O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×

Números racionais

Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Próximos SlideShares
Numeros racionais
Numeros racionais
Carregando em…3
×

Confira estes a seguir

1 de 10 Anúncio

Mais Conteúdo rRelacionado

Diapositivos para si (20)

Semelhante a Números racionais (20)

Anúncio

Mais de Helena Borralho (20)

Mais recentes (20)

Anúncio

Números racionais

  1. 1. numerador denominador Fração é uma forma de se representar uma quantidade a partir de um valor, que é dividido por um determinado número de partes iguais. Por vezes, quando se dividem dois números, o quociente é exato e é um número inteiro. Outras vezes, quando se dividem dois números, o quociente é exato e é um número decimal. Dízima infinita Periódica Dízima finita (período 6) Dízima infinita não periódica
  2. 2. Observa a figura, que foi divida em 16 partes iguais, 4 partes em laranja e 12 partes em amarelo. ૝ ? ૚૟ A fração 4/16 pode significar que das 16 partes que compõe a figura, estamos considerando apenas 4 delas, ou seja, estamos considerando apenas quatro dezasseis avos da figura. PROBLEMA Na minha escola há 420 alunos, dos quais 3/5 (três quintos) são de raparigas. Quantas raparigas há na minha escola? ૜ ૝૛૙ ൈ =252 raparigas ૞ O denominador representa o número de partes que a unidade foi dividida. O número de partes que se considera.
  3. 3. Fração própria: o ૝ numerador é menor 1/2 - um meio 2/5 - dois quintos 1/3 - um terço 4/7 - quatro sétimos que o denominador: ૚૟ 1/4 - um quarto 7/8 - sete oitavos 1/5 - um quinto 15/9 - quinze nonos 1/6 - um sexto 1/10 - um décimo Fração imprópria: o ૚ૡ 1/7 - um sétimo 1/100 - um centésimo numerador é maior ou 1/8 - um oitavo 1/1000 - um milésimo igual ao denominador ૚૛ 1/9 - um nono 8/1000 - oito milésimos 3/12 - três doze avos As frações decimais são aquelas cujo denominador é uma potência de base 10, ou seja, o denominador é 10, 100, 1000, ... Estas frações são muito utilizadas quando se converte um número decimal para fração. Fração ૞ Número ૝ Número decimal ૚૙ =0,5 decimal =0,04 decimal ૚૙૙ Fração decimal
  4. 4. Para obtermos uma fração equivalente a outra, basta multiplicar ou dividir o numerador e o denominador pelo mesmo número (diferente de zero). Simplificação de Frações Simplificar uma fração significa 18: 2 9: 3 3 transformá-la numa fração equivalente ൌ ൌ com os termos respetivamente 24: 2 12: 3 4 menores. Fração irredutível Quando uma fração não pode mais ser simplificada, diz-se que ela é IRREDUTÍVEL ou que está na sua forma mais simples. Nesse caso, o numerador e o denominador são primos entre si.
  5. 5. As frações superiores à unidade podem ser representadas sob a forma de uma adição ou sob a forma de numeral misto fracionário. Para escrever uma fração sob a forma de numeral misto fracionário: Frações >1 ૡ Para escrever um numeral misto na forma ૞ de fração: Frações <1 ૜ ૞ Frações =1 ૞ ૞
  6. 6. Para reduzirmos duas ou mais frações ao mesmo denominador, seguimos os seguintes passos: 1º - Calcula-se o m.m.c. dos denominadores das frações que será o menor denominador comum. 2º- Divide-se o m.m.c. encontrado pelos denominadores das frações dadas. Decomposição em 3º - Multiplica-se o quociente encontrado em cada divisão pelo fatores primos numerador da respetiva fração. O produto encontrado é o novo numerador. 6= 2x3 12= 2x2x3 ૡ ൈሺ૛ሻ ૞ ൈሺଵሻ m.m.c (6,12)=2x2x3=12 m.m.c é igual ao produto ૟ ൈሺ૛ሻ ૚૛ሺൈ૚ሻ 12:6=2 12:12=1 dos fatores primos comuns (2x3) e não comuns (2) ૚૟ ૞ ૚૛ > ૚૛
  7. 7. Se duas ou mais frações tem o mesmo denominador, a maior é a que tem maior numerador. 11 7 5 3 1 ൐ ൐ ൐ ൐ 4 4 4 4 4 Se duas ou mais frações tem o mesmo numerador, a maior é a que tem menor denominador. 15 15 15 15 15 ൐ ൐ ൐ ൐ 4 6 8 10 13 ૡ ൈሺ૛ሻ ૞ ൈሺଵሻ Para fazer a comparação de frações ૟ ൈሺ૛ሻ >૚૛ሺൈ૚ሻ m.m.c com numeradores e denominadores (6,12)=2x2x3=12 diferentes, reduzem-se as frações ao 12:6=2 mesmo denominador. 12:12=1 ૚૟ ૞ ૚૛ > ૚૛
  8. 8. 1º) As Frações tem o mesmo Denominador. Adicionam-se ou subtraem-se os numeradores e repete-se o denominador. 11 7 5 13 ൅ െ ൌ 4 4 4 4 2º) As Frações tem Denominadores diferentes Reduzem-se as frações ao mesmo denominador e procede-se como no 1º caso. 11 7 1 m.m.c(3,4)=12 ൅ െ ൌ 3 4 4 12:3=4 12:4=3 ସସ ଶଵ ଷ ଺ଶ:ଶ ଷଵ ൅ െ ൌ = ଵଶ ଵଶ ଵଶ ଵଶ:ଶ ଺
  9. 9. 2 7 1 14: 2 7 ൈ ൈ ൌ ൌ 4 3 2 24: 2 12 Inverso de um número Dois números dizem-se inversos um do outro se o seu produto é igual a 1. 2 7 2 3 6: 2 3 ସ ହ ଶ଴ : ൌ ൈ ൌ ൌ 4 3 4 7 28: 2 14 ൈ = ൌ1 ହ ସ ଶ଴

×