração
 
Remember 08
Remember 08Remember 08
Remember 08
 
Polinomios 7 serie_matematica
Polinomios 7 serie_matematicaPolinomios 7 serie_matematica
Polinomios 7 serie_matematica
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
 
Ufba12mat2
Ufba12mat2Ufba12mat2
Ufba12mat2
 
Mat funcao polinomial 2 grau
Mat funcao polinomial 2 grauMat funcao polinomial 2 grau
Mat funcao polinomial 2 grau
 
Equação do primeiro e segundo grau1
Equação do primeiro e segundo grau1Equação do primeiro e segundo grau1
Equação do primeiro e segundo grau1
 
Prova do Colégio Militar do Rio de Janeiro, COMENTADA
Prova do Colégio Militar do Rio de Janeiro, COMENTADAProva do Colégio Militar do Rio de Janeiro, COMENTADA
Prova do Colégio Militar do Rio de Janeiro, COMENTADA
 
00 introdução à cálculos
00 introdução à cálculos00 introdução à cálculos
00 introdução à cálculos
 
EquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
EquaçãO Do 2º Grau Autor Antonio Carlos C BarrosoEquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
EquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
 

Mais de trigono_metria

Mat utfrs 03. potenciacao
Mat utfrs 03. potenciacaoMat utfrs 03. potenciacao
Mat utfrs 03. potenciacaotrigono_metria
 
Mat divisores de um numero
Mat divisores de um numeroMat divisores de um numero
Mat divisores de um numerotrigono_metria
 
Mat expressoes algebricas
Mat expressoes algebricasMat expressoes algebricas
Mat expressoes algebricastrigono_metria
 
Mat numeros decimais parte ii
Mat numeros decimais parte iiMat numeros decimais parte ii
Mat numeros decimais parte iitrigono_metria
 
Mat equacao do segundo grau parte i
Mat equacao do segundo grau   parte iMat equacao do segundo grau   parte i
Mat equacao do segundo grau parte itrigono_metria
 
Mat razoes e proporcoes 002
Mat razoes e proporcoes  002Mat razoes e proporcoes  002
Mat razoes e proporcoes 002trigono_metria
 
Mat utfrs 22. poligonos exercicios
Mat utfrs 22. poligonos exerciciosMat utfrs 22. poligonos exercicios
Mat utfrs 22. poligonos exerciciostrigono_metria
 
Mat conjuntos numericos
Mat conjuntos numericosMat conjuntos numericos
Mat conjuntos numericostrigono_metria
 
Mat leitura numero decimal
Mat leitura numero decimalMat leitura numero decimal
Mat leitura numero decimaltrigono_metria
 
Mat equacoes do 1 grau 004
Mat equacoes do 1 grau  004Mat equacoes do 1 grau  004
Mat equacoes do 1 grau 004trigono_metria
 
Mat utfrs 05. radiciacao
Mat utfrs 05. radiciacaoMat utfrs 05. radiciacao
Mat utfrs 05. radiciacaotrigono_metria
 
Mat equacoes do 1 grau 001
Mat equacoes do 1 grau  001Mat equacoes do 1 grau  001
Mat equacoes do 1 grau 001trigono_metria
 
Mat equacao do primeiro grau resolvidos 002
Mat equacao do primeiro grau resolvidos  002Mat equacao do primeiro grau resolvidos  002
Mat equacao do primeiro grau resolvidos 002trigono_metria
 
Trigonometria radianos graus
Trigonometria radianos grausTrigonometria radianos graus
Trigonometria radianos graustrigono_metria
 
Mat utfrs 06. razao e proporcao exercicios
Mat utfrs 06. razao e proporcao exerciciosMat utfrs 06. razao e proporcao exercicios
Mat utfrs 06. razao e proporcao exerciciostrigono_metria
 

Mais de trigono_metria (20)

Mat utfrs 03. potenciacao
Mat utfrs 03. potenciacaoMat utfrs 03. potenciacao
Mat utfrs 03. potenciacao
 
Mat divisores de um numero
Mat divisores de um numeroMat divisores de um numero
Mat divisores de um numero
 
Mat areas e volumes
Mat areas e volumesMat areas e volumes
Mat areas e volumes
 
Mat expressoes algebricas
Mat expressoes algebricasMat expressoes algebricas
Mat expressoes algebricas
 
Mat numeros decimais parte ii
Mat numeros decimais parte iiMat numeros decimais parte ii
Mat numeros decimais parte ii
 
Mat equacao do segundo grau parte i
Mat equacao do segundo grau   parte iMat equacao do segundo grau   parte i
Mat equacao do segundo grau parte i
 
Mat razoes e proporcoes 002
Mat razoes e proporcoes  002Mat razoes e proporcoes  002
Mat razoes e proporcoes 002
 
Mat sc conicas
Mat sc conicasMat sc conicas
Mat sc conicas
 
Mat utfrs 22. poligonos exercicios
Mat utfrs 22. poligonos exerciciosMat utfrs 22. poligonos exercicios
Mat utfrs 22. poligonos exercicios
 
Mat conjuntos numericos
Mat conjuntos numericosMat conjuntos numericos
Mat conjuntos numericos
 
Mat leitura numero decimal
Mat leitura numero decimalMat leitura numero decimal
Mat leitura numero decimal
 
Mat numeros racionais
Mat numeros racionaisMat numeros racionais
Mat numeros racionais
 
Mat divisibilidade
Mat divisibilidadeMat divisibilidade
Mat divisibilidade
 
Mat equacoes do 1 grau 004
Mat equacoes do 1 grau  004Mat equacoes do 1 grau  004
Mat equacoes do 1 grau 004
 
Mat utfrs 05. radiciacao
Mat utfrs 05. radiciacaoMat utfrs 05. radiciacao
Mat utfrs 05. radiciacao
 
Mat derivadas
Mat derivadasMat derivadas
Mat derivadas
 
Mat equacoes do 1 grau 001
Mat equacoes do 1 grau  001Mat equacoes do 1 grau  001
Mat equacoes do 1 grau 001
 
Mat equacao do primeiro grau resolvidos 002
Mat equacao do primeiro grau resolvidos  002Mat equacao do primeiro grau resolvidos  002
Mat equacao do primeiro grau resolvidos 002
 
Trigonometria radianos graus
Trigonometria radianos grausTrigonometria radianos graus
Trigonometria radianos graus
 
Mat utfrs 06. razao e proporcao exercicios
Mat utfrs 06. razao e proporcao exerciciosMat utfrs 06. razao e proporcao exercicios
Mat utfrs 06. razao e proporcao exercicios
 

Último

Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...
Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...
Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...LizanSantos1
 
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptxSlide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptxconcelhovdragons
 
O Universo Cuckold - Compartilhando a Esposas Com Amigo.pdf
O Universo Cuckold - Compartilhando a Esposas Com Amigo.pdfO Universo Cuckold - Compartilhando a Esposas Com Amigo.pdf
O Universo Cuckold - Compartilhando a Esposas Com Amigo.pdfPastor Robson Colaço
 
Simulado 1 Etapa - 2024 Proximo Passo.pdf
Simulado 1 Etapa - 2024 Proximo Passo.pdfSimulado 1 Etapa - 2024 Proximo Passo.pdf
Simulado 1 Etapa - 2024 Proximo Passo.pdfEditoraEnovus
 
Prática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGISPrática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGISVitor Vieira Vasconcelos
 
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptxQUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptxIsabellaGomes58
 
Mesoamérica.Astecas,inca,maias , olmecas
Mesoamérica.Astecas,inca,maias , olmecasMesoamérica.Astecas,inca,maias , olmecas
Mesoamérica.Astecas,inca,maias , olmecasRicardo Diniz campos
 
trabalho wanda rocha ditadura
trabalho wanda rocha ditaduratrabalho wanda rocha ditadura
trabalho wanda rocha ditaduraAdryan Luiz
 
William J. Bennett - O livro das virtudes para Crianças.pdf
William J. Bennett - O livro das virtudes para Crianças.pdfWilliam J. Bennett - O livro das virtudes para Crianças.pdf
William J. Bennett - O livro das virtudes para Crianças.pdfAdrianaCunha84
 
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptxÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptxDeyvidBriel
 
Aula 13 8º Ano Cap.04 Revolução Francesa.pptx
Aula 13 8º Ano Cap.04 Revolução Francesa.pptxAula 13 8º Ano Cap.04 Revolução Francesa.pptx
Aula 13 8º Ano Cap.04 Revolução Francesa.pptxBiancaNogueira42
 
Bingo da potenciação e radiciação de números inteiros
Bingo da potenciação e radiciação de números inteirosBingo da potenciação e radiciação de números inteiros
Bingo da potenciação e radiciação de números inteirosAntnyoAllysson
 
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANO
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANOInvestimentos. EDUCAÇÃO FINANCEIRA 8º ANO
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANOMarcosViniciusLemesL
 
Gerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalGerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalJacqueline Cerqueira
 
UFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfUFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfManuais Formação
 
O guia definitivo para conquistar a aprovação em concurso público.pdf
O guia definitivo para conquistar a aprovação em concurso público.pdfO guia definitivo para conquistar a aprovação em concurso público.pdf
O guia definitivo para conquistar a aprovação em concurso público.pdfErasmo Portavoz
 
A galinha ruiva sequencia didatica 3 ano
A  galinha ruiva sequencia didatica 3 anoA  galinha ruiva sequencia didatica 3 ano
A galinha ruiva sequencia didatica 3 anoandrealeitetorres
 
Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Centro Jacques Delors
 
Currículo escolar na perspectiva da educação inclusiva.pdf
Currículo escolar na perspectiva da educação inclusiva.pdfCurrículo escolar na perspectiva da educação inclusiva.pdf
Currículo escolar na perspectiva da educação inclusiva.pdfIedaGoethe
 

Último (20)

Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...
Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...
Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...
 
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptxSlide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
 
O Universo Cuckold - Compartilhando a Esposas Com Amigo.pdf
O Universo Cuckold - Compartilhando a Esposas Com Amigo.pdfO Universo Cuckold - Compartilhando a Esposas Com Amigo.pdf
O Universo Cuckold - Compartilhando a Esposas Com Amigo.pdf
 
Simulado 1 Etapa - 2024 Proximo Passo.pdf
Simulado 1 Etapa - 2024 Proximo Passo.pdfSimulado 1 Etapa - 2024 Proximo Passo.pdf
Simulado 1 Etapa - 2024 Proximo Passo.pdf
 
Prática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGISPrática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGIS
 
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptxQUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
QUARTA - 1EM SOCIOLOGIA - Aprender a pesquisar.pptx
 
Mesoamérica.Astecas,inca,maias , olmecas
Mesoamérica.Astecas,inca,maias , olmecasMesoamérica.Astecas,inca,maias , olmecas
Mesoamérica.Astecas,inca,maias , olmecas
 
trabalho wanda rocha ditadura
trabalho wanda rocha ditaduratrabalho wanda rocha ditadura
trabalho wanda rocha ditadura
 
William J. Bennett - O livro das virtudes para Crianças.pdf
William J. Bennett - O livro das virtudes para Crianças.pdfWilliam J. Bennett - O livro das virtudes para Crianças.pdf
William J. Bennett - O livro das virtudes para Crianças.pdf
 
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptxÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
ÁREA DE FIGURAS PLANAS - DESCRITOR DE MATEMATICA D12 ENSINO MEDIO.pptx
 
Aula 13 8º Ano Cap.04 Revolução Francesa.pptx
Aula 13 8º Ano Cap.04 Revolução Francesa.pptxAula 13 8º Ano Cap.04 Revolução Francesa.pptx
Aula 13 8º Ano Cap.04 Revolução Francesa.pptx
 
Bingo da potenciação e radiciação de números inteiros
Bingo da potenciação e radiciação de números inteirosBingo da potenciação e radiciação de números inteiros
Bingo da potenciação e radiciação de números inteiros
 
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANO
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANOInvestimentos. EDUCAÇÃO FINANCEIRA 8º ANO
Investimentos. EDUCAÇÃO FINANCEIRA 8º ANO
 
Gerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem OrganizacionalGerenciando a Aprendizagem Organizacional
Gerenciando a Aprendizagem Organizacional
 
UFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfUFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdf
 
O guia definitivo para conquistar a aprovação em concurso público.pdf
O guia definitivo para conquistar a aprovação em concurso público.pdfO guia definitivo para conquistar a aprovação em concurso público.pdf
O guia definitivo para conquistar a aprovação em concurso público.pdf
 
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA -
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA      -XI OLIMPÍADAS DA LÍNGUA PORTUGUESA      -
XI OLIMPÍADAS DA LÍNGUA PORTUGUESA -
 
A galinha ruiva sequencia didatica 3 ano
A  galinha ruiva sequencia didatica 3 anoA  galinha ruiva sequencia didatica 3 ano
A galinha ruiva sequencia didatica 3 ano
 
Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029Apresentação | Eleições Europeias 2024-2029
Apresentação | Eleições Europeias 2024-2029
 
Currículo escolar na perspectiva da educação inclusiva.pdf
Currículo escolar na perspectiva da educação inclusiva.pdfCurrículo escolar na perspectiva da educação inclusiva.pdf
Currículo escolar na perspectiva da educação inclusiva.pdf
 

Exercícios Resolvidos de Fatoração

  • 1. Exercícios Resolvidos de Fatoração Algébrica Exemplo 19) Fatore c2 - 2bc - a2 + b2 2 2 2 2 2 2 Reagrupando o polinômio, teremos : b - 2bc + c - a = (b - 2bc + c ) - a 2 2 2 O trinômio b - 2bc + c pode ser fatorado como : (b - c) 2 2 E dessa forma, teremos a diferença de dois quadrados (b - c) - a , e finalmente, teremos : 2 2 (b - c) - a = (b - c + a) (b - c - a) 8 4 Exemplo 20) Fatore: 5m + 10m - 15 Percebemos que o fator 5 pode ser evidenciado, Assim: 8 4 8 4 5m + 10m - 15 = 5(m + 2m - 3) 8 4 O trinômio m + 2m - 3 não é um trinômio quadrado perfeito, mas poderá ser um trinômio de Stevin. E realmente o é, pois os números 3 e -1, têm por soma 2 e por produto - 3, e a soma aparece multiplicada pela raiz quadrada m4 8 de m . 8 4 8 4 4 4 Dessa forma, teremos : 5m + 10m - 15 = 5(m + 2m - 3) = 5(m + 3) (m - 1) 4 2 2 2 8 4 4 2 E como (m - 1) = (m + 1) (m - 1) , e como (m - 1) (m + 1)(m - 1) teremos : 5m + 10m - 15 = 5(m + 3)(m + 1)(m + 1)(m - 1) 2 Exemplo 21) Fatore: (x - y) + 2(y - x) - 24 2 2 Antes de mais nada, lembremos que (x - y) = (y - x) ( verifique se isso é verdade ) 2 Com isso podemos escrever a expressão dada como : (y - x) + 2(y - x) - 24 Para facilitar o reconhecimento do caso de fatoração, chamemos o binômio (y - x) de A, então : 2 2 (y - x) + 2(y - x) - 24 = A + 2A - 24 O trinômio não é quadrado perfeito, mas parece ser de Stevin. Verificando, percebemos que os números - 4 e + 6 têm por soma + 2 e por produto - 24 e a soma + 2 aparece multiplicada pela raiz 2 quadrada A de A . 2 2 E assim : A + 2A - 24 = (A + 6) (A - 4) e como A = y - x, finalmente teremos: (x - y) + 2(y - x) - 24 = (y - x + 6) (y - x - 4) 6 6 Exemplo 22) Fatore x - y 1ª Resolução: Considerando uma diferença de dois cubos Como ambos são termos cúbicos, essa diferença poderá ser fatorada. 6 2 2 2 A raiz cúbica de x6 é x2 e a raiz cúbica de y é y . Assim já temos o nosso primeiro fator x - y 2 4 2 2 2 2 A partir dele montaremos o nosso segundo fator. O quadrado de x é x ; o produto entre x e y é x y e o quadrado do 2 4 segundo é y é y . E dessa forma, teremos: 6 6 2 2 4 2 2 4 2 2 x - y = (x - y ) ( x + x y + y ). Como a diferença de quadrados (x - y ) ainda pode ser fatorado, teremos :
  • 2. 6 6 4 2 2 4 x - y = (x + y) (x - y) ( x + x y + y ). 4 2 2 4 Se escrevermos o trinômio ( x + x y + y ) de uma outra forma, perceberemos que ele também poderá ser fatorado. Vejamos : 4 2 2 4 4 2 2 4 2 2 2 2 2 2 2 x + x y + y = x + 2x y + y - x y = (x + y ) - x y , que é uma diferença de dois quadrados. 2 2 2 2 2 2 2 2 2 2 2 2 2 Assim : (x + y ) - x y = ( x + y + xy) ( x + y - xy) = ( x - xy + y ) ( x + xy + y ). E finalmente : 6 6 2 2 2 2 x - y = (x + y) (x - y) ( x - xy + y ) ( x + xy + y ) 2ª Resolução: Considerando uma diferença de dois quadrados. Como ambos são quadrados, temos uma diferença de dois quadrados. 6 3 6 3 A raiz quadrada de x é x e a raiz quadrada de y é y . 3 3 3 3 Assim já temos o nosso primeiro fator (x + y ) e o segundo fator (x - y ). Assim, teremos : x6 - y6 = (x3 + y3) (x3 - y3) . 3 3 3 3 Como a soma e a diferença de dois cubos (x + y ) e (x - y ) ainda podem ser fatorados, teremos : 6 6 3 3 3 3 2 2 2 2 x - y = (x + y ) (x - y ) = (x + y) ( x - xy + y ) (x - y) ( x + xy + y ) , ou ainda : 6 6 2 2 2 2 x - y = (x + y) (x - y) ( x - xy + y ) ( x + xy + y ) OBSERVAÇÃO MUITO IMPORTANTE Sempre que fatoramos uma expressão algébrica ou quando efetuamos um produto notável devemos utilizar o sinal de identidade que é uma ampliação do conceito de igualdade. Vamos entender melhor essa diferenciação: Quando afirmamos que 3x + 4 = 19, sabemos que apenas o valor de x = 5 tornará verdadeira essa sentença. Nesse caso utilizaremos o sinal de igualdade. Quando afirmamos que 2(x + 3) = 2x + 6, percebemos que qualquer valor de x, torna essa sentença verdadeira. Nesse caso devemos utilizar o sinal de identidade . E escrevermos : Assim o correto seria utilizarmos o sinal de identidade para todos os casos de produtos notáveis e, também, de fatoração. Assim, por exemplo : Fatoração Algébrica - Exercícios Propostos I - Fatore colocando em evidência
  • 3. II - Fatore os trinômios quadrados perfeitos III - Fatore as diferenças entre quadrados IV - Fatore os trinômios de Stevin V - Fatore as Somas ou diferenças entre dois cubos VI - Fatore por agrupamento VII - Fatore as expressões algébricas Resposta dos Exercícios Propostos de Fatoração Algébrica