SlideShare uma empresa Scribd logo
1 de 87
Baixar para ler offline
i

      SABRINA MARIANA FREITAS COSTA




ESTRATÉGIA DE REAÇÃO EM CALL CENTER:
    UMA PROPOSTA DE ARQUITETURA




  FACULDADE DE TECNOLOGIA DE SÃO PAULO
DEPARTAMENTO DE TECNOLOGIA DA INFORMAÇÃO


                São Paulo
                  2011
ii

      SABRINA MARIANA FREITAS COSTA




ESTRATÉGIA DE REAÇÃO EM CALL CENTER:
    UMA PROPOSTA DE ARQUITETURA




                   Monografia apresentada à Faculdade de
                   Tecnologia de São Paulo, como parte dos
                   requisitos para obtenção do título de
                   Especialista em Análise e Projetos de
                   Sistemas.

                   Orientador: Prof. Dr. Silvio do Lago Pereira




  FACULDADE DE TECNOLOGIA DE SÃO PAULO
DEPARTAMENTO DE TECNOLOGIA DA INFORMAÇÃO


                São Paulo
                  2011
iii
1


AGRADECIMENTOS

  Neste trabalho foram descritos desde pequenas sugestões a grandes idéias.
Apesar de todas as circunstâncias e contratempo agradeço imensamente a todos
que me auxiliaram, em especial aos meus pais e toda minha família que, com muito
carinho e dedicação, não mediram esforços na ajuda em concretizar mais esta etapa
em minha vida. Agradeço também ao Professor Doutor Silvio do Lago Pereira por
todo apoio prestado, na orientação e incentivo dados a este trabalho que, só assim,
tornaram possível sua conclusão.
2


BANCA EXAMINADORA



 Professor Orientador: Dr. Silvio do Lago Pereira

 Professor 2: Prof. Dr. Kazuo Watanabe

 Professor 3: Profa. Me. Grace Anne Pontes Borges
3


SUMÁRIO

 INTRODUÇÃO ...................................................................................................... 10

 1     AMBIENTE DE CALL CENTER ...................................................................... 15

     1.1 As Origens ................................................................................................ 15

     1.2 A Infraestrutura ......................................................................................... 17

 2     ESTUDO DE CASO........................................................................................ 18

     2.1 Estrutura da Empresa ............................................................................... 18

     2.2 Regra de Negócio ..................................................................................... 21

     2.3 Características .......................................................................................... 22

     2.4 Arquitetura de Processamento .................................................................. 23

 3     PLANEJAMENTO ESTRATÉGICO E GESTÃO DE CONHECIMENTO......... 25

     3.1 Planejamento ............................................................................................ 25

     3.2 Gestão de Conhecimento ......................................................................... 28

 4     INTELIGÊNCIA EMPRESARIAL .................................................................... 30

     4.1 CRM .......................................................................................................... 30

     4.2 Data Warehouse ....................................................................................... 31

 5     INTELIGÊNCIA APLICADA AO NEGÓCIO .................................................... 44

     5.1 Redes Neurais Artificiais ........................................................................... 44

 6     ARQUITETURA PROPOSTA ......................................................................... 61

     6.1 Introdução ................................................................................................. 61

     6.2 Ferramentas utilizadas e suas características .......................................... 65

     6.3 Ambiente DW ............................................................................................ 66

     6.4 Data Mart de Desempenho Operacional ................................................... 71

     6.5 Dicionário de Dados .................................................................................. 72

     6.6 Vantagens e Desvantagens da Arquitetura Proposta ............................... 75

     6.7 Melhorias e Trabalhos Futuros ................................................................. 77

 Conclusão ............................................................................................................... x
4

Referências ........................................................................................................... xii

   Apêndice A - Visão geral do Trabalho .............................................................. xiv
5


LISTA DE TABELAS
 Tabela 1: Consulta Cubos BI por dimensão vendas por Região. .......................... 37
 Tabela 2: Consulta Cubos BI por dimensão vendas por Região por trimestre. ..... 37
 Tabela 3: Armazenamentos Acessíveis por Ferramenta ...................................... 39
 Tabela 4: Correspondência entre tipos de usuários e funcionalidades. ................ 43
 Tabela 5: Comparação Redes Biológicas X Artificiais. ......................................... 47
 Tabela 6: Requisitos de Servidores Envolvidos. ................................................... 64
 Tabela 7: Tratamento de dados. ........................................................................... 70
 Tabela 8: Definições das dimensões .................................................................... 71
 Tabela 9: Parametrização de Alerta ...................................................................... 72
 Tabela 10: Problemas X vantagens aplicadas á arquitetura proposta. ................. 76
6




LISTA DE FIGURAS


 Figura 1: Pesquisa de satisfação para Call Center, visão consumidor . ............... 11
 Figura 2: Estrutura do Call Center da Empresa. ................................................... 18
 Figura 3: Arquitetura Ambiente Atual. ................................................................... 23
 Figura 4: CRM X DW ............................................................................................ 30
 Figura 5: Estrutura – Integração ........................................................................... 32
 Figura 6: Estrutura – DW ...................................................................................... 33
 Figura 7: Hierarquia de Dimensões....................................................................... 35
 Figura 8: Representação de um fato de vendas por meio de um cubo. ................ 36
 Figura 9: Modelo Star – Estrela............................................................................. 38
 Figura 10: Processo de criação e uso da inteligência. .......................................... 42
 Figura 11: Parte de uma rede: duas células biológicas interconectadas. ............. 45
 Figura 12: Processamento da informação em um neurônio artificial..................... 46
 Figura 13: Rede neural com uma camada escondida. .......................................... 48
 Figura 14: Função de soma para um neurônio (a) e vários neurônios (b). ........... 50
 Figura 15: Exemplo de funções para RNA. ........................................................... 50
 Figura 16: YT é o valor transformado de –Y. ....................................................... 51
 Figura 17: Estruturas de rede neural: fluxo progressivo ........................................ 52
 Figura 18: Estrutura recorrente comparada com fonte progressiva. ..................... 52
 Figura 19: Processo de aprendizagem de uma RNA. ........................................... 54
 Figura 20: Retropropagação de erros para um único neurônio. ............................ 56
 Figura 21: Fluxograma do processo de desenvolvimento de uma RNA. .............. 58
 Figura 22: Arquitetura do Ambiente Proposto. ...................................................... 62
 Figura 23: Modelagem de dados, para o processamento do DW. ........................ 70
 Figura 24: Aplicação – Funcionalidade. ................................................................ 73
 Figura 25: Aplicação – Processo de Análise. ........................................................ 73
 Figura 26: Aplicação – E-mail Estratégico. ........................................................... 74
7




LISTA DE ABREVIATURAS

BAM  Monitoramento de atividades de Negócios
BI   Business Intelligence
BPM  Corporate Performance management
CEO  Chief Executive Officer
CPM  Corporate Performance Management
CRM  Customer Relationship Managemen
DW   Data Warehouse
DSS  Decision Support Systems
EIS  Sistemas de Informações Executivas
FCS  Fatores Críticos do Sucesso
MDX  Multidimensional Expressions
MPL  Perceptron Multi-Camadas
ODS  Operational Data Store
OLAP On Line Analytical Processing – Processamento On-line Analítico
PA   Posição de Atendimento
PE   Elementos de Processamento
RNA  Rede Neural Artificial
SAC  Atendimento ao Consumido
SIG  Sistemas de Geração de Relatório
SSAS SQL Server Analysis Services
SSIS SQL Server Integration Services
SSRS SQL Server Reporting Services
     Forças (Strengths), Fraquezas (Weaknesses), Oportunidades
SWOT
     (Opportunities).
URA Unidade de Resposta Audível
8


RESUMO

  No ambiente corporativo de Call Center, a alta competitividade no setor torna
cada vez mais necessária a inovação tecnológica e dinamismo em sua gestão além
da redução de custos e menor tempo para a execução de soluções. Vale salientar a
importância da eficiência quanto às decisões tomadas na gestão de todos estes
itens. Como solução para os problemas vistos, tais como: operacional, estratégico,
má utilização das ferramentas disponíveis. Na execução das atividades de caráter
solucionador este trabalho apresenta o conceito de Business Intelligence (BI)
utilizado na análise, planejamento, gestão e estratégia. Também será aplicado o
conceito Inteligência Artificial - Redes Neurais, aprimorando as análises e medidas
utilizadas na gestão do setor operacional, além de propor uma arquitetura
estratégica que visa oferecer maior agilidade nas tomadas de decisões e na análise
de problemas/ incidentes com medidas de caráter solucionador, a arquitetura
proposta vai além de índices estratégicos, garante a avaliação da estratégia que
está sendo tomados durante a gestão, tais pontos podem ser indicados como caso
de fracasso e sucesso no planejamento de qualquer empresa.




  Palavras-chave: Business Intelligence, Data Mining,     Processamento Analítico
on-line (OLAP), Data Warehouse, Data Mart, Data Store Operacional (ODS),
Integração de Dados, Modelagem Dimensional, Extração Transformação De Carga
(ETL), Cubos De Dados, OLAP Multidimensional (MOLAP), Meta Estratégica,
Objetivo Estratégico, Visão Estratégica, Algoritmo De Aprendizado, Aprendizado Não
Supervisionado,Aprendizado      Supervisionado,Função       Sigmoide     (Ativação
Lógica),Neurônio, Camada Escondida, Processamento Paralelo, Rede Neural, Rede
Neural Artificial (RNA),Taxa De Aprendizado.
9


  ABSTRACT

  In    the     call      center     corporate ,      high competitiveness in        the    sector
becomes increasingly           necessary technological          innovation and       dynamism in
management in addition to reducing costs and less time to implement solutions. It is
worth mentioning the importanceof efficiency and of the decisions taken in the
management of all these items. As a solution to the problems seen, such as:
operational, strategic, misuse of the tools available. In carrying out the activities of
a solver this paper presents the concept of Business Intelligence (BI) used in the
analysis, planning, management and strategy. Also applied the concept Artificial
Intelligence - Neural Networks, improving analysis and measures used in managing
the operational    sector,     and    to   propose astrategic       architecture    that aims    to
provide greater flexibility in decision-making and problem analysis / incident with
measuresof             character solver,        the            proposed         architecture goes
beyondstrategic levels, ensures the evaluation of the strategy beingtaken during the
administration, such points can be suggested as a case of failure and success in any
business planning.




  Keywords:              Business          Intelligence, Data             Mining, online analytical
processing(OLAP), Data Warehouse, data mart, operational data store (ODS), data
integration, dimensional       modeling,    extraction transformation         loading (ETL), data
cubes, Multidimensional OLAP (MOLAP),strategic goal, strategic objective, strategic
vision, learning algorithm, unsupervised learning, supervised learning, the sigmoid
function (activation logic),       neuron, hidden     layer,     parallel    processing,    neural
networks, artificial neural network (ANN), rate learning.
10


INTRODUÇÃO

  Telemarketing consiste em um instrumento de “inteligência e informação” voltado
para atender demandas, cada vez maiores, onde o telefone deixa de ser apenas um
meio simples e barato para efetivar as vendas e passa a ser manuseado como uma
ferramenta de marketing mix, com benefícios de televendas agregando a capaci-
dade de detectar necessidade, monitorar mercado, interagir com o cliente, realizar
pós venda, pesquisa, propaganda de uma determinada empresa (Mancini, 2006).

  Recentemente, uma pesquisa publicada na rede de relacionamento Facebook1,na
qual perguntava “Quando um operador de call center entra em contato, qual a sua
reação ?”, obteve a resposta de 46 usuários, mostrando-se que, ao serem
abordadas por um operador de Call Center, 43% não compram nada por telefone e
34% apesar de ouvirem a proposta da entidade, acaba não comprando, outros 21%
não são receptivos e afirmam que ao atender informam que não está disponível ou
ausentes. O publico pesquisado 55% eram homens e 44% mulheres, obtendo assim
um índice de 34% com atuação na área de tecnologia da informação, 23% na área
pedagógica, 23% não informam qual sua área e 20% atua em outras áreas. A
pesquisa apresenta apenas uma amostra para o desenvolvimento deste trabalho,
outro ponto levantado constatou que 68% do público pesquisado são graduados,
10% possui pós-graduação, 4,25% tem ou estuda Doutorado, 8,51% são públicos
com ensino médio completo e 8% não informa no perfil seu grau de instrução.


  A Figura 1 - Pesquisa de satisfação para Call Center, visão consumidor -
apresenta o gráfico com os demais índices obtidos nesta pesquisa, mostram que a
estratégia de telemarketing chegou a um ponto onde necessita de ações á serem
tomadas, para melhorar a quantidade de vendas e diferencial na hora de oferecer
um serviço. As empresas de Call Center precisam de potencial para ser bem
sucedidas no mercado tão competitivo, necessitam aprimorar suas técnicas de
vendas e atrair a atenção de clientes durante os contatos telefônicos, mas princi-
palmente, possuir a capacidade de planejamento estratégico.




  1
     https://www.facebook.com/questions/212753698759923/, acesso em set. 2011. Fonte: Sabrina
Mariana.
11


 25         Quando um operador de call center entra em contato. Qual a sua reação
                                             ?
 20                                                                         43%
                                34%
 15
                                                            21%
 10                                                                                19
                                      16
  5                                                          10
               2%
  0             1
       Geralmente Aceita a   Escuta a proposta, mas Não é receptivo, sempre Não compra nada por
            Proposta.             não compra.        informa que não está         telefone
                                                           disponível.


        Figura 1: Pesquisa de satisfação para Call Center, visão consumidor .
      Fonte: https://www.facebook.com/questions/212753698759923/ Autora: Sabrina Mariana.

      De acordo com Howard Dresner, vice-presidente da Gartner Group,
considerada a criadora do termo Business Intelligence (BI), “a maior ameaça das
empresas da atualidade é o desconhecimento... O Business Intelligence se
empenha em eliminar as dúvidas e a ignorância das empresas sobre suas
informações, aproveitando os enormes volumes de dados coletados pelas
empresas” (Gartner, 2004).


  Atualmente, sistemas informatizados de apoio à decisão são ferramentas valiosas
para empresas que necessitam de planejamento estratégico ágil, para obtenção de
resultados efetivos em curto, médio e longo prazo. O uso da tecnologia BI vem
crescendo na mesma proporção em que as empresas necessitam facilitar seus
processos de tomada de decisão como, por exemplo, análises e projeções. A
padronização e integração automáticas de informações provenientes de diferentes
sistemas, que se tornaram possíveis com o uso da tecnologia BI, possibilitam
confiabilidade e rapidez nos processos de análise de grandes volumes de dados
para extração de informações estratégicas para a tomada de decisão. A
disponibilidade destas informações estratégicas permite soluções lucrativas e
promissoras para as empresas, favorecendo os executivos do negócio.
12

  Objetivo

  Este trabalho tem por finalidade propor uma arquitetura para solucionar alguns
problemas no planejamento estratégico no ambiente de call Center, além de facilitar
as análises, propor decisões e acompanhar o desempenho das ações perante os
resultados, auxiliará a equipe de Planejamento nas estratégias que incluem medidas
de monitoração a todo o processo de venda ou prestação de serviço. A arquitetura
também pode inibir possíveis fraudes no setor operacional, além de dar ênfase nas
metas estabelecidas pelo cliente, gerando assim melhorias na qualidade do serviço
prestado, satisfação de clientes, lucro para os acionistas e, conseqüentemente,
melhoria no ambiente de trabalho. Para tal finalidade é proposto uma arquitetura de
sistemas para automatizar as medidas aplicáveis de acordo com as estratégias
previamente formuladas. Para a execução das propostas citadas serão empregados
neste trabalho: Conceitos de Gestão de Conhecimento (FALCÃO & BRESCIANI
FILHO Apud CARBONE Et Al., 2005), Planejamento Estratégico Nivem (2005),
Estrutura do Ambiente de Business Intelligence (Inmon 2005; Kimball 1997) e
Técnicas de Inteligência Artificial - focada para a gestão de negócios e, a exemplo
deste ultimo item, Redes Neurais Artificiais (Braga 2000).

  No desenvolvimento do trabalho será considerada uma empresa do segmento de
terceirização de serviços de Call Center para entidades como bancos e empresas de
telefonia móvel ou fixa. Por motivos de sigilo comercial, neste estudo de caso, esta
empresa será referenciada apenas como empresa X.

  Atualmente, a empresa X conta com um quadro de 5.000 colaboradores, sendo
que 90% deles são operadores de telemarketing, que atendem a um total de 25
campanhas do tipo ativo (oferecimento de produtos e serviços) ou receptivo (serviço
de informações e solução de problemas). A missão desta empresa é “ser a melhor
ponte entre o nosso cliente e seu mercado”. Seus clientes (contratantes) são entida-
des públicas e privadas em diversos segmentos da economia, o que exige estraté-
gias diferenciadas para cada tipo de entidade (muitas das quais são concorrentes
entre si). Na gestão estratégica da empresa X, a área de planejamento enfrenta
problemas como:
     Muitas ações a serem administradas, com apenas seis integrantes na equipe.
     Análises são parciais para relatório de desempenho de equipe ou para BI.
13

     O foco estratégico está voltado à campanha (ação de telemarketing) e não
      necessariamente às necessidades da contratante.
     A tecnologia BI é essencialmente baseada em consultas a planilhas e os
      conceitos são mal aplicados.
     Todas as campanhas trabalham com o mesmo plano de ação, porém as
      contratantes exigem tratamentos diferenciados em função dos problemas de
      desempenho identificados por elas próprias.
     A rotatividade da equipe é grande, sendo assim não é aplicada a gestão de
      conhecimento entre os integrantes.
     Os problemas de desempenho operacional não são previamente identificados,
      apenas são tratados depois que surgem.
     As medidas estratégicas estão voltadas para correção e jamais para preven-
      ção de algumas situações como roubo, plágio e coletas incompletas.

  . Será proposto um ambiente como base uma campanha de cartões de crédito
ativa, espera-se resolver ou diminuir a ocorrência destes problemas.

  Metodologia

  O estudo de caso é um tipo de pesquisa qualitativa amplamente desenvolvida na
área de Tecnologia da Informação. Segundo MARTINS (2002), o estudo de caso:

             “É uma categoria de pesquisa cujo objeto é uma unidade que se anali-
             sa profundamente. Pode ser caracterizado como um estudo de uma
             entidade bem definida, como um programa, uma instituição, um siste-
             ma educativo, uma pessoa ou uma unidade social. Visa conhecer o
             seu “como” e os seus “porquês”, evidenciando a sua unidade e
             identidade própria. É uma investigação que se assume como
             particularística, debruçando-se sobre uma situação específica, procu-
             rando descobrir o que há nela de mais essencial e característico.”.
  A pesquisa qualitativa tem quatro características básicas:
         Tem o ambiente natural como sua fonte direta de dados.
         Os dados coletados são predominantemente descritivos.
         A preocupação com o processo é muito maior do que com o produto.
         A análise dos dados tende a seguir um processo indutivo.

  Para este trabalho específico, tem-se:
14

      Método: Aplica-se ao método de pesquisa qualitativo cujo produto é uma
       arquitetura de sistema que poderá ser usada como uma nova ferramenta
       para a solução do problema mencionado. A arquitetura será documentada
       para implementação futura, podendo ser desenvolvida como continuidade
       deste trabalho.
      Tipo: O tipo de pesquisa é descritivo-explicativa, abordando conceitos de
       ambiente de Call Center, tecnologia BI e inteligência artificial, promovendo
       inovação nas ferramentas de apoio à tomada de decisões estratégicas.
      Delineamento: A pesquisa apresenta conceitua a integração de tecnologia
       Business Intelligence (BI), Data Warehouse (DW) e On Line Analytical
       Processing (OLAP) para gerenciar o planejamento das ações.
      Coleta de dados: A pesquisa é baseada em dados coletados de livros,
       artigos e teses. Dados relevantes da empresa X, da qual a autora deste
       trabalho é colaboradora, também foram levados em consideração.
      Análise de dados: A análise é feita para o caso específico da empresa X.


Capítulos

A seguir, apresenta-se um resumo do conteúdo de cada capítulo:

   1. AMBIENTE DE CALL CENTER. Apresenta as origens do ambiente de Call
       Center, bem como os conceitos envolvidos na comunicação neste ambien-
       te, a sua infraestrutura e os seus principais elementos.
   2. ESTUDO DE CASO. Aborda o ambiente da empresa e sua regra de
       negócio, além dos problemas.
   3. PLANEJAMENTO ESTRATÉGICO E GESTÃO DE CONHECIMENTO.
       Define os conceitos básicos de planejamento estratégico com foco em Call
       Center, conhecimento e gestão do conhecimento. Em seguida discute
       como aplicar estes conceitos no estudo de caso deste trabalho de pesquisa
   4. INTELIGÊNCIA EMPRESARIAL. Apresenta a estratégia empresarial com
       foco em empresas do ramo de Call Center.
   5. FERRAMENTAS DE MINERAÇÃO DE DADOS. Introduz os conceitos e
       técnicas relativos a redes neurais artificiais e árvores de decisão.
   6. ARQUITETURA PROPOSTA. Apresenta a arquitetura proposta como solu-
       ção para os problemas da empresa X, discute suas vantagens e desvan-
       tagens e indica formas de melhoria.
15


1 AMBIENTE DE CALL CENTER

  Neste capítulo, são apresentadas as origens do ambiente de Call Center, bem
como os conceitos envolvidos na comunicação neste ambiente, a sua infraestrutura
e os seus principais elementos.


1.1   As Origens

  Segundo (Mancini, 2006), em 1880, quatro anos após sua invenção, o telefone foi
usado pela primeira vez no contexto de telemarketing. Neste ano, um fabricante de
doces resolveu usar o telefone para oferecer seus produtos a clientes potenciais.
Para tanto, ele formou uma equipe com mais de cem pessoas que ficaram
responsáveis por cadastrar e contatar possíveis clientes para seus produtos. A partir
daí, o uso do aparelho de telefone no ambiente empresarial se expandiu e passou a
abranger não apenas vendas, mas também cobranças, entre outras finalidades. Em
1950, após a Segunda Guerra Mundial, iniciou-se o período da mídia. Veículos pas-
saram a exibir anúncios contendo números de telefone para solicitação de serviços e
produtos de empresas. Os donos destes veículos, além de ganhar brindes pelo
serviço prestado, ainda passavam a fazer parte do cadastro de mailing da empresa.

  Mancini (2009) relata a história da Ford que foi pioneira no investimento de
campanhas de marketing por telefone, capacitando 15 mil donas-de-casa que, de
suas próprias residências, efetuavam ligações para identificar o potencial de
compradores de automóveis. Estudos realizados nos Estados Unidos na década de
1970 comprovam que, nesta época, praticamente 50% dos americanos recebiam
ofertas de produtos e serviços por telefone. Na década de 1980, surge oficialmente o
termo “telemarketing”. No Brasil, o setor de telemarketing inicia-se com a chegada
das empresas multinacionais americanas, crescendo 22% ao ano, uma taxa de
crescimento muito acima da média de outros setores. Em 2000, este setor
empregava 300 mil pessoas em mais de 130 mil pontos de atendimento espalhados
por todo o território nacional.

  Atualmente o conceito de telemarketing evoluiu para o modelo de Call Center, que
integra o telefone ao computador. Hoje o Call Center tem uma missão ampla, abran-
gendo o atendimento às demandas do público alvo e a oferta benefícios adicionais,
impulsionando a venda de novos produtos, antecipando necessidades dos clientes e
16

mantendo a marca da empresa, produto ou serviço, sempre viiva na mente dos con-
sumidores. Um conceito derivado de Call Center, que vai ainda mais além, é o con-
ceito de Contact Center. Um Contact Center centraliza, independentemente do meio
utilizado, o gerenciamento das relações da empresa com a sociedade onde ela atua,
proporcionando sinergia total entre produção, serviços, marketing, administração,
logística e outros papéis assumidos pela companhia no desempenho de suas
funções (Mancini, 2006) .

  Há basicamente dois tipos de serviços oferecidos por um Call Center:

     Telemarketing ativo. Neste tipo de serviço, o operador de telemarketing entra
      em contato com (possíveis) clientes para, por exemplo, promover e vender
      produtos e serviços, realizar ações pós-vendas, realizar pesquisas de
      satisfação, responder a reclamações feitas ao serviço de atendimento ao
      consumidor (SAC), agendar compromissos (e.g., entrega e instalação),
      manutenção e atualização de cadastros, etc.

     Telemarketing Receptivo. Neste tipo de serviço, os (possíveis) clientes é que
      entram em contato com um operador de telemarketing para, por exemplo,
      solicitar informações sobre produtos e serviços, obter produtos ou contratar
      serviços, acompanhar entregas, fazer reclamações.

  Em ambos os tipos de serviço, o processo de comunicação verbal é fundamental.
Alguns elementos importantes neste processo são:

     Emissor é o elemento que formula a mensagem, mediante o uso da palavra
      oral ou escrita, gestos ou desenhos, entre outros meios de comunicação.
     Mensagem é o conteúdo que o emissor transmite para o receptor.
     Código é um conjunto de sinais estruturados, verbais ou não, usados para
      expressar a mensagem a ser transmitida.
     Canal é o meio pelo qual o código é transmitido do emissor ao receptor.
     Ruído é qualquer interferência no canal que prejudica a transmissão do código
      (e.g., uma gíria desconhecida pelo receptor).
     Receptor é elemento que decodifica a mensagem transmitida pelo emissor.

No telemarketing ativo, emissor é o operador, mensagem é a oferta de produtos e
serviços (por exemplo), canal é considerado o telefone e receptor é o cliente.
17

1.2   A Infraestrutura

  É impossível falar de Call Center sem citar a necessidade de tecnologia neste
ambiente. Neste setor, quanto mais uma empresa está equipada, melhores são os
resultados que ela obtém. Com relação à infraestrutura necessária para o funciona-
mento de um ambiente de Call Center, pode-se citar (Mancini, 2006):

     Recursos de alta disponibilidade (funcionando ininterruptamente).

     Servidores duplicados (como plano de contingência).

     Atualização em tempo real (registros de acompanhamento de clientes).

     Cabeamento estruturado (para comunicação eficiente de dados);

     Redes de flexíveis (múltiplos sistemas como voz, dados vídeos e multimídia).

     Energia ininterrupta (geradores e no-breaks).

     Climatização do ambiente (aparelhos de ar-condicionado);

     Conjunto de fones e controle de audição (head sets).

     Posição de atendimento (mobiliários ergonômicos ajustados automaticamente).

  Um dos fatores mais importantes na informatização do ambiente de Call Center é
a integração computador à telefonia. Esta integração possibilita, por exemplo,
(Mancini, 2006):

     Distribuição automática de chamadas.

     Apresentação de scripts, isto é, roteiros predefinidos que estabelecem como o
      operador deve abordar o cliente durante um contato telefônico.

     Sistema de acesso e busca de informações no banco de dados.

     Sistemas de gravação para monitoramento e autenticação de transações.

     Tarifação automática de chamadas.
18


2 ESTUDO DE CASO

  Neste capítulo será apresentado o estudo de caso, detalhando sua estrutura e
apontando os problemas identificados na empresa.


2.1                            Estrutura da Empresa

  A Empresa X, considerada como estudo de caso neste trabalho, atua no setor de
terceirização de campanhas de Call Center de diversas outras empresas públicas e
privadas, industriais e comerciais.


                                                                                                                      Cliente – Contratante
      Estrutura – Call Center – Visão Empresa Contratada




                                                             Empresa Contratada
                                                                                                                                      Gerente de
                                                                                            Gerente de                                Operações
                                                                                           Planejamento

                                                             Gerente de Recursos
                                                                  Humanos                                                           Coordenador de
                                                                                           Coordenador de                             Operações
                                                                                            Planejamento

                                                               Administrativo -
                                                                    RH                                           Supervisor            Supervisor           Supervisor
                                                                                            Analista de
                                                                                           Planejamento

                                                               Recrutamento e
                                                                   Seleção                                      Auditoria de        Operador de Call
                                                                                                                                                           Monitoração
                                                                                                                 Qualidade              Center



                                                                Multiplicadores

                                                                                                   Estrutura – Call Center Visão Campanha – Determinada Entidade


                                                           Área de Recursos Humanos




                                                                           Figura 2: Estrutura do Call Center da Empresa.

                                                                                  Fonte: Empresa X. Autora: Sabrina Mariana.

  Como mostra a Figura 2 – Estrutura do Call Center da Empresa, o ambiente de
Call Center tem os seguintes elementos:

                                                 Cliente–Contratante: domina as informações sobre o mercado, bem como
                                                  sobre o produto ou serviço a ser oferecido, necessárias para subsidiar e per-
                                                  mitir a capacitação adequada de operadores e supervisores.
19

   Gerente de Operações: principal elo de comunicação com o Cliente–
    Contratante (entidade representativa). Deve conhecer em profundidade todos
    os elementos do marketing mix (concorrência, prospect, clientes atuais, políti-
    cas econômicas, tendências tecnológicas, aspectos culturais), além dos
    aspectos de Call Center e da equipe cuja gestão é sua responsabilidade.



   Coordenador de Operações: responsável por orientar as atividades da área
    de Call Center. Analisa o trabalho realizado pela equipe e verifica o desem-
    penho das atividades. Compara os resultados alcançados com os padrões de
    atendimento preestabelecido. Realiza as correções necessárias e aperfeiçoa
    os métodos para cumprir as metas e manter qualidade.



   Supervisor: orienta a força das vendas para otimizar o desempenho, a disci-
    plina e o bem-estar da equipe. Precisa conhecer bem o produto para instruir a
    equipe envolvida e repassar informações atualizadas da empresa. Deve
    também elaborar escalas de trabalho e manter a equipe motivada, transmitin-
    do segurança, energia, domínio técnico, comunicação e cordialidade.



   Auditoria de Qualidade: opera em contato direto com o público. Deve garantir
    a efetividade do contato com o cliente, verificando se o cliente aceito o serviço
    ou produto oferecido durante o primeiro contato com o operador.



   Monitoração: monitora e mantém a qualidade de atendimento dos opera-
    dores, observando, gravando e gerenciando o sistema. Deve monitorar os
    resultados e apontar os erros e acertos da equipe.




   Gerente de Recursos Humanos: Responsável pela área de Administrativo de
    Recursos Humanos, Recrutamento e Seleção além dos Multiplicadores.
20

   Administrativo RH: Contempla as equipes de folha de pagamento, ponto,
    benefícios.



   Recrutamento e Seleção: Seleciona pessoas adequadas ao projeto, com
    facilidade para assimilar as informações sobre a mensagem a ser transmitida.



   Multiplicadores: cabe á área a motivação da equipe para uma melhor
    qualidade de trabalho, compõe entre treinamentos das ferramentas, produtos
    e serviços.



   Operador de Call Center: opera em contato direto com o público: recebe ou
    faz chamadas, fornece informações sobre produtos e serviços, realiza abor-
    dagem e argumentação. Deve manter saudável o relacionamento da empresa
    contratada com os (possíveis) clientes, fortalecer a marca, vender, pesquisar,
    informar ou reativar produtos e serviços, atuando positivamente como o canal
    de comunicação entre o mercado.



   Gerente de Planejamento: propõe um cronograma para campanhas /
    empresa, detalhando o tempo de execução para atingir a meta e cada etapa a
    ser executada como troca de mailing, relatórios gerenciais, as informações
    servirão tanto para orientar a equipe, quanto outras áreas da empresa.



   Coordenador de Planejamento: Responsável pelas ações nas operações
    realizadas pelos analistas de planejamento, além de administrar a equipe.



   Analista de Planejamento: define estratégias para manter ou ampliar com
    efetividade os serviços prestados aos clientes contatados. Desenvolve scripts
    a serem seguidos pelos operadores, administra a distribuição do mailing entre
    os operadores, de acordo com perfil operador.
21

2.2   Regra de Negócio

  Para compreensão do ambiente como um todo, o cliente contratante fornece o
mailing mensalmente com a lista de consumidores/clientes. Conforme o Apêndice A,
no ambiente operacional, o operador de Call Center entra em contato para fornecer
o cartão de crédito com base na listagem recebida, os produtos são pré-
determinados de acordo com a renda e limite disponível. Em média um supervisor
possui quarenta operadores de telemarketing para incentivar e orientar, durante um
contato todos os contatos é gravado. Quando é efetuada uma venda pelo operador,
antes de finalizar o contato, a ligação é transferida para área de auditoria para
efetuar a confirmação da compra.       Após todo esse processo a equipe de
Monitoração, escuta o contato e avalia a qualidade e clareza das informações
passadas ao consumidor. Toda e qualquer ligação para o consumidor deve definir
um status do telefone, por exemplo, “não atende - manhã”, “volta á ligar ás 20h”,
“Ocupado”, ”Cliente prefere outros cartões do concorrente” entre outros status,
mesmo que o consumidor tenha mais que um telefone, vai considerar o último status
gravado, ou seja, tabulado.

  A meta da campanha é definida pela entidade, tem como base o total de nomes
enviados no mailing, além do total de operadores focados na campanha, a meta é
dividida entre equipes envolvidas e novamente dividida por quantidade de
operadores pagos pela entidade, em média os operadores devem entregar 120
cartões vendidos, para uma campanha de quarenta pessoas cada equipe deve
entregar 4.800 cartões, considerando dois turnos de trabalho, pode-se ter como
base uma meta de 9.600 cartões que devem ser vendidos no mês, seguindo os
critérios que as vendas não devem ser canceladas após entrega do cartão ao
consumidor. Um operador de Call Center trabalha por seis dias por semana, com
base na meta deve vender cinco cartões por dia. Durante o mês a equipe de
planejamento acompanha o andamento da campanha como um todo, os
supervisores são responsáveis para acompanhar a meta de cada operador e auxiliar
no que for necessário para atingir a qualidade. Quando uma campanha ou equipe
está com problemas para atingir a meta, exige que as áreas de planejamento junto
com equipe gerencial das operações criem uma ação motivacional, onde os
operadores de telemarketing obtenham mais resultados durante seu contato, ou
seja, realizam mais vendas. A entidade paga um valor X por cada ponto de
22

atendimento contrato, se a meta for atingida a empresa de Call Center recebe um
valor á mais, caso contrário apenas receberá os honorários por serviço prestado.

  Atualmente cada vez mais há dificuldade para atingir uma meta, para todo o
ambiente apresentado, os problemas enfrentados são:

         Rotatividade na equipe;
         Equipe de planejamento tem muitas campanhas para serem administradas,
          onde nem todas pode gerenciar a estratégia concedida pela gerencia.
         Contatos monótonos cansam cada vez mais os consumidores, na hora de
          oferecer um produto ou serviço;
         O BI aplicado na empresa trata-se de um Data Mining geral, onde cada
          cubo tem em média de quatorze dimensões.
         As análises efetuadas são com base em D-1.
         O conceito de BI não está aplicado adequadamente, pois utilizam a
          ferramenta como relatório e não análise histórica para planejamento.




2.3   Características

  Atualmente a empresa possui o Data Mining, extraídos por um arquivo em Excel
onde somente é utilizado como relatórios diários e não para análise da campanha.
Muitos problemas operacionais são identificados, após o não cumprimento da meta,
mas poderiam ser resolvidos, caso houvesse um acompanhamento mais eficaz
quanto às informações fornecidas pelo sistema quanto às ações de planejamento.

  Toda a ação realizada no Ambiente Operacional é gravada em um Banco de
Dados Transacional, analisando o modelo de dados do sistema legado existente no
estudo de caso referenciado, os relatórios apenas listam as informações de vendas
por operadores e qual o tipo de produto comprado. A necessidade gerencial precisa
ter uma visão voltada para o futuro, com base fatos históricos, mas não é viável a
geração de tantos relatórios diariamente onde a informação não será essencial.
23

2.4   Arquitetura de Processamento


2.4.1 Ambiente Atual

  A estrutura do ambiente atual está apresentada na Figura 3, apresenta somente
um servidor para o ambiente de produção, não contendo nenhum de contingência,
pois há um servidor somente para extração de relatório pôr são apenas replicadas
as tabelas essenciais para o relatório. Para o servidor de Data Warehouse suporta
todo o processamento do BI, executado alimentação das tabelas somente durante a
madrugada e o processamento do cubo após tal processamento, com este ambiente
apenas permite análise de dados, baseando-se em D-1, ou seja, somente com data
e status do dia anterior.




                                                                   SQL Server
                            Replicação Parcial                  BD Transacional
                                                              Replicação - Relatório

                                          Processamento de informação
         SQL Server
       BD Transacional
          Produção


                                                                 SQL Server
                                                               Data Warehouse




                      Usuário
                                        Consulta Excel




                            Figura 3: Arquitetura Ambiente Atual.
           Fonte: Estrutura dos servidores na empresa X. Autora: Sabrina Mariana.
24

   SQL Server BD Transacional Produção: responsável por armazenar os
    dados durante utilização do sistema utilizando pelo ambiente operacional.
    Os backups são realizados full aos Domingos e diferenciais durante a
    semana. Não há plano de contingência.


   SQL Server BD Transacional Replicação - Relatório: responsável por
    armazenar somente as tabelas principais e tabelas de relatório, tem como
    base uma replicação realizada a cada 5min. Não há plano de contingência.
    È armazenado as tabelas fatos utilizada para o DW.


   SQL Server Data Warehouse: armazena os cubos OLAP, responsável
    pelo processamento. O usuário acessa para consulta via planilha de Excel
    com conexão na fonte de dados.
25


3 PLANEJAMENTO ESTRATÉGICO E GESTÃO DE CONHECIMENTO

  Neste capítulo é abordada a necessidade de excelência operacional que leva à
necessidade de planejamento estratégico. Sem objetivos e metas, não é possível
guiar as ações da empresa, no sentido de obter os resultados esperados; não há
como identificar oportunidades, nem avaliar ações alternativas para melhor
desempenho na obtenção de resultados. Muitas definições podem ser dadas para o
termo “planejamento estratégico”; porém, basicamente, todas elas relacionam este
termo com a resposta da pergunta “Onde desejamos estar no futuro?”.


3.1       Planejamento

  Tipicamente, o planejamento estratégico inicia após a definição da missão e das
metas da empresa. A partir daí, planos estratégicos são traçados para as unidades
de negócios da empresa, ou unidade funcionais. Independentemente do nível no
qual o planejamento estratégico é elaborado – nível da empresa como um todo,
nível das unidades do negócio, ou no nível das unidades funcionais – este deve
considerar as seguintes etapas (Wade & Recardo, 2001):

          Análise da Situação Atual. Consiste em encontrar uma resposta para a
           pergunta “Onde Estamos?”. A análise da situação atual estabelece uma linha
           base para o planejamento estratégico, identificando as principais tendências
           para o desempenho operacional e financeiro da empresa.


          Determinação do Horizonte de Planejamento. Consiste em definir o perío-
           do para o qual o planejamento está sendo feito como, por exemplo, para o
           período de um ano.


          Varredura de Ambiente. Consistem na análise e julgamento de forças,
           fraquezas, oportunidades e ameaças (SWOT) da empresa, levando em conta
           o mercado, a concorrência, o governo, os índices demográficos, os acionistas
           e os principais fatores de satisfação do cliente.


          Identificação de Fatores Críticos do Sucesso (FCS). Consiste na identifica-
           ção de fatores que devem ser priorizados para que a empresa se sobressaia
           entre suas concorrentes e tenha espaço e sucesso no seu mercado.
26

      Análise de Compleição de Lacunas. Consiste na identificação e priorização
       de fraquezas e forças no processo da empresa como um todo.


      Visão Estratégica. Consiste na determinação da imagem que a empresa
       pretende ter no futuro.


      Estratégia de Negócio. Consiste no desenvolvimento de uma estratégia ba-
       seada em dados e informações obtidos nas etapas anteriores.


      Identificar Objetivos e Metas Estratégicas. Descrições das direções para
       uma empresa, ou seja, a definição de um objetivo diferencial quanto ao
       mercado, na qual exige que uma meta seja bem definida.


      Definir a Meta Estratégica. Qualificar os objetivos definidos com base em
       cronograma. As metas e alvos estratégicos guiam para execução operacional
       e permite que o progresso seja rastreado em relação aos objetivos gerais.


3.1.1 Lacuna Estratégica

  De acordo com a revista FORTUNE de 1999, 70% das falhas de CEOs são
resultantes de execução ruim, ao invés de estratégicas ruins (Craran & Colvin,
1999). Nivem (2005) apontou quatro fontes de lacuna entre a estratégia e execução:

      Visão – uma citação do filme Rebeldia Indomável, “O que temos aqui é uma
       falha de comunicação”, aplica-se á visão estratégica.
      Pessoas – planos de incentivos são ligadas á resultado financeiros á curto
       prazo, não ao plano estratégico ou iniciativas estratégicas articuladas no plano
       operacional (Plano de projetos designado para assegurar que a estratégica da
       empresa seja realizada).
      Gerenciamento – pode gastar tempo nos problemas, ao invés de concentrar
       nos elementos da estratégia.
      Recursos – constantemente é questionada a necessidade para o orçamento e
       todo o processo em si.
27

3.1.2 Medida de Desempenho

   A estratégia tratada na pesquisa será aplicada á sistemas de medida de
desempenho, de acordo com Simons (2002), tratam como medidas de comparação,
na qual auxiliam os gerentes á identificar as implementações á estratégica de
negócio, com análise dos resultados reais e tem como base as metas e objetivos. O
projeto da pesquisa permitirá a medida de desempenho englobando os métodos
sistemáticos de união de metas de negócio com relatórios de retorno periódicos –
que indicam fatores de atenção ou sucesso.


3.1.3 Estratégia no Call Center

  Para melhores estratégias em Call Center, tem por base os elementos básicos:

     Plano Estratégico, com objetivos e metas deve ser definido;
     Cadastro do cliente confiável e atualizado;
     Clara definição do produto, serviço ou mensagem á oferecer;
     Capacitação de todos os setores envolvidos para que a empresa torna-se
      colaborativa;
     Call Center bem equipado, treinado e motivado.

  Para o sucesso da operação com base na estratégia, deve identificar se a
campanha trata-se de telemarketing ativo ou receptivo, definir o produto ou serviço á
ser vendido, possuir o acompanhamento após recebimento do produto ou realização
do serviço, considerada como pós-venda. Atualizar o cadastro do consumidor e ter
acompanhamento de contatos (follow-up). A análise de custo e benefícios em
comparação ao desempenho com outras campanhas pode auxiliar na sintonia do
trabalho com equipe e atingir o objetivo da campanha, ou seja, atingir a meta
proposta pelo cliente.

  Para empresa de terceirização do serviço de Call Center, os recursos alocados e
qualificação dos membros faz a diferença nas metas estabelecidas pela entidade, os
objetivos sempre são quantitativos com metas de curto, médio e longo prazo, sendo
assim é possível avaliar o retorno, desafio e efetuar correções estratégicas.
28

  Operacionalmente deve conter um estudo do perfil do público alvo da entidade,
seleção de mailing, elaboração de script, capacitação de profissionais e homologa-
ções nos sistemas a fim de avaliar a necessidade do processo da campanha ativa
ou receptiva. Durante o planejamento, devem ser respondidas as perguntas básicas
quanto ao produto ou serviço: O quê? Como? Quanto? Quando? Quem?


3.2    Gestão de Conhecimento

  Algumas definições de conhecimento são:




                “Ato ou efeito de conhecer, realizado por meio da razão e/ou da
                experiência.”
                                                                                                      2
                                                                                 Dicionário Houaiss




                       “Conhecimento consiste em uma crença verdadeira e justificada.”
                                                                                                      3
                                                                      Platão – 428 A.C. a 347 A.C.




  Em qualquer segmento, o conhecimento é um elemento chave. Na área operacio-
nal de um Call Center, quem tem maior conhecimento sobre o produto ou serviço
oferecido, também tem maior facilidade de administrar as estratégias necessárias
em uma campanha, como identificar o perfil da equipe de operador e cruzar com o
perfil dos clientes potenciais a serem contatados.

  Uma definição de gestão de conhecimento é:




                “Processo pelo qual uma organização consciente e sistematicamente
                coleta, organiza, compartilha e analisa seu acervo de conhecimento
                para atingir seus objetivos”.
                                          (Falcão & Bresciani Filho apud Carbone et al., 2005, p. 82)




  2
      http://houaiss.uol.com.br, acesso em ago. 2011.
  3
      http://www.santanna.g12.br/professores/marcelo_etica/tipos_de-conhecimento_humano.pdf
29

3.2.1 Aplicabilidade

  Para a gestão do conhecimento, tem como objetivo:

     Tornar acessíveis grandes quantidades de informação organizacional;

     Permitir a identificação e mapeamento dos ativos de conhecimento e

      informações;

     Apoiar a geração de novos conhecimentos, propiciando o estabelecimento de

      vantagens competitivas;

     Organiza e acrescenta lógica aos dados de forma a torná-los compreensíveis;

     Aumentar a competitividade da organização através da valorização de seus

      bens intangíveis.



  Vantagem competitiva em relação à concorrência, quanto á gestão do
conhecimento em Call Center:

     Redução dos custos e tempo de produção e desenvolvimento de produtos;

     Rápida comercialização de novos produtos;

     Processos internos e maior fluidez nas operações;

     Tomada de decisões mais eficientes e melhores resultados;

     Coordenação de esforços entre unidades de negócios;

     Prestação de serviços (agilidade), da qualidade dos produtos e da qualidade

      do serviço cliente.
30


4 INTELIGÊNCIA EMPRESARIAL

  O capitulo terá como objetivo abranger tecnologias que auxiliam para tomadas de
decisões corporativas, para os executivos mais experientes, o gerenciamento da
tomada de decisões pode ser extremamente facilitado com uso de ferramentas
informatizadas. Hoje as empresas estão informatizadas ao ponto de exigir sistemas
para análise de desempenho, que consistem em sistemas distribuídos, com acesso
a extranet e à internet, que podem ser acessados de qualquer lugar. A integração
dos sistemas auxilia cada vez mais a comparação e análise de dimensões distintas
no mundo do negócio.


4.1   CRM

  CRM (Customer Relationship Management – Gestão de Relacionamento com o
Cliente) está ligado a hábitos de compras, ao individuo, ou público alvo de alguma
entidade. Sistemas que possibilitam que as empresas projetem o futuro potencial de
cada usuário (como futuros produtos que podem ser adquiridos da organização)
permitem atender a cada cliente de uma forma personalizada e até mesmo a perso-
nalidade que compõe a carteira de clientes.

  São pontos principais no CRM: identificar o cliente, diferenciar, interagir e perso-
nalizar o contato, conhecer suas preferências e dados pessoais. Todas as informa-
ções coletadas durante um contato podem auxiliar nas análises do cliente, como:
Segmentação, análise da campanha, vendas, fidelidade, lucratividade, desempenho
nos negócios, atendimento ao cliente.

  Para conhecer os clientes com base no histórico de compra ou opções no
mercado, aplica-se o conceito de Data Warehouse, conforme Figura 4.

       Dados do CRM                                        Data Warehouse –
       Operacional                            DW     Integração e análise de dados


                                 CRM




                                 Figura 4: CRM X DW
                              Fonte: Machado (2008 p 18)
31

4.2       Data Warehouse

      Data Warehouse (DW) é uma coleção de dados projetada para oferecer suporte
à tomada de decisões, contém variedade de dados que representam as condições
da empresa em um determinado ponto no tempo.

  A estrutura técnica de um DW é um banco de dados (armazém de dados) que
contém as informações do sistema, incluindo dados históricos, aparentemente on-
line, porém é montada e organizada em uma forma que oferece rapidez e eficiência
nas consultas, análise e suporte à decisões. De acordo com BILL IMON (1987) e
RALPH KIMBALL (1998):

                 O Data Warehouse é parte de um sistema completo de Business
                 Intelligence. Uma empresa possui um Data Warehouse, de onde os
                 Data Marts extraem sua informação. No Data Warehouse, as
                 informações são armazenadas em terceira forma normal. (Inmon,1987)

                 O Data Warehouse é o conglomerado de todos os Data Marts da
                 empresa. A informação sempre é armazenada em modelo dimensional.
                 (Kimball,1998)


4.2.1 Características

           O DW integra e consolida as informações de fontes internas e externa, suma-
      rizando, filtrando e limpando esses dados, preparando para análise e suporte à
      decisão. São características do DW:

          Extração de dados de fontes heterogêneas;
          Transformação e integração dos dados antes de sua carga final;
          Requer recursos de hardware e suporte;
          Diversos níveis para visualização;
          Utilização da ferramenta voltada para os diferentes níveis de apresentação;
          Dados somente são inseridos, não existindo atualização ou alteração.

  Para o processamento que alimenta os dados no DW, a integração dos dados é
fundamental. Por exemplo, no sistema de cadastro de clientes de uma determinada
entidade, pode ser apresentado como o tipo de sexo: 1 – Feminino / 2- Masculino,
no sistema CRM da entidade o tipo de sexo é representado: “f” – Feminino / “m”-
Masculino. Na mineração dos dados, estes campos devem ser unificados na sua
representação (Figura 5). Essa informação pode contribuir para análise e tomada de
32

decisão do tipo: funcionárias são mais efetivas em vendas com clientes do sexo
masculino, então é melhor destinar somente contatos de clientes do sexo masculino
para as funcionárias.

  O sistema transacional coorporativo tem como foco o projeto de banco de dados e
o projeto dos processos transacionais e suas atividades e controles operacionais.
Por outro lado, o DW tem como foco a modelagem dos dados e o projeto de banco
de dados.




                                    1 – Feminino / 2- Masculino


                      BD
            Cadastro de Funcionários


                                            Mineração de Dados

                                                 Extração               DW
                                                  Filtro



                                                                     “F” – Feminino
                      BD
         Cadastro de Clientes ( Mailing )                            “M”- Masculino


                                   “f” – Feminino / “m”- Masculino




                               Figura 5: Estrutura – Integração
                             Fonte: Machado (2008 p 31) Adaptado.

  As principais justificativas para implantação de DW numa empresa são:

      Diversas plataformas de hardware e software;
      Sistemas transacionais corporativos sofrem diversas alterações;
      Risco / Dificuldade de restore de dados de uma empresa com dados que
       antecedem há um ano;
      Diversos sistemas em “pacotes” de fornecedores diferentes;
      A integração de dados existentes em diferentes sistemas;
33

      Falta de documentação e segurança nas tratativas de armazenamento dos
       dados;
      As aplicações de EIS e DSS há dificuldade quanto à dependência de multi-
       plataformas nos sistemas coorporativos;
      A empresa pode montar o DW tendo uma base global ou local;
      Pode implicar na utilização de arquiteturas especificas para a construção de
       um DW, as quais têm evoluído desde o inicio da plataforma.


4.2.2 Arquitetura

  A arquitetura DW engloba estrutura de dados, mecanismo de comunicação,
processamento e apresentação da informação para o usuário final.




                               Figura 6: Estrutura – DW
                Fonte: http://www.fulcrumlogic.com/data_warehousing.shtml

  A estrutura – DW, apresentada na Figura 6, pertencem ao conjunto de
ferramentas que envolvem desde a carga até o processamento de consultas, como
repositório de dados, como Data Warehouse e Data Mart, são divididas em dois
grupos de ferramentas:
34

     Relacionadas à carga inicial e ás atualizações do DW, efetua a extração dos
      dados de diversos sistemas operativos e fontes externas, filtrando, limpando e
      tratando e integração dos dados;
     Consultas realizadas pelo usuário final, para elaboração de relatórios, pes-
      quisas, análise de desempenho e mineração dos dados – Data Mining.

  Arquitetura Global em um DW constitui um repositório de dados com grande grau
de acessibilidade, com base na necessidade da empresa como um todo. Habilita
que os usuários tenham a visão corporativa de dados, normalmente são requisitos
de negócio, entretanto esse tipo de ambiente consome tempo e administração e com
custo mais alto.

  Para a mineração de dados é utilizado o Operational Data Store (ODS)4 que
consiste numa base de dados que compartilha dados de ambiente de produção. Na
arquitetura proposta neste trabalho, o ODS será usado para alimentar o DW.


4.2.3 Variação Tempo

  Os dados tratados no DW são precisos quanto ao tempo, representam resultados
operacionais em determinado momento de tempo, na qual foram capturados –
dados do DW são classificados como snapshot, ou seja, um conjunto estático de
registros de uma ou mais tabelas, capturados em um determinado momento. O dado
de um sistema transacional reflete o valor corrente, a exatidão é válida, mas pode
ser alterado, logo atualizado. Na aplicação DW a dimensão "Data" é extremamente
importante e de grande valia para a realização de análises. Nesta dimensão pode-se
consultar os dados armazenados por um período de até 10 anos, com seus
respectivos históricos previamente datados e detalhados.


4.2.4 Modelagem Multidimensional

  Uma técnica de concepção e visualização de um modelo de dados de um
conjunto de medidas que apresentam aspectos comuns de negócios sumariza a
estrutura   de     dados    para   serem     visualizados    nas    análises.    O   modelo
multidimensional que será utilizado na aplicação possui três elementos básicos.
  4
            http://www.factdata.com.br/index.php?option=com_content&task=view&id=38&Itemid=27.
Acessado Setembro – 2011.
35

     Fatos: uma coleção de itens de dados, composta de medidas e conceitos.
      Cada fato representa um item, uma transação ou um evento de negócio, usa-
      do para analisar o processo de negocio de uma empresa. Como característica
      um fato é representado por valores numéricos e implementado em tabelas
      denominadas tabelas fato (fact table).
     Dimensões: São elementos que participam de uma Tabela Fato permitindo ao
      usuário a visualização de filtros, tais como: Por Mês, Por Produto, Por Região,
      etc. Nestas dimensões, em um cubo BI de venda de produtos, pode-se
      consultar: Data da venda/contato, Localização de cliente, Vendedores e
      Cenário (realizados / projetados).
     Membros das Dimensões: trata-se da hierarquia de uma dimensão, uma
      classificação dentro de uma Dimensão. Por exemplo, na dimensão Data tem a
      hierarquia apresentado na Figura 7.



                                                 Ano



                                               Trimestre



                                                 Mês



                                               Semana



                                                 Dia



                          Figura 7: Hierarquia de Dimensões
                         Fonte: Machado (2008 p 117) Adaptado.




     Medidas (Variáveis): São atributos numéricos que representam um fato, uma
      medida é determinada pela combinação das dimensões que participam de um
      fato, e estão localizadas como atributos de um fato.

  Segundo Kimball (1997), desenvolver um DW é uma questão de casar as neces-
sidades dos seus usuários com a realidade dos dados disponíveis. Aponta um
conjunto de pontos fundamentais no projeto de uma estrutura de DW, chamado de
ponto de decisão, constituem em definições que correspondem a etapa do projeto:
36

     Os processos, por conseqüência, a identidade das tabelas fatos;
     A granularidade de cada tabela de fatos;
     As dimensões de cada tabela de fatos;
     Os fatos, incluídos fatos pré-calculados;
     Os atributos das dimensões;
     Como acompanhar mudanças graduais em dimensões;
     As agregações, dimensões heterogenias, mini dimensões e outras decisões
      do projeto físico;
     Duração histórica do bando de dados do DW;
     A frequência com que se dá a extração e a carga para o DW.

  Kimball (1997) recomenda que essas definições se façam de ordem citadas. Essa
metodologia segue a linha de top down, pois começa identificando os grandes pro-
cessos da empresa, mapeando esses processos de negócio. O modelo
multidimensional é facilmente representado como um cubo. A Figura 8 apresenta um
fato vendas por meio de um cubo.




         Figura 8: Representação de um fato de vendas por meio de um cubo.

                                Fonte: MACHADO (2008 p 82).
37

  Medida do volume de vendas é determinada pelas dimensões: localização,
produto e tempo. A dimensão localização e produto possuem dois níveis de
hierarquia. Cada sub-cubo possui o valor da medida d quantidade de venda.

  A denominação CUBO trata-se apenas da aproximação da forma como os dados
estão organizados, mas não representa a expressão de uma realidade. O processo
de analise para saber as vendas totais classificadas por região de venda pode ser
visualizado da seguinte forma.

                      Região               Venda
                      Sul                  $ 1.500,00
                      Sudeste              $ 5.000,00
                      Nordeste             $ 2.350,00
                      Norte                $ 1.890,00
                      Centro-0este         $ 1.732
                      Total de Vendas      $ 11.472,00

            Tabela 1: Consulta Cubos BI por dimensão vendas por Região.
                                 Fonte: Machado (2008 p 83)

  Tal analise pode ser expandido, utilizando a hierarquia da dimensão data, sendo
assim possibilita a consulta conforme Tabela 2.

                         Região      Trimestre    Venda
                         Sul
                                     1            $ 250,00
                                     2            $ 700,00
                                     3            $ 250,00
                                     4            $ 300

     Tabela 2: Consulta Cubos BI por dimensão vendas por Região por trimestre.
                       Fonte: Machado (2008) Pag. 84 - Adaptada.
38

4.2.5 Estrutura Multidimensional

  Existem diversos modelos de dados multidimensionais, para aplicação do trabalho
será apenas detalhado o modelo que será aplicado na arquitetura OLAP.

  Modelo Star ou Estrela: Trata-se de uma estrutura básica de um modelo de
dados Multidimensional, sua composição possui uma grande entidade central
denominada fato (fact table) e um conjunto de entidades menores denominadas
dimensões (dimension table), organizadas visualmente ao redor dessa entidade
central, formando uma estrela conforme Figura 9, já representando o ambiente da
aplicação.


                                               Dimensão de Tempo




                   Dimensão Cliente                                         Dimensão Região



                                                Fatos de Vendas




                           Dimensão Vendedor
                                                                   Dimensão Produto




                               Figura 9: Modelo Star – Estrela.

                            Fonte: Machado (2008 p 93) Adaptado.




  Na Figura 9, o centro da estrela é o fato vendas, e os seus redores estão as
dimensões: vendedor, cliente, produto, região e tempo. Os relacionamentos entre as
entidades fato e as dimensões são simples ligações entre as duas entidades em um
relacionamento de uma para muitos no sentido da dimensão para o fato.
39

4.2.6 Storage Modes

  As agregações são valores de medidas somando com diversos cruzamentos
possíveis de dimensões de um cubo, as informações dos cruzamentos ficam
armazenadas não havendo necessidade de recalcular o cruzamento dos dados,
possibilitando uma análise e pesquisa rápida. Quando é criado um cubo deve ser
informada a forma que será armazenada. Na ferramenta de Analysis Services,
plataforma Windows, tem opção de MOLAP, ROLAP e HOLAP como forma de
armazenamento, o armazenamento utilizado na aplicação proposta no trabalho será
a MOLAP, uma breve classificação de ROLAP e HOLAP está disponível no próxima
seção 4.3.7.

      MOLAP: Toda a estrutura é armazenada em um modelo multidimensional,
onde após o processamento do cubo, o Analysis Services não faz mais uso do
modelo relacional, e sim multidimensional. Considerado mais comum para soluções
OLAP que apresenta melhor desempenho, a única desvantagem é o processamento
constante do cubo – quando o DW é atualizado, para que os dados sejam
visualizados é necessário processar o cubo, neste processo é agregado aos novos
dados.


4.2.7 Ferramentas OLAP

  As ferramentas OLAP, permitem que o usuário analise a justificativa dos resul-
tados obtidos, existem diversas ferramentas disponíveis, conforme conceituadas na
Tabela 3.

                 Classificação
Ferramenta                             Armazenamento acessível – Storage Mode
                     OLAP
 ROLAP         Relacional            Relacionais.
                                     Multidimensionais – por meio de cubos e
 MOLAP         Multidimensional
                                     hipercubos.
 HOLAP         Híbrida               Relacionais e Multidimensionais.
 DOLAP         Desktop               Emprega aos BD individuais e análises de DM.
                Tabela 3: Armazenamentos Acessíveis por Ferramenta
                                  Fonte: Machado (2008).
40

4.2.8 Data Marts

  O DW une todos os bancos envolvidos de uma empresa, o Data Mart
normalmente é menor, trata assunto ou departamentos específicos, pode ser
considerado um subconjunto de um DW, podendo ser:

         Dependente – suportam o conceito de um único modelo de dados na empresa,
          mas o DW deve ser estruturado antes, garantindo que o usuário visualize a
          versão de dados apresentada pelos outros usuários do DW.
         Independente – um Warehouse pequeno, com finalidade para apenas uma
          unidade estratégia de negócio (UEN) ou um departamento.

  As vantagens de usar modelos de dados consistentes e apresentam dados de
qualidade.


4.2.9 Arquitetura

          A arquitetura de Data Mart pode ser:

          Independente: Controladas por um grupo de usuários, atende somente as
           necessidades específicas da campanha / entidade em uma empresa de Call
           Center, sem foco corporativo. Esta arquitetura não permite a conectividade
           de com outros Data Mart aplicadas para outras entidades, até concorrentes.
           Não permite uma visão global, ou seja, analise de toda a empresa prestadora
           de serviços.


          Integrados: São Data Mart integrados e conectados com visão toda da
           empresa, similar a arquitetura global, os usuários podem acessar as
           informações de outras campanhas / entidades.

  Com base no estudo de caso já mencionado na introdução deste trabalho, para
garantir segurança de dados, sigilo na estratégia de cada cliente/entidade será
utilizado a arquitetura de Data Mart independente, ou seja, para cada campanha
será criado um repositório de dados – DW, assim extraído para o conceito de Data
Mart.
41

4.2.10 Data Mining

  Data Mining consiste num conjunto de técnicas para análise de informação,
procura padrões ocultos em coleção dos dados que podem ser utilizados em análise
históricos com enfoque no futuro. Sua finalidade é facilitar a análise em grandes
dimensões no armazém de dados, identificando significativas correlações, padrões e
tendências.


4.2.11 Histórico e Definição – Business Intelligence

  De acordo com a definição do livro Business Intelligence – TURBAN, CsShardam
Aronzon, King – Business Intelligence (BI) é um termo considerado “guarda-chuva”,
foi batizado o termo por volta de 1990, pela Garner Group - empresa de consultoria
fundada em fundado em 1979 por Gideon Gartner, mas aplicabilidade teve inicio
muito antes, nos sistemas de geração de relatório (SIG) por volta de 1970, neste
período os relatórios eram estáticos, bidimensionais e não permitia recurso de
análise. No início de 1980, surgiu o conceito de sistemas de informações executivas
(EIS), expandiu o suporte computadorizado aos gerentes e executivos de nível
superior, os recursos foram os sistemas de relatórios dinâmicos multidimensionais ,
prognósticos e previsões, análise de tendências , detalhamento, acesso a status e
fatores críticos de sucesso, até no meio da década de 1990 os recursos apareceram
em dezenas de produtos comerciais, após esses recursos e novas funcionalidades
deram origem ao conceito de BI. Atualmente reconhece que as informações na qual
os executivos necessitam podem ser fornecidas pela arquitetura BI. Em 2005,
aprimorou os recursos do BI interagindo com o conceito dá inteligência artificial. A
grande vantagem do BI é fornecer as informações que uma empresa precisa quando
necessário, podendo ser em tempo real para análise de desempenho corporativo.
(THOMPSON 2004) Apontou que as áreas mais comuns de aplicação BI são
relatórios gerais, análise de vendas e marketing, planejamento e previsão,
consolidação    financeira,   relatórios   regulamentares,   orçamento   e   análise
rentabilidade. THOMPSON também menciona que os maiores benefícios do BI são:

     Geração de relatório mais rápida e precisa;
     Melhor tomada de decisões;
     Melhor serviço ao cliente;
     Maior receita.
42

  O processo de criação de inteligência inicia na identificação e priorização de
projetos específicos de BI nas organizações. O processo cíclico com uma seria de
etapas inter-relacionadas, a principal etapa é a análise onde são convertidos os
dados em informações, na qual dará suporte na decisão. Com o DW é definido a
criação da inteligência, começa pela identificação e prioridades definidas no BI, onde
cada projeto pode ser examinado os custos em relação ás fases em geral, permite a
estimativa de envolver análises do usuário sobre o impacto das decisões,
contabilizando os benefícios e fluxo no caixa.




                 Figura 10: Processo de criação e uso da inteligência.
                                Fonte: krizan (1999, p. 8)



      Com processo de criação e uso de inteligência, o banco de dados
  considerado consolidado para análises multidimensionais pode ser chamado por
  Cubos BI, facilitam o ambiente corporativo criando um clico de geração de
  inteligência focado ao mercado, estratégia e metas á serem definidas.
43

4.2.12 Comunidade de Usuários de BI

   A comunidade de usuários de BI é grande e diversificada, o sucesso de análises
depende em parte quais as pessoas na organização fariam uso. A Tabela 4
representa diferentes usuários que utilizam a ferramenta de acordo com o estudo de
caso.



                                                                              Clientes De          Extranet:
  Tipos De                           Usuários                    Gerentes
                  Equipe De TI                     Executivos                 Informação           Parceiros,
  Usuário                           Avançados                   Funcionais
                                                                             Esporádicas     Consumidores
 Número de                                                      Dezenas e    Centenas e     Centenas e
                Poucos             Dezenas         Dezenas
  usuários                                                      centenas     milhares       milhares
                Desenvolvedor
                                   Consulta
                Administrador,
                                   Ad hoc,         Dashboard    Relatórios
                Metadados, Dados
Ferramentas                        Relatórios de   Indicador,   Planilha     Relatórios
                de Segurança,                                                               Relatórios
e Funções de                       OLAP, Data      Relatórios   Visão de     Planilha
                gerenciamento,                                                              Acompanhamento.
     BI                            Mining,         de COM e     OLAP, BAM,   Consultas.
                Aplicações e
                                   Análise         PM.          COM.
                Integração.
                                   Avançada.

   Valor
                Baixo              Alto            Muito Alto   Médio        Baixo          Alto
Estratégico


              Tabela 4: Correspondência entre tipos de usuários e funcionalidades.
   Fontes: Compilado de Gartner Inc. (2004) ; Imhoff e Petti (2004).
44


5 INTELIGÊNCIA APLICADA AO NEGÓCIO

  Neste capitulo será apresentado os conceitos de redes neurais, tais como seu
processamento e a forma que são tratados os dados.


5.1   Redes Neurais Artificiais

  O final da década de 1980 marcou o ressurgimento da área de Redes Neurais
Artificiais (RNAs), conhecida como conexionismo ou sistemas de processamento
paralelo e distribuído, que constitui em uma alternativa à computação algorítmica
convencional (Braga, 2000).

  Redes neurais representam uma metáfora do cérebro para processamento da
informação, são biologicamente inspirados e não são uma réplica exata de como o
cérebro realmente funciona. O cérebro humano tem em torno de 10 bilhões
neurônios, as funções e movimentos do organismo estão relacionados ao
funcionamento destas pequenas células. Os neurônios estão conectados uns aos
outros através de sinapses, e juntos formam uma grande rede, cada rede contém
alguns milhares de neurônios interconectados, o cérebro pode ser visto como uma
coleção de redes neurais. Uma parte da rede é composta por duas células que
compõe:

     Núcleo: parte de processamento central da célula.
     Dendritos: fornecem sinais de entrada para a célula.
     Axônio: envia sinais de saída para a célula2 através dos terminais do axônio,
      unindo-se aos dendritos da célula.

  Nos neurônios a comunicação é realizada através de impulsos, quando um
impulso é recebido, o neurônio o processa, e passado um limite de ação, dispara um
segundo impulso que produz uma substância neurotransmissora o qual flui do corpo
celular para o axônio. Os sinais podem ser transmitidos inalterados, ou serem
alterados pelas sinapses.

     Sinapse: capaz de aumentar ou diminuir a intensidade da ligação entre os
      neurônios e estimular ou inibir um neurônio subseqüente, onde a informação é
      armazenada.
45




        Figura 11: Parte de uma rede: duas células biológicas interconectadas.
                               Fonte: Turban (2008 p. W6-6)


  Um modelo de rede neural artificial (RNA) emula uma rede neural biológica, a
computação é uma metodologia de reconhecimento padrão para aprendizado da
máquina. A aplicabilidade tem sido usada para reconhecimento de previsão,
predição e classificação. Computação de rede neural é o principal componente de
qualquer conjunto de ferramenta de Data Mining, na qual será aplicado o conceito
para desenvolvimento do sistema no decorrer do trabalho.

  O cérebro humano possui recursos para o processamento da informação e
resolução de problemas com os quais computadores não conseguem competir em
muitos aspectos. Redes neurais biológicas são compostas de muitos neurônios
biológicos primitivos interconectados, cada neurônio possui axônios e dendritos,
semelhantes a dedos que permitem ao neurônio comunicar-se com seus neurônios
vizinhos através da transmissão e do recebimento de sinais químicos e elétricos. A
RNA é composta de elementos de processamento simples e interconectados
chamados neurônios artificiais. No processamento os elementos em uma RNA
funcionam de maneira simultânea e coletiva em um modo semelhante aos neurônios
biológicos. A RNA possui algumas características similares àquelas das redes
neurais biológicas,     como os recursos de      aprendizagem, auto-organização
intolerância ao erro.   Os conceitos neurais geralmente são como simulações de
software dos processos paralelos que envolvem os elementos de processamento em
uma arquitetura de rede. O neurônio artificial recebe sinais de entrada análogos aos
impulsos eletroquímicos que os dendritos dos neurônios biológicos recebem de
46

outros neurônios. Os sinais de saída do neurônio artificial correspondem aos sinais
enviados do neurônio biológico através do seu axônio. Os sinais artificiais podem ser
mudados pelos pesos, de maneira semelhante às mudanças físicas que ocorrem
nas sinapses.




          Figura 12: Processamento da informação em um neurônio artificial.

                               Fonte: Turban(2008 p W6-6).


  Alguns paradigmas de RNA foram propostos para aplicações em vários domínios
de problema, pois emula estruturalmente o cérebro humano, a maneira na qual o
modelo neural processa as informações e como os modelos neurais aprendem a
executar as tarefas designadas, conforme Figura 12, os neurônios artificiais recebem
a “informação” total de outros neurônios ou estímulos externos de entrada, realizam
transformações nas entradas e, então, passam a informação transformada para
outros neurônios ou estímulos externos de saída. Isso é semelhante como o cérebro
humano funciona, passando a informação de um neurônio para outro de uma
maneira de ativar ou desencadear uma reação de determinados neurônios com base
nas informações ou nos estímulos recebidos.

  A relação entre as redes neurais biológicas e artificiais de acordo com ZAHEDI
(1993) menciona sobre um papel duplo para RNA. Adotamos os conceitos do mundo
biológico para melhorar a estrutura dos computadores. A tecnologia de RNA é usada
para processamento de informações complexas e inteligência de máquina. Por outro
lado, as redes neurais também podem ser usadas como modelos biológicos simples
para testar hipóteses sobre processamento de informação neuronal biológico “real”.
No contexto de Data Mining o uso das redes neurais para aprendizado de máquina e
processamento de informação, está descrito na tabela 5, breves conceitos.
47


                     Biológica                                   Artificial
                       Corpo                                        Nó
                     Dendritos                                   Entrada
                       Axônio                                    Entrada
                      Sinapse                                      Peso
                 Velocidade Baixa                             Velocidade Alta
                                                    Poucos Neurônios (Dezenas à
             Muitos Neurônios (10º)
                                                         centenas de milhares )

                   Tabela 5: Comparação Redes Biológicas X Artificiais.
   Fontes: L. Medsker e J. Liebowitz, Design and Development of Expert Systems and Neural
Networks, Macmillan, New York, 1994, p.163; e F. ZAHEDI, Intelligent Systems for Business: Expert
Systems with Neural Networks, Wadsworth, Belmont, CA, 1993.

   As redes neurais podem ter uma ou mais camadas de neurônios e podem
altamente ou completamente interconectados, ou somente camadas específicas
podem estar conectadas. As ligações entre neurônios têm um peso associado, o
conhecimento que a rede possui é avaliado nesses pesos de interconexão. Cada
neurônio calcula m total ponderado dos valores de entrada do neurônio, transforma
essa entrada e repassa seu valor neural como entrada para os neurônios
subseqüentes, ás vezes a transformação da entrada/saída no nível individual do
neurônio é feito de modo não-linear.


5.1.1 Elementos de RNA

   Uma rede neural é composta de elementos de processamento organizados de
diferentes maneiras para formar a estrutura da rede. A unidade básica de
processamento é o neurônio. Uma série de neurônios está organizada dentro de
uma rede. Existem muitas formas de organizar os neurônios; elas são referidas
como topologias. Uma abordagem popular, conhecida como o paradigma da retro
propagação, permite que todos os neurônios liguem a saída em uma camada à
entrada da camada seguinte, mas não permite qualquer ligação de feedback.
(Haykin, 1999).
48

5.1.2 Elementos de processamento


  Os Elementos de Processamento (PE) de uma RNA são os neurônios artificiais,
cada um recebe entradas, processa e entrega uma única saída, como na Figura 12.
A entrada pode ser de dados brutos de entrada ou a saída de outros elementos de
processamento com resultado binário ou pode ser entradas para outros neurônios.


5.1.3 Estrutura da rede

  A RNA é composta de um conjunto de neurônios, agrupados em camadas
apresentado na Figura 13 - Rede neural com uma camada escondida - pode ser
organizada de várias maneiras e são interconectados de diferentes formas. Quando
a informação é processada é calculado os elementos do processamento, tais
elementos são paralelos como o cérebro funciona, e difere do processamento serial
da computação convencional. A camada escondida é uma camada de neurônios que
recebe entradas provenientes da camada anterior e as converte em saídas para
novo processamento, podem ser colocadas entre as camadas de entrada e saída. A
camada escondida converte entradas em uma combinação não-linear e transfere as
entradas transformadas para a camada de saída, pode-se interpretar como um
mecanismo de extração de atributos, na qual, converte as entradas originais no
problema em algumas combinações de alto nível de tais entradas.




                Figura 13: Rede neural com uma camada escondida.
                             Fonte: Turban (2008 p W6-9)
49

  Ao analisar a Figura 13 - Rede neural com uma camada escondida, quando é
determinada uma estrutura de uma rede neural, a informação pode ser processada.
Conceituando-se:

      Entradas: uma entrada corresponde a um único atributo. O valor numérico, ou
       representação, de um atributo é à entrada da rede. Pode ser consideradas
       entradas vários tipos de dados como: texto, imagens e voz. Algumas vezes é
       necessário um pré-processamento para converter os dados em entradas
       relevantes de dados simbólicos ou graduar os dados.

       Saídas: uma rede contém a solução para um problema. A RNA atribui valores
       numéricos às saídas, como 1 para sim e 0 para não – binários, com objetivo
       da rede é calcular os valores da saída.

      Pesos de conexão: são os principais elementos em uma RNA e expressam a
       intensidade relativa dos dados de entrada ou as muitas conexões que
       transferem dados de uma camada para outra. Os pesos são fundamentais
       armazenam os padrões de informação aprendidos, através dele que as redes
       aprendem.

      Função de soma: calcula os totais ponderados de todos os elementos de
       entrada que são inseridos em cada elemento de processamento. Uma função
       de soma multiplica cada valor de entrada pelo seu peso e adiciona os valores
       para um total ponderado Y.




            Figura 9 – Fórmula para n entradas em um elemento de processamento.




      Figura 10 – Formula para jº neurônio de inúmeros neurônios de processamento
                                  em uma camada
50




Figura 14: Função de soma para um neurônio (a) e vários neurônios (b).
                     Fonte: Turban (2008 p W6-10).


   Função de transformação: calcula o estímulo interno do neurônio,
    tendo como base nesse nível o neurônio pode ou não produzir uma
    saída. O nível de ativação interna e a saída pode ser linear ou não-
    linear, expressa por um dos vários tipos de função de transformação. A
    função de transformação soma as entradas vindas de outros
    neurônios/outras fontes em direção a um neurônio e após produz uma
    saída baseada na escolha da função de transferência.




              Figura 15: Exemplo de funções para RNA.
                       Fonte: Turban (2008 p W6-11).
51



     Função Sigmóide: transfere em forma de S com variação de 0 a 1, sendo
      uma função de transferência não-linear comum.




                      Figura 16: YT é o valor transformado de –Y.
                                Fonte: Turban (2008 p W6-11).


  A transformação modifica os níveis de saída para valores aceitáveis, realizada
antes que as saídas alcancem o próximo nível. Sem essa transformação, o valor da
saída torna-se muito grande, especialmente quando existem diversas camadas de
neurônios, algumas vezes e utilizado o valor limite.

     Valor limite: barreira para a saída de um neurônio a fim de ativar o próximo
      nível de neurônios. Se um valor de saída for menor do que o valor limite, não
      será passado para o próximo nível de neurônios.


     Camadas escondidas: práticas complexas exigem uma ou mais camadas
      escondidas entre os neurônios de entrada e saída e um número igualmente
      grande de pesos. Algumas RNAs experimentais usam milhões de elementos
      de processamento, cada camada aumenta exponencialmente o esforço de
      treinamento e o cálculo necessário, o uso de mais de três camadas
      escondidas é raro na maioria dos sistemas comerciais, no caso tratado no
      trabalho.



5.1.4 Arquiteturas da rede neural

  Há diversos modelos de algoritmo eficazes na rede neural, mais comuns são retro
propagação, memória associativa e rede recorrente indicada na Figura 13 -Rede
neural com uma camada escondida, outras são representadas na Figura 17 e 18.
52




                Figura 17: Estruturas de rede neural: fluxo progressivo
                               Fonte: Turban(2008 p W6-12).




          Figura 18: Estrutura recorrente comparada com fonte progressiva.

                   Fonte: Baseado em PC AI, May/June 1992, p.35.

  O funcionamento de um modelo completo de rede neural é acionado pela tarefa
para a qual foi programado normalmente são modelos multicamadas nos quais a
informação é passada de uma camada para outra, com o objetivo de mapear uma
entrada para uma rede para uma categoria específica, conforme identificado pela
saída da rede, ou pode ser usado um modelo neural usado como otimizador pode
ser uma única camada de neurônios, altamente interconectada, e pode calcular
valores de neurônio repetidamente até que o modelo convirja a um estado estável,
ou seja, representaria uma solução ideal para o problema sob análise.
53

  Uma rede é treinada para executar a tarefa designada é outra característica do
modelo identificador. O aprendizado da rede neural pode ocorrer em dois modos:

     Aprendizado supervisionado: conjunto de treinamento usado para “ensinar”
      a rede sobre seu domínio de problema é repetidamente apresentado à rede
      neural. A saída da rede no seu formato atual é calculada e comparada à saída
      desejada. O algoritmo de aprendizado usado determina como os pesos de
      interconexão neural são corrigidos devido a diferenças entre as saídas reais e
      desejadas para um membro do conjunto de treinamento, a atualização dos
      pesos de interconexão da rede continua até que o critério de parada do
      algoritmo de treinamento seja encontrado.

     Aprendizado não supervisionado: a rede neural aprende um padrão através
      de exposição repetida, ser previsto conforme a rede neural adequadamente se
      auto-organiza ou agrupa seus neurônios relacionados à determinada tarefa
      desejada.

  Uma classe de modelos que tem potencial em problemas de classificação e
previsão, na qual, consistem de múltiplas camadas de neurônios são as redes
neurais progressivas com multicamadas, nelas a informação é passada por em uma
única direção, das camadas de entrada da rede, através de uma ou mais camadas
escondidas, em direção à camada de saída dos neurônios, para os neurônios de
cada camada estão conectados aos neurônios da camada subseqüente. O
progressivo Perceptron Multicamadas (MLP) trata-se do modelo neural para
problemas de classificação, são redes que avaliam os elementos de processamento,
de modo supervisionado são compostos de uma ou mais camadas de nós, entre os
nós de entrada e saída. Na Figura 13 - Rede neural com uma camada escondida, os
nós de entrada representam onde a informação é apresentada à rede, os nós de
saída fornecem a “decisão” da rede neural, os nós escondidos contêm o
mapeamento adequado das entradas até as saídas, por meio dos pesos de
interconexão, podem ser consideradas como decisões.
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA

Mais conteúdo relacionado

Mais procurados

Basic Tutorial on How to Use nTask
Basic Tutorial on How to Use nTaskBasic Tutorial on How to Use nTask
Basic Tutorial on How to Use nTaskKeenaSalinas
 
Apresentação - Cases de Sucesso
Apresentação - Cases de SucessoApresentação - Cases de Sucesso
Apresentação - Cases de SucessoFilipe Coelho
 
Projetos Web - Definição do Escopo do Projeto
Projetos Web - Definição do Escopo do ProjetoProjetos Web - Definição do Escopo do Projeto
Projetos Web - Definição do Escopo do ProjetoOdair Cavichioli
 
TP1 - Gestão da Qualidade
TP1 - Gestão da QualidadeTP1 - Gestão da Qualidade
TP1 - Gestão da QualidadeCristiana
 
Estruturas organizacionais
Estruturas organizacionaisEstruturas organizacionais
Estruturas organizacionaisGerisval Pessoa
 
Gerenciamento da rotina falconi 8º
Gerenciamento da rotina falconi 8ºGerenciamento da rotina falconi 8º
Gerenciamento da rotina falconi 8ºViviane Rocha
 
Como Elaborar Propostas para Programas de Financiamento e Subvenção
Como Elaborar Propostas para Programas de Financiamento e SubvençãoComo Elaborar Propostas para Programas de Financiamento e Subvenção
Como Elaborar Propostas para Programas de Financiamento e SubvençãoRafael Buck
 
How to Enable Change Management with Jira Service Management
How to Enable Change Management with Jira Service ManagementHow to Enable Change Management with Jira Service Management
How to Enable Change Management with Jira Service ManagementCprime
 
Transformação Digital (DX) das Organizações
Transformação Digital (DX) das OrganizaçõesTransformação Digital (DX) das Organizações
Transformação Digital (DX) das OrganizaçõesAndre Zeferino
 
Gestão de processos e qualidade
Gestão de processos e qualidadeGestão de processos e qualidade
Gestão de processos e qualidadeGerisval Pessoa
 
Nbr iso 10015 2001 - diretrizes para treinamento[1]
Nbr iso 10015   2001 - diretrizes para treinamento[1]Nbr iso 10015   2001 - diretrizes para treinamento[1]
Nbr iso 10015 2001 - diretrizes para treinamento[1]Maryluce Coelho
 
50 Ferramentas de Gestão. Conheça as principais ferramentas gerenciais.
50 Ferramentas de Gestão. Conheça as principais ferramentas gerenciais. 50 Ferramentas de Gestão. Conheça as principais ferramentas gerenciais.
50 Ferramentas de Gestão. Conheça as principais ferramentas gerenciais. Orlando Lima Treinamentos
 
Exemplo de Requisição de Mudança ITIL
Exemplo de Requisição de Mudança ITILExemplo de Requisição de Mudança ITIL
Exemplo de Requisição de Mudança ITILFernando Palma
 

Mais procurados (20)

Basic Tutorial on How to Use nTask
Basic Tutorial on How to Use nTaskBasic Tutorial on How to Use nTask
Basic Tutorial on How to Use nTask
 
Apresentação - Cases de Sucesso
Apresentação - Cases de SucessoApresentação - Cases de Sucesso
Apresentação - Cases de Sucesso
 
3 P's Pessoas, Processo e Produto
3 P's Pessoas, Processo e Produto3 P's Pessoas, Processo e Produto
3 P's Pessoas, Processo e Produto
 
Projetos Web - Definição do Escopo do Projeto
Projetos Web - Definição do Escopo do ProjetoProjetos Web - Definição do Escopo do Projeto
Projetos Web - Definição do Escopo do Projeto
 
TP1 - Gestão da Qualidade
TP1 - Gestão da QualidadeTP1 - Gestão da Qualidade
TP1 - Gestão da Qualidade
 
Estruturas organizacionais
Estruturas organizacionaisEstruturas organizacionais
Estruturas organizacionais
 
Gerenciamento da rotina falconi 8º
Gerenciamento da rotina falconi 8ºGerenciamento da rotina falconi 8º
Gerenciamento da rotina falconi 8º
 
Como Elaborar Propostas para Programas de Financiamento e Subvenção
Como Elaborar Propostas para Programas de Financiamento e SubvençãoComo Elaborar Propostas para Programas de Financiamento e Subvenção
Como Elaborar Propostas para Programas de Financiamento e Subvenção
 
Uma análise sobre o ciclo pdca como um método para solução de problemas da qu...
Uma análise sobre o ciclo pdca como um método para solução de problemas da qu...Uma análise sobre o ciclo pdca como um método para solução de problemas da qu...
Uma análise sobre o ciclo pdca como um método para solução de problemas da qu...
 
How to Enable Change Management with Jira Service Management
How to Enable Change Management with Jira Service ManagementHow to Enable Change Management with Jira Service Management
How to Enable Change Management with Jira Service Management
 
Transformação Digital (DX) das Organizações
Transformação Digital (DX) das OrganizaçõesTransformação Digital (DX) das Organizações
Transformação Digital (DX) das Organizações
 
Gestão de processos e qualidade
Gestão de processos e qualidadeGestão de processos e qualidade
Gestão de processos e qualidade
 
O Método Kanban
O Método KanbanO Método Kanban
O Método Kanban
 
A3 hoshin kanri
A3 hoshin kanriA3 hoshin kanri
A3 hoshin kanri
 
Planejamento De Projetos
Planejamento De ProjetosPlanejamento De Projetos
Planejamento De Projetos
 
Desdobramento de metas
Desdobramento de metasDesdobramento de metas
Desdobramento de metas
 
Exemplo do uso de BPMN
Exemplo do uso de BPMNExemplo do uso de BPMN
Exemplo do uso de BPMN
 
Nbr iso 10015 2001 - diretrizes para treinamento[1]
Nbr iso 10015   2001 - diretrizes para treinamento[1]Nbr iso 10015   2001 - diretrizes para treinamento[1]
Nbr iso 10015 2001 - diretrizes para treinamento[1]
 
50 Ferramentas de Gestão. Conheça as principais ferramentas gerenciais.
50 Ferramentas de Gestão. Conheça as principais ferramentas gerenciais. 50 Ferramentas de Gestão. Conheça as principais ferramentas gerenciais.
50 Ferramentas de Gestão. Conheça as principais ferramentas gerenciais.
 
Exemplo de Requisição de Mudança ITIL
Exemplo de Requisição de Mudança ITILExemplo de Requisição de Mudança ITIL
Exemplo de Requisição de Mudança ITIL
 

Destaque

Plano de ação da claro (anatel)
Plano de ação da claro (anatel)Plano de ação da claro (anatel)
Plano de ação da claro (anatel)Jornal do Commercio
 
Estrategia De Reacao Em Call Center Sabrina Mariana Freitas Costa 2011
Estrategia De Reacao Em Call Center   Sabrina Mariana Freitas Costa   2011Estrategia De Reacao Em Call Center   Sabrina Mariana Freitas Costa   2011
Estrategia De Reacao Em Call Center Sabrina Mariana Freitas Costa 2011Sabrina Mariana
 
Qualidade no atendimento & negociação
Qualidade no atendimento & negociaçãoQualidade no atendimento & negociação
Qualidade no atendimento & negociaçãoAdilson P Motta Motta
 
Planos de ação Oi TV
Planos de ação Oi TVPlanos de ação Oi TV
Planos de ação Oi TVSilas Silva
 
Plano de ação - Modelo
Plano de ação - ModeloPlano de ação - Modelo
Plano de ação - ModeloDaniel Santos
 
Apresentação call center 2010
Apresentação call center 2010Apresentação call center 2010
Apresentação call center 2010newtime
 
PROPOSTA DE UM MODELO DE ARQUITETURA BIOMÉTRICA PARA IDENTIFICAÇÃO PESSOAL CO...
PROPOSTA DE UM MODELO DE ARQUITETURA BIOMÉTRICA PARA IDENTIFICAÇÃO PESSOAL CO...PROPOSTA DE UM MODELO DE ARQUITETURA BIOMÉTRICA PARA IDENTIFICAÇÃO PESSOAL CO...
PROPOSTA DE UM MODELO DE ARQUITETURA BIOMÉTRICA PARA IDENTIFICAÇÃO PESSOAL CO...unicamp
 
Apresentação Curso técnico em informática
Apresentação Curso técnico em informáticaApresentação Curso técnico em informática
Apresentação Curso técnico em informáticaaltino3
 
Exemplo de plano de continuidade de ti
Exemplo de plano de continuidade de tiExemplo de plano de continuidade de ti
Exemplo de plano de continuidade de tiFernando Palma
 
Tcc_Implantação de um sistema para o gerenciamento de suporte de TI baseado n...
Tcc_Implantação de um sistema para o gerenciamento de suporte de TI baseado n...Tcc_Implantação de um sistema para o gerenciamento de suporte de TI baseado n...
Tcc_Implantação de um sistema para o gerenciamento de suporte de TI baseado n...Evilasio Cesar
 
Gestao de Call Center_TCC_FGV_2009
Gestao de Call Center_TCC_FGV_2009Gestao de Call Center_TCC_FGV_2009
Gestao de Call Center_TCC_FGV_2009Educadora
 
Curso de assistente de suporte técnico de informática
Curso de assistente de suporte técnico de informáticaCurso de assistente de suporte técnico de informática
Curso de assistente de suporte técnico de informáticaClayton de Almeida Souza
 
Proposta comercial tv lokal
Proposta comercial   tv lokalProposta comercial   tv lokal
Proposta comercial tv lokalRenan Farias
 
TOTVS ECM ByYou - Gestão Integrada da Qualidade - Plano de Ação
TOTVS ECM ByYou - Gestão Integrada da Qualidade - Plano de AçãoTOTVS ECM ByYou - Gestão Integrada da Qualidade - Plano de Ação
TOTVS ECM ByYou - Gestão Integrada da Qualidade - Plano de AçãoCaribe Tecnologia
 

Destaque (20)

Plano de ação da claro (anatel)
Plano de ação da claro (anatel)Plano de ação da claro (anatel)
Plano de ação da claro (anatel)
 
Estrategia De Reacao Em Call Center Sabrina Mariana Freitas Costa 2011
Estrategia De Reacao Em Call Center   Sabrina Mariana Freitas Costa   2011Estrategia De Reacao Em Call Center   Sabrina Mariana Freitas Costa   2011
Estrategia De Reacao Em Call Center Sabrina Mariana Freitas Costa 2011
 
Qualidade no atendimento & negociação
Qualidade no atendimento & negociaçãoQualidade no atendimento & negociação
Qualidade no atendimento & negociação
 
Planos de ação Oi TV
Planos de ação Oi TVPlanos de ação Oi TV
Planos de ação Oi TV
 
Plano de ação - Modelo
Plano de ação - ModeloPlano de ação - Modelo
Plano de ação - Modelo
 
Projeto 1 Doc
Projeto 1 DocProjeto 1 Doc
Projeto 1 Doc
 
Virtual Call Center
Virtual Call CenterVirtual Call Center
Virtual Call Center
 
Apresentação call center 2010
Apresentação call center 2010Apresentação call center 2010
Apresentação call center 2010
 
PROPOSTA DE UM MODELO DE ARQUITETURA BIOMÉTRICA PARA IDENTIFICAÇÃO PESSOAL CO...
PROPOSTA DE UM MODELO DE ARQUITETURA BIOMÉTRICA PARA IDENTIFICAÇÃO PESSOAL CO...PROPOSTA DE UM MODELO DE ARQUITETURA BIOMÉTRICA PARA IDENTIFICAÇÃO PESSOAL CO...
PROPOSTA DE UM MODELO DE ARQUITETURA BIOMÉTRICA PARA IDENTIFICAÇÃO PESSOAL CO...
 
Campanha faça a diferença revisada
Campanha faça a diferença revisadaCampanha faça a diferença revisada
Campanha faça a diferença revisada
 
Desenvolvimento de Modelo de Negócio
Desenvolvimento de Modelo de Negócio Desenvolvimento de Modelo de Negócio
Desenvolvimento de Modelo de Negócio
 
Apresentação Curso técnico em informática
Apresentação Curso técnico em informáticaApresentação Curso técnico em informática
Apresentação Curso técnico em informática
 
Exemplo de plano de continuidade de ti
Exemplo de plano de continuidade de tiExemplo de plano de continuidade de ti
Exemplo de plano de continuidade de ti
 
Apresentação Service Desk
Apresentação Service DeskApresentação Service Desk
Apresentação Service Desk
 
Tcc_Implantação de um sistema para o gerenciamento de suporte de TI baseado n...
Tcc_Implantação de um sistema para o gerenciamento de suporte de TI baseado n...Tcc_Implantação de um sistema para o gerenciamento de suporte de TI baseado n...
Tcc_Implantação de um sistema para o gerenciamento de suporte de TI baseado n...
 
Gestao de Call Center_TCC_FGV_2009
Gestao de Call Center_TCC_FGV_2009Gestao de Call Center_TCC_FGV_2009
Gestao de Call Center_TCC_FGV_2009
 
Curso de assistente de suporte técnico de informática
Curso de assistente de suporte técnico de informáticaCurso de assistente de suporte técnico de informática
Curso de assistente de suporte técnico de informática
 
PROJETO TREINAMENTO EMPRESARIAL
PROJETO TREINAMENTO EMPRESARIALPROJETO TREINAMENTO EMPRESARIAL
PROJETO TREINAMENTO EMPRESARIAL
 
Proposta comercial tv lokal
Proposta comercial   tv lokalProposta comercial   tv lokal
Proposta comercial tv lokal
 
TOTVS ECM ByYou - Gestão Integrada da Qualidade - Plano de Ação
TOTVS ECM ByYou - Gestão Integrada da Qualidade - Plano de AçãoTOTVS ECM ByYou - Gestão Integrada da Qualidade - Plano de Ação
TOTVS ECM ByYou - Gestão Integrada da Qualidade - Plano de Ação
 

Semelhante a ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA

Programacao cpp
Programacao cppProgramacao cpp
Programacao cppTiago
 
Usabilidade e Arquitetura de Informação de Websites de Governos Municipais
Usabilidade e Arquitetura de Informação de Websites de Governos MunicipaisUsabilidade e Arquitetura de Informação de Websites de Governos Municipais
Usabilidade e Arquitetura de Informação de Websites de Governos MunicipaisMarcelo Ramos
 
Javascript
JavascriptJavascript
JavascriptTiago
 
Planejamento em desenvolvimento_de_sistemas
Planejamento em desenvolvimento_de_sistemasPlanejamento em desenvolvimento_de_sistemas
Planejamento em desenvolvimento_de_sistemasTiago
 
Dissertacao.serradas&zambujal oliveira
Dissertacao.serradas&zambujal oliveiraDissertacao.serradas&zambujal oliveira
Dissertacao.serradas&zambujal oliveiraZambujal Oliveira
 
Jspservlets
JspservletsJspservlets
JspservletsTiago
 
Roteiro para a definição soa
Roteiro para a definição soaRoteiro para a definição soa
Roteiro para a definição soaLuis Eden Abbud
 
Tcl tk
Tcl tkTcl tk
Tcl tkTiago
 
Python gtk
Python gtkPython gtk
Python gtkTiago
 
Tecnologia Industrial Básica - Diretrizes para o Setor de Máquinas e Equipame...
Tecnologia Industrial Básica - Diretrizes para o Setor de Máquinas e Equipame...Tecnologia Industrial Básica - Diretrizes para o Setor de Máquinas e Equipame...
Tecnologia Industrial Básica - Diretrizes para o Setor de Máquinas e Equipame...Guilherme Witte Cruz Machado
 
Postgre sql
Postgre sqlPostgre sql
Postgre sqlTiago
 
Usando a tecnologia em benefício do seu negócio_Apostila by Rosane Severo
Usando a tecnologia em benefício do seu negócio_Apostila by Rosane SeveroUsando a tecnologia em benefício do seu negócio_Apostila by Rosane Severo
Usando a tecnologia em benefício do seu negócio_Apostila by Rosane SeveroRosane Severo
 
Ruby on rails
Ruby on railsRuby on rails
Ruby on railsTiago
 
X dialog
X dialogX dialog
X dialogTiago
 
Linguagem c
Linguagem cLinguagem c
Linguagem cTiago
 

Semelhante a ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA (20)

Programacao cpp
Programacao cppProgramacao cpp
Programacao cpp
 
Usabilidade e Arquitetura de Informação de Websites de Governos Municipais
Usabilidade e Arquitetura de Informação de Websites de Governos MunicipaisUsabilidade e Arquitetura de Informação de Websites de Governos Municipais
Usabilidade e Arquitetura de Informação de Websites de Governos Municipais
 
Javascript
JavascriptJavascript
Javascript
 
Controle de qualidade
Controle de qualidadeControle de qualidade
Controle de qualidade
 
Planejamento em desenvolvimento_de_sistemas
Planejamento em desenvolvimento_de_sistemasPlanejamento em desenvolvimento_de_sistemas
Planejamento em desenvolvimento_de_sistemas
 
Dissertacao.serradas&zambujal oliveira
Dissertacao.serradas&zambujal oliveiraDissertacao.serradas&zambujal oliveira
Dissertacao.serradas&zambujal oliveira
 
Jspservlets
JspservletsJspservlets
Jspservlets
 
Roteiro para a definição soa
Roteiro para a definição soaRoteiro para a definição soa
Roteiro para a definição soa
 
Sql
SqlSql
Sql
 
Tcl tk
Tcl tkTcl tk
Tcl tk
 
Python gtk
Python gtkPython gtk
Python gtk
 
monografia_andre_paro
monografia_andre_paromonografia_andre_paro
monografia_andre_paro
 
Tecnologia Industrial Básica - Diretrizes para o Setor de Máquinas e Equipame...
Tecnologia Industrial Básica - Diretrizes para o Setor de Máquinas e Equipame...Tecnologia Industrial Básica - Diretrizes para o Setor de Máquinas e Equipame...
Tecnologia Industrial Básica - Diretrizes para o Setor de Máquinas e Equipame...
 
Postgre sql
Postgre sqlPostgre sql
Postgre sql
 
Usando a tecnologia em benefício do seu negócio_Apostila by Rosane Severo
Usando a tecnologia em benefício do seu negócio_Apostila by Rosane SeveroUsando a tecnologia em benefício do seu negócio_Apostila by Rosane Severo
Usando a tecnologia em benefício do seu negócio_Apostila by Rosane Severo
 
Taxonomias
TaxonomiasTaxonomias
Taxonomias
 
Ruby on rails
Ruby on railsRuby on rails
Ruby on rails
 
Probatio
ProbatioProbatio
Probatio
 
X dialog
X dialogX dialog
X dialog
 
Linguagem c
Linguagem cLinguagem c
Linguagem c
 

Mais de Sabrina Mariana

Gestão de Projeto - Fast Shop Mega Store
Gestão de Projeto  -  Fast Shop Mega StoreGestão de Projeto  -  Fast Shop Mega Store
Gestão de Projeto - Fast Shop Mega StoreSabrina Mariana
 
Gestão da Qualidade - Metodologia ágil
Gestão da Qualidade - Metodologia ágilGestão da Qualidade - Metodologia ágil
Gestão da Qualidade - Metodologia ágilSabrina Mariana
 
Gestão da qualidade metodologia ágil v01 (2)
Gestão da qualidade   metodologia ágil v01 (2)Gestão da qualidade   metodologia ágil v01 (2)
Gestão da qualidade metodologia ágil v01 (2)Sabrina Mariana
 
Gestão de Projetos - Palco Brasilidade
Gestão de Projetos - Palco BrasilidadeGestão de Projetos - Palco Brasilidade
Gestão de Projetos - Palco BrasilidadeSabrina Mariana
 
Apresentação fernao capelo gaivota
Apresentação fernao capelo gaivotaApresentação fernao capelo gaivota
Apresentação fernao capelo gaivotaSabrina Mariana
 
Apresentação árvore do conhecimento - final 2
Apresentação   árvore do conhecimento - final 2Apresentação   árvore do conhecimento - final 2
Apresentação árvore do conhecimento - final 2Sabrina Mariana
 
EAP - O PROJETO FAST SHOP MEGA STORE
EAP - O PROJETO FAST SHOP MEGA STOREEAP - O PROJETO FAST SHOP MEGA STORE
EAP - O PROJETO FAST SHOP MEGA STORESabrina Mariana
 
CURSO DE PÓS-GRADUAÇÃO - GESTÃO DE PROJETOS - O PROJETO FAST SHOP MEGA STORE
CURSO DE PÓS-GRADUAÇÃO -  GESTÃO DE PROJETOS  - O PROJETO FAST SHOP MEGA STORECURSO DE PÓS-GRADUAÇÃO -  GESTÃO DE PROJETOS  - O PROJETO FAST SHOP MEGA STORE
CURSO DE PÓS-GRADUAÇÃO - GESTÃO DE PROJETOS - O PROJETO FAST SHOP MEGA STORESabrina Mariana
 
GESTÃO DO CONHECIMENTO
GESTÃO DO CONHECIMENTO GESTÃO DO CONHECIMENTO
GESTÃO DO CONHECIMENTO Sabrina Mariana
 
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURAESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURASabrina Mariana
 
Teorias Pedagógica de Aprendizagem
Teorias Pedagógica de AprendizagemTeorias Pedagógica de Aprendizagem
Teorias Pedagógica de AprendizagemSabrina Mariana
 

Mais de Sabrina Mariana (13)

Gestão de Projeto - Fast Shop Mega Store
Gestão de Projeto  -  Fast Shop Mega StoreGestão de Projeto  -  Fast Shop Mega Store
Gestão de Projeto - Fast Shop Mega Store
 
Gestão da Qualidade - Metodologia ágil
Gestão da Qualidade - Metodologia ágilGestão da Qualidade - Metodologia ágil
Gestão da Qualidade - Metodologia ágil
 
Gestão da qualidade metodologia ágil v01 (2)
Gestão da qualidade   metodologia ágil v01 (2)Gestão da qualidade   metodologia ágil v01 (2)
Gestão da qualidade metodologia ágil v01 (2)
 
Aula de Dot Project
Aula de Dot ProjectAula de Dot Project
Aula de Dot Project
 
Gestão de Projetos - Palco Brasilidade
Gestão de Projetos - Palco BrasilidadeGestão de Projetos - Palco Brasilidade
Gestão de Projetos - Palco Brasilidade
 
Apresentação fernao capelo gaivota
Apresentação fernao capelo gaivotaApresentação fernao capelo gaivota
Apresentação fernao capelo gaivota
 
Apresentação árvore do conhecimento - final 2
Apresentação   árvore do conhecimento - final 2Apresentação   árvore do conhecimento - final 2
Apresentação árvore do conhecimento - final 2
 
Versao final risco
Versao final riscoVersao final risco
Versao final risco
 
EAP - O PROJETO FAST SHOP MEGA STORE
EAP - O PROJETO FAST SHOP MEGA STOREEAP - O PROJETO FAST SHOP MEGA STORE
EAP - O PROJETO FAST SHOP MEGA STORE
 
CURSO DE PÓS-GRADUAÇÃO - GESTÃO DE PROJETOS - O PROJETO FAST SHOP MEGA STORE
CURSO DE PÓS-GRADUAÇÃO -  GESTÃO DE PROJETOS  - O PROJETO FAST SHOP MEGA STORECURSO DE PÓS-GRADUAÇÃO -  GESTÃO DE PROJETOS  - O PROJETO FAST SHOP MEGA STORE
CURSO DE PÓS-GRADUAÇÃO - GESTÃO DE PROJETOS - O PROJETO FAST SHOP MEGA STORE
 
GESTÃO DO CONHECIMENTO
GESTÃO DO CONHECIMENTO GESTÃO DO CONHECIMENTO
GESTÃO DO CONHECIMENTO
 
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURAESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA
 
Teorias Pedagógica de Aprendizagem
Teorias Pedagógica de AprendizagemTeorias Pedagógica de Aprendizagem
Teorias Pedagógica de Aprendizagem
 

Último

UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...
UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...
UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...Manuais Formação
 
Apresentação sobre as etapas do desenvolvimento infantil
Apresentação sobre as etapas do desenvolvimento infantilApresentação sobre as etapas do desenvolvimento infantil
Apresentação sobre as etapas do desenvolvimento infantilMariaHelena293800
 
Aula 5 - Fluxo de matéria e energia nos ecossistemas.ppt
Aula 5 - Fluxo de matéria e energia nos ecossistemas.pptAula 5 - Fluxo de matéria e energia nos ecossistemas.ppt
Aula 5 - Fluxo de matéria e energia nos ecossistemas.pptParticular
 
"Nós Propomos! Mobilidade sustentável na Sertã"
"Nós Propomos! Mobilidade sustentável na Sertã""Nós Propomos! Mobilidade sustentável na Sertã"
"Nós Propomos! Mobilidade sustentável na Sertã"Ilda Bicacro
 
Apresentação sobre Robots e processos educativos
Apresentação sobre Robots e processos educativosApresentação sobre Robots e processos educativos
Apresentação sobre Robots e processos educativosFernanda Ledesma
 
Manual dos Principio básicos do Relacionamento e sexologia humana .pdf
Manual dos Principio básicos do Relacionamento e sexologia humana .pdfManual dos Principio básicos do Relacionamento e sexologia humana .pdf
Manual dos Principio básicos do Relacionamento e sexologia humana .pdfPastor Robson Colaço
 
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdfAS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdfssuserbb4ac2
 
PPP6_ciencias final 6 ano ano de 23/24 final
PPP6_ciencias final 6 ano ano de 23/24 finalPPP6_ciencias final 6 ano ano de 23/24 final
PPP6_ciencias final 6 ano ano de 23/24 finalcarlaOliveira438
 
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...LuizHenriquedeAlmeid6
 
Nós Propomos! Canil/Gatil na Sertã - Amigos dos Animais
Nós Propomos! Canil/Gatil na Sertã - Amigos dos AnimaisNós Propomos! Canil/Gatil na Sertã - Amigos dos Animais
Nós Propomos! Canil/Gatil na Sertã - Amigos dos AnimaisIlda Bicacro
 
Slides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptx
Slides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptxSlides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptx
Slides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptxLuizHenriquedeAlmeid6
 
análise obra Nós matamos o cão Tinhoso.pdf
análise obra Nós matamos o cão Tinhoso.pdfanálise obra Nós matamos o cão Tinhoso.pdf
análise obra Nós matamos o cão Tinhoso.pdfMaiteFerreira4
 
clubinho-bio-2.pdf vacinas saúde importância
clubinho-bio-2.pdf vacinas saúde importânciaclubinho-bio-2.pdf vacinas saúde importância
clubinho-bio-2.pdf vacinas saúde importânciaLuanaAlves940822
 
Slide - HIV (1) edit.pptx hiv em crianças
Slide - HIV (1) edit.pptx hiv em criançasSlide - HIV (1) edit.pptx hiv em crianças
Slide - HIV (1) edit.pptx hiv em criançasnarayaskara215
 
O que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditivaO que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditivaCludiaRodrigues693635
 
Diálogo Crátilo de Platão sócrates daspdf
Diálogo Crátilo de Platão sócrates daspdfDiálogo Crátilo de Platão sócrates daspdf
Diálogo Crátilo de Platão sócrates daspdfEversonFerreira20
 
Memórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
Memórias_póstumas_de_Brás_Cubas_ Machado_de_AssisMemórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
Memórias_póstumas_de_Brás_Cubas_ Machado_de_Assisbrunocali007
 
Multiplicação - Caça-número
Multiplicação - Caça-número Multiplicação - Caça-número
Multiplicação - Caça-número Mary Alvarenga
 

Último (20)

UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...
UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...
UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...
 
Apresentação sobre as etapas do desenvolvimento infantil
Apresentação sobre as etapas do desenvolvimento infantilApresentação sobre as etapas do desenvolvimento infantil
Apresentação sobre as etapas do desenvolvimento infantil
 
Aula 5 - Fluxo de matéria e energia nos ecossistemas.ppt
Aula 5 - Fluxo de matéria e energia nos ecossistemas.pptAula 5 - Fluxo de matéria e energia nos ecossistemas.ppt
Aula 5 - Fluxo de matéria e energia nos ecossistemas.ppt
 
"Nós Propomos! Mobilidade sustentável na Sertã"
"Nós Propomos! Mobilidade sustentável na Sertã""Nós Propomos! Mobilidade sustentável na Sertã"
"Nós Propomos! Mobilidade sustentável na Sertã"
 
Apresentação sobre Robots e processos educativos
Apresentação sobre Robots e processos educativosApresentação sobre Robots e processos educativos
Apresentação sobre Robots e processos educativos
 
Manual dos Principio básicos do Relacionamento e sexologia humana .pdf
Manual dos Principio básicos do Relacionamento e sexologia humana .pdfManual dos Principio básicos do Relacionamento e sexologia humana .pdf
Manual dos Principio básicos do Relacionamento e sexologia humana .pdf
 
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdfAS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
AS COLUNAS B E J E SUAS POSICOES CONFORME O RITO.pdf
 
PPP6_ciencias final 6 ano ano de 23/24 final
PPP6_ciencias final 6 ano ano de 23/24 finalPPP6_ciencias final 6 ano ano de 23/24 final
PPP6_ciencias final 6 ano ano de 23/24 final
 
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
Slides Lição 8, Betel, Ordenança para confessar os pecados e perdoar as ofens...
 
Nós Propomos! Canil/Gatil na Sertã - Amigos dos Animais
Nós Propomos! Canil/Gatil na Sertã - Amigos dos AnimaisNós Propomos! Canil/Gatil na Sertã - Amigos dos Animais
Nós Propomos! Canil/Gatil na Sertã - Amigos dos Animais
 
Slides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptx
Slides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptxSlides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptx
Slides Lição 8, CPAD, Confessando e Abandonando o Pecado.pptx
 
análise obra Nós matamos o cão Tinhoso.pdf
análise obra Nós matamos o cão Tinhoso.pdfanálise obra Nós matamos o cão Tinhoso.pdf
análise obra Nós matamos o cão Tinhoso.pdf
 
clubinho-bio-2.pdf vacinas saúde importância
clubinho-bio-2.pdf vacinas saúde importânciaclubinho-bio-2.pdf vacinas saúde importância
clubinho-bio-2.pdf vacinas saúde importância
 
Enunciado_da_Avaliacao_1__Direito_e_Legislacao_Social_(IL60174).pdf
Enunciado_da_Avaliacao_1__Direito_e_Legislacao_Social_(IL60174).pdfEnunciado_da_Avaliacao_1__Direito_e_Legislacao_Social_(IL60174).pdf
Enunciado_da_Avaliacao_1__Direito_e_Legislacao_Social_(IL60174).pdf
 
Slide - HIV (1) edit.pptx hiv em crianças
Slide - HIV (1) edit.pptx hiv em criançasSlide - HIV (1) edit.pptx hiv em crianças
Slide - HIV (1) edit.pptx hiv em crianças
 
O que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditivaO que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditiva
 
Enunciado_da_Avaliacao_1__Sociedade_Cultura_e_Contemporaneidade_(ED70200).pdf
Enunciado_da_Avaliacao_1__Sociedade_Cultura_e_Contemporaneidade_(ED70200).pdfEnunciado_da_Avaliacao_1__Sociedade_Cultura_e_Contemporaneidade_(ED70200).pdf
Enunciado_da_Avaliacao_1__Sociedade_Cultura_e_Contemporaneidade_(ED70200).pdf
 
Diálogo Crátilo de Platão sócrates daspdf
Diálogo Crátilo de Platão sócrates daspdfDiálogo Crátilo de Platão sócrates daspdf
Diálogo Crátilo de Platão sócrates daspdf
 
Memórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
Memórias_póstumas_de_Brás_Cubas_ Machado_de_AssisMemórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
Memórias_póstumas_de_Brás_Cubas_ Machado_de_Assis
 
Multiplicação - Caça-número
Multiplicação - Caça-número Multiplicação - Caça-número
Multiplicação - Caça-número
 

ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA

  • 1. i SABRINA MARIANA FREITAS COSTA ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA FACULDADE DE TECNOLOGIA DE SÃO PAULO DEPARTAMENTO DE TECNOLOGIA DA INFORMAÇÃO São Paulo 2011
  • 2. ii SABRINA MARIANA FREITAS COSTA ESTRATÉGIA DE REAÇÃO EM CALL CENTER: UMA PROPOSTA DE ARQUITETURA Monografia apresentada à Faculdade de Tecnologia de São Paulo, como parte dos requisitos para obtenção do título de Especialista em Análise e Projetos de Sistemas. Orientador: Prof. Dr. Silvio do Lago Pereira FACULDADE DE TECNOLOGIA DE SÃO PAULO DEPARTAMENTO DE TECNOLOGIA DA INFORMAÇÃO São Paulo 2011
  • 3. iii
  • 4. 1 AGRADECIMENTOS Neste trabalho foram descritos desde pequenas sugestões a grandes idéias. Apesar de todas as circunstâncias e contratempo agradeço imensamente a todos que me auxiliaram, em especial aos meus pais e toda minha família que, com muito carinho e dedicação, não mediram esforços na ajuda em concretizar mais esta etapa em minha vida. Agradeço também ao Professor Doutor Silvio do Lago Pereira por todo apoio prestado, na orientação e incentivo dados a este trabalho que, só assim, tornaram possível sua conclusão.
  • 5. 2 BANCA EXAMINADORA Professor Orientador: Dr. Silvio do Lago Pereira Professor 2: Prof. Dr. Kazuo Watanabe Professor 3: Profa. Me. Grace Anne Pontes Borges
  • 6. 3 SUMÁRIO INTRODUÇÃO ...................................................................................................... 10 1 AMBIENTE DE CALL CENTER ...................................................................... 15 1.1 As Origens ................................................................................................ 15 1.2 A Infraestrutura ......................................................................................... 17 2 ESTUDO DE CASO........................................................................................ 18 2.1 Estrutura da Empresa ............................................................................... 18 2.2 Regra de Negócio ..................................................................................... 21 2.3 Características .......................................................................................... 22 2.4 Arquitetura de Processamento .................................................................. 23 3 PLANEJAMENTO ESTRATÉGICO E GESTÃO DE CONHECIMENTO......... 25 3.1 Planejamento ............................................................................................ 25 3.2 Gestão de Conhecimento ......................................................................... 28 4 INTELIGÊNCIA EMPRESARIAL .................................................................... 30 4.1 CRM .......................................................................................................... 30 4.2 Data Warehouse ....................................................................................... 31 5 INTELIGÊNCIA APLICADA AO NEGÓCIO .................................................... 44 5.1 Redes Neurais Artificiais ........................................................................... 44 6 ARQUITETURA PROPOSTA ......................................................................... 61 6.1 Introdução ................................................................................................. 61 6.2 Ferramentas utilizadas e suas características .......................................... 65 6.3 Ambiente DW ............................................................................................ 66 6.4 Data Mart de Desempenho Operacional ................................................... 71 6.5 Dicionário de Dados .................................................................................. 72 6.6 Vantagens e Desvantagens da Arquitetura Proposta ............................... 75 6.7 Melhorias e Trabalhos Futuros ................................................................. 77 Conclusão ............................................................................................................... x
  • 7. 4 Referências ........................................................................................................... xii Apêndice A - Visão geral do Trabalho .............................................................. xiv
  • 8. 5 LISTA DE TABELAS Tabela 1: Consulta Cubos BI por dimensão vendas por Região. .......................... 37 Tabela 2: Consulta Cubos BI por dimensão vendas por Região por trimestre. ..... 37 Tabela 3: Armazenamentos Acessíveis por Ferramenta ...................................... 39 Tabela 4: Correspondência entre tipos de usuários e funcionalidades. ................ 43 Tabela 5: Comparação Redes Biológicas X Artificiais. ......................................... 47 Tabela 6: Requisitos de Servidores Envolvidos. ................................................... 64 Tabela 7: Tratamento de dados. ........................................................................... 70 Tabela 8: Definições das dimensões .................................................................... 71 Tabela 9: Parametrização de Alerta ...................................................................... 72 Tabela 10: Problemas X vantagens aplicadas á arquitetura proposta. ................. 76
  • 9. 6 LISTA DE FIGURAS Figura 1: Pesquisa de satisfação para Call Center, visão consumidor . ............... 11 Figura 2: Estrutura do Call Center da Empresa. ................................................... 18 Figura 3: Arquitetura Ambiente Atual. ................................................................... 23 Figura 4: CRM X DW ............................................................................................ 30 Figura 5: Estrutura – Integração ........................................................................... 32 Figura 6: Estrutura – DW ...................................................................................... 33 Figura 7: Hierarquia de Dimensões....................................................................... 35 Figura 8: Representação de um fato de vendas por meio de um cubo. ................ 36 Figura 9: Modelo Star – Estrela............................................................................. 38 Figura 10: Processo de criação e uso da inteligência. .......................................... 42 Figura 11: Parte de uma rede: duas células biológicas interconectadas. ............. 45 Figura 12: Processamento da informação em um neurônio artificial..................... 46 Figura 13: Rede neural com uma camada escondida. .......................................... 48 Figura 14: Função de soma para um neurônio (a) e vários neurônios (b). ........... 50 Figura 15: Exemplo de funções para RNA. ........................................................... 50 Figura 16: YT é o valor transformado de –Y. ....................................................... 51 Figura 17: Estruturas de rede neural: fluxo progressivo ........................................ 52 Figura 18: Estrutura recorrente comparada com fonte progressiva. ..................... 52 Figura 19: Processo de aprendizagem de uma RNA. ........................................... 54 Figura 20: Retropropagação de erros para um único neurônio. ............................ 56 Figura 21: Fluxograma do processo de desenvolvimento de uma RNA. .............. 58 Figura 22: Arquitetura do Ambiente Proposto. ...................................................... 62 Figura 23: Modelagem de dados, para o processamento do DW. ........................ 70 Figura 24: Aplicação – Funcionalidade. ................................................................ 73 Figura 25: Aplicação – Processo de Análise. ........................................................ 73 Figura 26: Aplicação – E-mail Estratégico. ........................................................... 74
  • 10. 7 LISTA DE ABREVIATURAS BAM Monitoramento de atividades de Negócios BI Business Intelligence BPM Corporate Performance management CEO Chief Executive Officer CPM Corporate Performance Management CRM Customer Relationship Managemen DW Data Warehouse DSS Decision Support Systems EIS Sistemas de Informações Executivas FCS Fatores Críticos do Sucesso MDX Multidimensional Expressions MPL Perceptron Multi-Camadas ODS Operational Data Store OLAP On Line Analytical Processing – Processamento On-line Analítico PA Posição de Atendimento PE Elementos de Processamento RNA Rede Neural Artificial SAC Atendimento ao Consumido SIG Sistemas de Geração de Relatório SSAS SQL Server Analysis Services SSIS SQL Server Integration Services SSRS SQL Server Reporting Services Forças (Strengths), Fraquezas (Weaknesses), Oportunidades SWOT (Opportunities). URA Unidade de Resposta Audível
  • 11. 8 RESUMO No ambiente corporativo de Call Center, a alta competitividade no setor torna cada vez mais necessária a inovação tecnológica e dinamismo em sua gestão além da redução de custos e menor tempo para a execução de soluções. Vale salientar a importância da eficiência quanto às decisões tomadas na gestão de todos estes itens. Como solução para os problemas vistos, tais como: operacional, estratégico, má utilização das ferramentas disponíveis. Na execução das atividades de caráter solucionador este trabalho apresenta o conceito de Business Intelligence (BI) utilizado na análise, planejamento, gestão e estratégia. Também será aplicado o conceito Inteligência Artificial - Redes Neurais, aprimorando as análises e medidas utilizadas na gestão do setor operacional, além de propor uma arquitetura estratégica que visa oferecer maior agilidade nas tomadas de decisões e na análise de problemas/ incidentes com medidas de caráter solucionador, a arquitetura proposta vai além de índices estratégicos, garante a avaliação da estratégia que está sendo tomados durante a gestão, tais pontos podem ser indicados como caso de fracasso e sucesso no planejamento de qualquer empresa. Palavras-chave: Business Intelligence, Data Mining, Processamento Analítico on-line (OLAP), Data Warehouse, Data Mart, Data Store Operacional (ODS), Integração de Dados, Modelagem Dimensional, Extração Transformação De Carga (ETL), Cubos De Dados, OLAP Multidimensional (MOLAP), Meta Estratégica, Objetivo Estratégico, Visão Estratégica, Algoritmo De Aprendizado, Aprendizado Não Supervisionado,Aprendizado Supervisionado,Função Sigmoide (Ativação Lógica),Neurônio, Camada Escondida, Processamento Paralelo, Rede Neural, Rede Neural Artificial (RNA),Taxa De Aprendizado.
  • 12. 9 ABSTRACT In the call center corporate , high competitiveness in the sector becomes increasingly necessary technological innovation and dynamism in management in addition to reducing costs and less time to implement solutions. It is worth mentioning the importanceof efficiency and of the decisions taken in the management of all these items. As a solution to the problems seen, such as: operational, strategic, misuse of the tools available. In carrying out the activities of a solver this paper presents the concept of Business Intelligence (BI) used in the analysis, planning, management and strategy. Also applied the concept Artificial Intelligence - Neural Networks, improving analysis and measures used in managing the operational sector, and to propose astrategic architecture that aims to provide greater flexibility in decision-making and problem analysis / incident with measuresof character solver, the proposed architecture goes beyondstrategic levels, ensures the evaluation of the strategy beingtaken during the administration, such points can be suggested as a case of failure and success in any business planning. Keywords: Business Intelligence, Data Mining, online analytical processing(OLAP), Data Warehouse, data mart, operational data store (ODS), data integration, dimensional modeling, extraction transformation loading (ETL), data cubes, Multidimensional OLAP (MOLAP),strategic goal, strategic objective, strategic vision, learning algorithm, unsupervised learning, supervised learning, the sigmoid function (activation logic), neuron, hidden layer, parallel processing, neural networks, artificial neural network (ANN), rate learning.
  • 13. 10 INTRODUÇÃO Telemarketing consiste em um instrumento de “inteligência e informação” voltado para atender demandas, cada vez maiores, onde o telefone deixa de ser apenas um meio simples e barato para efetivar as vendas e passa a ser manuseado como uma ferramenta de marketing mix, com benefícios de televendas agregando a capaci- dade de detectar necessidade, monitorar mercado, interagir com o cliente, realizar pós venda, pesquisa, propaganda de uma determinada empresa (Mancini, 2006). Recentemente, uma pesquisa publicada na rede de relacionamento Facebook1,na qual perguntava “Quando um operador de call center entra em contato, qual a sua reação ?”, obteve a resposta de 46 usuários, mostrando-se que, ao serem abordadas por um operador de Call Center, 43% não compram nada por telefone e 34% apesar de ouvirem a proposta da entidade, acaba não comprando, outros 21% não são receptivos e afirmam que ao atender informam que não está disponível ou ausentes. O publico pesquisado 55% eram homens e 44% mulheres, obtendo assim um índice de 34% com atuação na área de tecnologia da informação, 23% na área pedagógica, 23% não informam qual sua área e 20% atua em outras áreas. A pesquisa apresenta apenas uma amostra para o desenvolvimento deste trabalho, outro ponto levantado constatou que 68% do público pesquisado são graduados, 10% possui pós-graduação, 4,25% tem ou estuda Doutorado, 8,51% são públicos com ensino médio completo e 8% não informa no perfil seu grau de instrução. A Figura 1 - Pesquisa de satisfação para Call Center, visão consumidor - apresenta o gráfico com os demais índices obtidos nesta pesquisa, mostram que a estratégia de telemarketing chegou a um ponto onde necessita de ações á serem tomadas, para melhorar a quantidade de vendas e diferencial na hora de oferecer um serviço. As empresas de Call Center precisam de potencial para ser bem sucedidas no mercado tão competitivo, necessitam aprimorar suas técnicas de vendas e atrair a atenção de clientes durante os contatos telefônicos, mas princi- palmente, possuir a capacidade de planejamento estratégico. 1 https://www.facebook.com/questions/212753698759923/, acesso em set. 2011. Fonte: Sabrina Mariana.
  • 14. 11 25 Quando um operador de call center entra em contato. Qual a sua reação ? 20 43% 34% 15 21% 10 19 16 5 10 2% 0 1 Geralmente Aceita a Escuta a proposta, mas Não é receptivo, sempre Não compra nada por Proposta. não compra. informa que não está telefone disponível. Figura 1: Pesquisa de satisfação para Call Center, visão consumidor . Fonte: https://www.facebook.com/questions/212753698759923/ Autora: Sabrina Mariana. De acordo com Howard Dresner, vice-presidente da Gartner Group, considerada a criadora do termo Business Intelligence (BI), “a maior ameaça das empresas da atualidade é o desconhecimento... O Business Intelligence se empenha em eliminar as dúvidas e a ignorância das empresas sobre suas informações, aproveitando os enormes volumes de dados coletados pelas empresas” (Gartner, 2004). Atualmente, sistemas informatizados de apoio à decisão são ferramentas valiosas para empresas que necessitam de planejamento estratégico ágil, para obtenção de resultados efetivos em curto, médio e longo prazo. O uso da tecnologia BI vem crescendo na mesma proporção em que as empresas necessitam facilitar seus processos de tomada de decisão como, por exemplo, análises e projeções. A padronização e integração automáticas de informações provenientes de diferentes sistemas, que se tornaram possíveis com o uso da tecnologia BI, possibilitam confiabilidade e rapidez nos processos de análise de grandes volumes de dados para extração de informações estratégicas para a tomada de decisão. A disponibilidade destas informações estratégicas permite soluções lucrativas e promissoras para as empresas, favorecendo os executivos do negócio.
  • 15. 12 Objetivo Este trabalho tem por finalidade propor uma arquitetura para solucionar alguns problemas no planejamento estratégico no ambiente de call Center, além de facilitar as análises, propor decisões e acompanhar o desempenho das ações perante os resultados, auxiliará a equipe de Planejamento nas estratégias que incluem medidas de monitoração a todo o processo de venda ou prestação de serviço. A arquitetura também pode inibir possíveis fraudes no setor operacional, além de dar ênfase nas metas estabelecidas pelo cliente, gerando assim melhorias na qualidade do serviço prestado, satisfação de clientes, lucro para os acionistas e, conseqüentemente, melhoria no ambiente de trabalho. Para tal finalidade é proposto uma arquitetura de sistemas para automatizar as medidas aplicáveis de acordo com as estratégias previamente formuladas. Para a execução das propostas citadas serão empregados neste trabalho: Conceitos de Gestão de Conhecimento (FALCÃO & BRESCIANI FILHO Apud CARBONE Et Al., 2005), Planejamento Estratégico Nivem (2005), Estrutura do Ambiente de Business Intelligence (Inmon 2005; Kimball 1997) e Técnicas de Inteligência Artificial - focada para a gestão de negócios e, a exemplo deste ultimo item, Redes Neurais Artificiais (Braga 2000). No desenvolvimento do trabalho será considerada uma empresa do segmento de terceirização de serviços de Call Center para entidades como bancos e empresas de telefonia móvel ou fixa. Por motivos de sigilo comercial, neste estudo de caso, esta empresa será referenciada apenas como empresa X. Atualmente, a empresa X conta com um quadro de 5.000 colaboradores, sendo que 90% deles são operadores de telemarketing, que atendem a um total de 25 campanhas do tipo ativo (oferecimento de produtos e serviços) ou receptivo (serviço de informações e solução de problemas). A missão desta empresa é “ser a melhor ponte entre o nosso cliente e seu mercado”. Seus clientes (contratantes) são entida- des públicas e privadas em diversos segmentos da economia, o que exige estraté- gias diferenciadas para cada tipo de entidade (muitas das quais são concorrentes entre si). Na gestão estratégica da empresa X, a área de planejamento enfrenta problemas como:  Muitas ações a serem administradas, com apenas seis integrantes na equipe.  Análises são parciais para relatório de desempenho de equipe ou para BI.
  • 16. 13  O foco estratégico está voltado à campanha (ação de telemarketing) e não necessariamente às necessidades da contratante.  A tecnologia BI é essencialmente baseada em consultas a planilhas e os conceitos são mal aplicados.  Todas as campanhas trabalham com o mesmo plano de ação, porém as contratantes exigem tratamentos diferenciados em função dos problemas de desempenho identificados por elas próprias.  A rotatividade da equipe é grande, sendo assim não é aplicada a gestão de conhecimento entre os integrantes.  Os problemas de desempenho operacional não são previamente identificados, apenas são tratados depois que surgem.  As medidas estratégicas estão voltadas para correção e jamais para preven- ção de algumas situações como roubo, plágio e coletas incompletas. . Será proposto um ambiente como base uma campanha de cartões de crédito ativa, espera-se resolver ou diminuir a ocorrência destes problemas. Metodologia O estudo de caso é um tipo de pesquisa qualitativa amplamente desenvolvida na área de Tecnologia da Informação. Segundo MARTINS (2002), o estudo de caso: “É uma categoria de pesquisa cujo objeto é uma unidade que se anali- sa profundamente. Pode ser caracterizado como um estudo de uma entidade bem definida, como um programa, uma instituição, um siste- ma educativo, uma pessoa ou uma unidade social. Visa conhecer o seu “como” e os seus “porquês”, evidenciando a sua unidade e identidade própria. É uma investigação que se assume como particularística, debruçando-se sobre uma situação específica, procu- rando descobrir o que há nela de mais essencial e característico.”. A pesquisa qualitativa tem quatro características básicas:  Tem o ambiente natural como sua fonte direta de dados.  Os dados coletados são predominantemente descritivos.  A preocupação com o processo é muito maior do que com o produto.  A análise dos dados tende a seguir um processo indutivo. Para este trabalho específico, tem-se:
  • 17. 14  Método: Aplica-se ao método de pesquisa qualitativo cujo produto é uma arquitetura de sistema que poderá ser usada como uma nova ferramenta para a solução do problema mencionado. A arquitetura será documentada para implementação futura, podendo ser desenvolvida como continuidade deste trabalho.  Tipo: O tipo de pesquisa é descritivo-explicativa, abordando conceitos de ambiente de Call Center, tecnologia BI e inteligência artificial, promovendo inovação nas ferramentas de apoio à tomada de decisões estratégicas.  Delineamento: A pesquisa apresenta conceitua a integração de tecnologia Business Intelligence (BI), Data Warehouse (DW) e On Line Analytical Processing (OLAP) para gerenciar o planejamento das ações.  Coleta de dados: A pesquisa é baseada em dados coletados de livros, artigos e teses. Dados relevantes da empresa X, da qual a autora deste trabalho é colaboradora, também foram levados em consideração.  Análise de dados: A análise é feita para o caso específico da empresa X. Capítulos A seguir, apresenta-se um resumo do conteúdo de cada capítulo: 1. AMBIENTE DE CALL CENTER. Apresenta as origens do ambiente de Call Center, bem como os conceitos envolvidos na comunicação neste ambien- te, a sua infraestrutura e os seus principais elementos. 2. ESTUDO DE CASO. Aborda o ambiente da empresa e sua regra de negócio, além dos problemas. 3. PLANEJAMENTO ESTRATÉGICO E GESTÃO DE CONHECIMENTO. Define os conceitos básicos de planejamento estratégico com foco em Call Center, conhecimento e gestão do conhecimento. Em seguida discute como aplicar estes conceitos no estudo de caso deste trabalho de pesquisa 4. INTELIGÊNCIA EMPRESARIAL. Apresenta a estratégia empresarial com foco em empresas do ramo de Call Center. 5. FERRAMENTAS DE MINERAÇÃO DE DADOS. Introduz os conceitos e técnicas relativos a redes neurais artificiais e árvores de decisão. 6. ARQUITETURA PROPOSTA. Apresenta a arquitetura proposta como solu- ção para os problemas da empresa X, discute suas vantagens e desvan- tagens e indica formas de melhoria.
  • 18. 15 1 AMBIENTE DE CALL CENTER Neste capítulo, são apresentadas as origens do ambiente de Call Center, bem como os conceitos envolvidos na comunicação neste ambiente, a sua infraestrutura e os seus principais elementos. 1.1 As Origens Segundo (Mancini, 2006), em 1880, quatro anos após sua invenção, o telefone foi usado pela primeira vez no contexto de telemarketing. Neste ano, um fabricante de doces resolveu usar o telefone para oferecer seus produtos a clientes potenciais. Para tanto, ele formou uma equipe com mais de cem pessoas que ficaram responsáveis por cadastrar e contatar possíveis clientes para seus produtos. A partir daí, o uso do aparelho de telefone no ambiente empresarial se expandiu e passou a abranger não apenas vendas, mas também cobranças, entre outras finalidades. Em 1950, após a Segunda Guerra Mundial, iniciou-se o período da mídia. Veículos pas- saram a exibir anúncios contendo números de telefone para solicitação de serviços e produtos de empresas. Os donos destes veículos, além de ganhar brindes pelo serviço prestado, ainda passavam a fazer parte do cadastro de mailing da empresa. Mancini (2009) relata a história da Ford que foi pioneira no investimento de campanhas de marketing por telefone, capacitando 15 mil donas-de-casa que, de suas próprias residências, efetuavam ligações para identificar o potencial de compradores de automóveis. Estudos realizados nos Estados Unidos na década de 1970 comprovam que, nesta época, praticamente 50% dos americanos recebiam ofertas de produtos e serviços por telefone. Na década de 1980, surge oficialmente o termo “telemarketing”. No Brasil, o setor de telemarketing inicia-se com a chegada das empresas multinacionais americanas, crescendo 22% ao ano, uma taxa de crescimento muito acima da média de outros setores. Em 2000, este setor empregava 300 mil pessoas em mais de 130 mil pontos de atendimento espalhados por todo o território nacional. Atualmente o conceito de telemarketing evoluiu para o modelo de Call Center, que integra o telefone ao computador. Hoje o Call Center tem uma missão ampla, abran- gendo o atendimento às demandas do público alvo e a oferta benefícios adicionais, impulsionando a venda de novos produtos, antecipando necessidades dos clientes e
  • 19. 16 mantendo a marca da empresa, produto ou serviço, sempre viiva na mente dos con- sumidores. Um conceito derivado de Call Center, que vai ainda mais além, é o con- ceito de Contact Center. Um Contact Center centraliza, independentemente do meio utilizado, o gerenciamento das relações da empresa com a sociedade onde ela atua, proporcionando sinergia total entre produção, serviços, marketing, administração, logística e outros papéis assumidos pela companhia no desempenho de suas funções (Mancini, 2006) . Há basicamente dois tipos de serviços oferecidos por um Call Center:  Telemarketing ativo. Neste tipo de serviço, o operador de telemarketing entra em contato com (possíveis) clientes para, por exemplo, promover e vender produtos e serviços, realizar ações pós-vendas, realizar pesquisas de satisfação, responder a reclamações feitas ao serviço de atendimento ao consumidor (SAC), agendar compromissos (e.g., entrega e instalação), manutenção e atualização de cadastros, etc.  Telemarketing Receptivo. Neste tipo de serviço, os (possíveis) clientes é que entram em contato com um operador de telemarketing para, por exemplo, solicitar informações sobre produtos e serviços, obter produtos ou contratar serviços, acompanhar entregas, fazer reclamações. Em ambos os tipos de serviço, o processo de comunicação verbal é fundamental. Alguns elementos importantes neste processo são:  Emissor é o elemento que formula a mensagem, mediante o uso da palavra oral ou escrita, gestos ou desenhos, entre outros meios de comunicação.  Mensagem é o conteúdo que o emissor transmite para o receptor.  Código é um conjunto de sinais estruturados, verbais ou não, usados para expressar a mensagem a ser transmitida.  Canal é o meio pelo qual o código é transmitido do emissor ao receptor.  Ruído é qualquer interferência no canal que prejudica a transmissão do código (e.g., uma gíria desconhecida pelo receptor).  Receptor é elemento que decodifica a mensagem transmitida pelo emissor. No telemarketing ativo, emissor é o operador, mensagem é a oferta de produtos e serviços (por exemplo), canal é considerado o telefone e receptor é o cliente.
  • 20. 17 1.2 A Infraestrutura É impossível falar de Call Center sem citar a necessidade de tecnologia neste ambiente. Neste setor, quanto mais uma empresa está equipada, melhores são os resultados que ela obtém. Com relação à infraestrutura necessária para o funciona- mento de um ambiente de Call Center, pode-se citar (Mancini, 2006):  Recursos de alta disponibilidade (funcionando ininterruptamente).  Servidores duplicados (como plano de contingência).  Atualização em tempo real (registros de acompanhamento de clientes).  Cabeamento estruturado (para comunicação eficiente de dados);  Redes de flexíveis (múltiplos sistemas como voz, dados vídeos e multimídia).  Energia ininterrupta (geradores e no-breaks).  Climatização do ambiente (aparelhos de ar-condicionado);  Conjunto de fones e controle de audição (head sets).  Posição de atendimento (mobiliários ergonômicos ajustados automaticamente). Um dos fatores mais importantes na informatização do ambiente de Call Center é a integração computador à telefonia. Esta integração possibilita, por exemplo, (Mancini, 2006):  Distribuição automática de chamadas.  Apresentação de scripts, isto é, roteiros predefinidos que estabelecem como o operador deve abordar o cliente durante um contato telefônico.  Sistema de acesso e busca de informações no banco de dados.  Sistemas de gravação para monitoramento e autenticação de transações.  Tarifação automática de chamadas.
  • 21. 18 2 ESTUDO DE CASO Neste capítulo será apresentado o estudo de caso, detalhando sua estrutura e apontando os problemas identificados na empresa. 2.1 Estrutura da Empresa A Empresa X, considerada como estudo de caso neste trabalho, atua no setor de terceirização de campanhas de Call Center de diversas outras empresas públicas e privadas, industriais e comerciais. Cliente – Contratante Estrutura – Call Center – Visão Empresa Contratada Empresa Contratada Gerente de Gerente de Operações Planejamento Gerente de Recursos Humanos Coordenador de Coordenador de Operações Planejamento Administrativo - RH Supervisor Supervisor Supervisor Analista de Planejamento Recrutamento e Seleção Auditoria de Operador de Call Monitoração Qualidade Center Multiplicadores Estrutura – Call Center Visão Campanha – Determinada Entidade Área de Recursos Humanos Figura 2: Estrutura do Call Center da Empresa. Fonte: Empresa X. Autora: Sabrina Mariana. Como mostra a Figura 2 – Estrutura do Call Center da Empresa, o ambiente de Call Center tem os seguintes elementos:  Cliente–Contratante: domina as informações sobre o mercado, bem como sobre o produto ou serviço a ser oferecido, necessárias para subsidiar e per- mitir a capacitação adequada de operadores e supervisores.
  • 22. 19  Gerente de Operações: principal elo de comunicação com o Cliente– Contratante (entidade representativa). Deve conhecer em profundidade todos os elementos do marketing mix (concorrência, prospect, clientes atuais, políti- cas econômicas, tendências tecnológicas, aspectos culturais), além dos aspectos de Call Center e da equipe cuja gestão é sua responsabilidade.  Coordenador de Operações: responsável por orientar as atividades da área de Call Center. Analisa o trabalho realizado pela equipe e verifica o desem- penho das atividades. Compara os resultados alcançados com os padrões de atendimento preestabelecido. Realiza as correções necessárias e aperfeiçoa os métodos para cumprir as metas e manter qualidade.  Supervisor: orienta a força das vendas para otimizar o desempenho, a disci- plina e o bem-estar da equipe. Precisa conhecer bem o produto para instruir a equipe envolvida e repassar informações atualizadas da empresa. Deve também elaborar escalas de trabalho e manter a equipe motivada, transmitin- do segurança, energia, domínio técnico, comunicação e cordialidade.  Auditoria de Qualidade: opera em contato direto com o público. Deve garantir a efetividade do contato com o cliente, verificando se o cliente aceito o serviço ou produto oferecido durante o primeiro contato com o operador.  Monitoração: monitora e mantém a qualidade de atendimento dos opera- dores, observando, gravando e gerenciando o sistema. Deve monitorar os resultados e apontar os erros e acertos da equipe.  Gerente de Recursos Humanos: Responsável pela área de Administrativo de Recursos Humanos, Recrutamento e Seleção além dos Multiplicadores.
  • 23. 20  Administrativo RH: Contempla as equipes de folha de pagamento, ponto, benefícios.  Recrutamento e Seleção: Seleciona pessoas adequadas ao projeto, com facilidade para assimilar as informações sobre a mensagem a ser transmitida.  Multiplicadores: cabe á área a motivação da equipe para uma melhor qualidade de trabalho, compõe entre treinamentos das ferramentas, produtos e serviços.  Operador de Call Center: opera em contato direto com o público: recebe ou faz chamadas, fornece informações sobre produtos e serviços, realiza abor- dagem e argumentação. Deve manter saudável o relacionamento da empresa contratada com os (possíveis) clientes, fortalecer a marca, vender, pesquisar, informar ou reativar produtos e serviços, atuando positivamente como o canal de comunicação entre o mercado.  Gerente de Planejamento: propõe um cronograma para campanhas / empresa, detalhando o tempo de execução para atingir a meta e cada etapa a ser executada como troca de mailing, relatórios gerenciais, as informações servirão tanto para orientar a equipe, quanto outras áreas da empresa.  Coordenador de Planejamento: Responsável pelas ações nas operações realizadas pelos analistas de planejamento, além de administrar a equipe.  Analista de Planejamento: define estratégias para manter ou ampliar com efetividade os serviços prestados aos clientes contatados. Desenvolve scripts a serem seguidos pelos operadores, administra a distribuição do mailing entre os operadores, de acordo com perfil operador.
  • 24. 21 2.2 Regra de Negócio Para compreensão do ambiente como um todo, o cliente contratante fornece o mailing mensalmente com a lista de consumidores/clientes. Conforme o Apêndice A, no ambiente operacional, o operador de Call Center entra em contato para fornecer o cartão de crédito com base na listagem recebida, os produtos são pré- determinados de acordo com a renda e limite disponível. Em média um supervisor possui quarenta operadores de telemarketing para incentivar e orientar, durante um contato todos os contatos é gravado. Quando é efetuada uma venda pelo operador, antes de finalizar o contato, a ligação é transferida para área de auditoria para efetuar a confirmação da compra. Após todo esse processo a equipe de Monitoração, escuta o contato e avalia a qualidade e clareza das informações passadas ao consumidor. Toda e qualquer ligação para o consumidor deve definir um status do telefone, por exemplo, “não atende - manhã”, “volta á ligar ás 20h”, “Ocupado”, ”Cliente prefere outros cartões do concorrente” entre outros status, mesmo que o consumidor tenha mais que um telefone, vai considerar o último status gravado, ou seja, tabulado. A meta da campanha é definida pela entidade, tem como base o total de nomes enviados no mailing, além do total de operadores focados na campanha, a meta é dividida entre equipes envolvidas e novamente dividida por quantidade de operadores pagos pela entidade, em média os operadores devem entregar 120 cartões vendidos, para uma campanha de quarenta pessoas cada equipe deve entregar 4.800 cartões, considerando dois turnos de trabalho, pode-se ter como base uma meta de 9.600 cartões que devem ser vendidos no mês, seguindo os critérios que as vendas não devem ser canceladas após entrega do cartão ao consumidor. Um operador de Call Center trabalha por seis dias por semana, com base na meta deve vender cinco cartões por dia. Durante o mês a equipe de planejamento acompanha o andamento da campanha como um todo, os supervisores são responsáveis para acompanhar a meta de cada operador e auxiliar no que for necessário para atingir a qualidade. Quando uma campanha ou equipe está com problemas para atingir a meta, exige que as áreas de planejamento junto com equipe gerencial das operações criem uma ação motivacional, onde os operadores de telemarketing obtenham mais resultados durante seu contato, ou seja, realizam mais vendas. A entidade paga um valor X por cada ponto de
  • 25. 22 atendimento contrato, se a meta for atingida a empresa de Call Center recebe um valor á mais, caso contrário apenas receberá os honorários por serviço prestado. Atualmente cada vez mais há dificuldade para atingir uma meta, para todo o ambiente apresentado, os problemas enfrentados são:  Rotatividade na equipe;  Equipe de planejamento tem muitas campanhas para serem administradas, onde nem todas pode gerenciar a estratégia concedida pela gerencia.  Contatos monótonos cansam cada vez mais os consumidores, na hora de oferecer um produto ou serviço;  O BI aplicado na empresa trata-se de um Data Mining geral, onde cada cubo tem em média de quatorze dimensões.  As análises efetuadas são com base em D-1.  O conceito de BI não está aplicado adequadamente, pois utilizam a ferramenta como relatório e não análise histórica para planejamento. 2.3 Características Atualmente a empresa possui o Data Mining, extraídos por um arquivo em Excel onde somente é utilizado como relatórios diários e não para análise da campanha. Muitos problemas operacionais são identificados, após o não cumprimento da meta, mas poderiam ser resolvidos, caso houvesse um acompanhamento mais eficaz quanto às informações fornecidas pelo sistema quanto às ações de planejamento. Toda a ação realizada no Ambiente Operacional é gravada em um Banco de Dados Transacional, analisando o modelo de dados do sistema legado existente no estudo de caso referenciado, os relatórios apenas listam as informações de vendas por operadores e qual o tipo de produto comprado. A necessidade gerencial precisa ter uma visão voltada para o futuro, com base fatos históricos, mas não é viável a geração de tantos relatórios diariamente onde a informação não será essencial.
  • 26. 23 2.4 Arquitetura de Processamento 2.4.1 Ambiente Atual A estrutura do ambiente atual está apresentada na Figura 3, apresenta somente um servidor para o ambiente de produção, não contendo nenhum de contingência, pois há um servidor somente para extração de relatório pôr são apenas replicadas as tabelas essenciais para o relatório. Para o servidor de Data Warehouse suporta todo o processamento do BI, executado alimentação das tabelas somente durante a madrugada e o processamento do cubo após tal processamento, com este ambiente apenas permite análise de dados, baseando-se em D-1, ou seja, somente com data e status do dia anterior. SQL Server Replicação Parcial BD Transacional Replicação - Relatório Processamento de informação SQL Server BD Transacional Produção SQL Server Data Warehouse Usuário Consulta Excel Figura 3: Arquitetura Ambiente Atual. Fonte: Estrutura dos servidores na empresa X. Autora: Sabrina Mariana.
  • 27. 24  SQL Server BD Transacional Produção: responsável por armazenar os dados durante utilização do sistema utilizando pelo ambiente operacional. Os backups são realizados full aos Domingos e diferenciais durante a semana. Não há plano de contingência.  SQL Server BD Transacional Replicação - Relatório: responsável por armazenar somente as tabelas principais e tabelas de relatório, tem como base uma replicação realizada a cada 5min. Não há plano de contingência. È armazenado as tabelas fatos utilizada para o DW.  SQL Server Data Warehouse: armazena os cubos OLAP, responsável pelo processamento. O usuário acessa para consulta via planilha de Excel com conexão na fonte de dados.
  • 28. 25 3 PLANEJAMENTO ESTRATÉGICO E GESTÃO DE CONHECIMENTO Neste capítulo é abordada a necessidade de excelência operacional que leva à necessidade de planejamento estratégico. Sem objetivos e metas, não é possível guiar as ações da empresa, no sentido de obter os resultados esperados; não há como identificar oportunidades, nem avaliar ações alternativas para melhor desempenho na obtenção de resultados. Muitas definições podem ser dadas para o termo “planejamento estratégico”; porém, basicamente, todas elas relacionam este termo com a resposta da pergunta “Onde desejamos estar no futuro?”. 3.1 Planejamento Tipicamente, o planejamento estratégico inicia após a definição da missão e das metas da empresa. A partir daí, planos estratégicos são traçados para as unidades de negócios da empresa, ou unidade funcionais. Independentemente do nível no qual o planejamento estratégico é elaborado – nível da empresa como um todo, nível das unidades do negócio, ou no nível das unidades funcionais – este deve considerar as seguintes etapas (Wade & Recardo, 2001):  Análise da Situação Atual. Consiste em encontrar uma resposta para a pergunta “Onde Estamos?”. A análise da situação atual estabelece uma linha base para o planejamento estratégico, identificando as principais tendências para o desempenho operacional e financeiro da empresa.  Determinação do Horizonte de Planejamento. Consiste em definir o perío- do para o qual o planejamento está sendo feito como, por exemplo, para o período de um ano.  Varredura de Ambiente. Consistem na análise e julgamento de forças, fraquezas, oportunidades e ameaças (SWOT) da empresa, levando em conta o mercado, a concorrência, o governo, os índices demográficos, os acionistas e os principais fatores de satisfação do cliente.  Identificação de Fatores Críticos do Sucesso (FCS). Consiste na identifica- ção de fatores que devem ser priorizados para que a empresa se sobressaia entre suas concorrentes e tenha espaço e sucesso no seu mercado.
  • 29. 26  Análise de Compleição de Lacunas. Consiste na identificação e priorização de fraquezas e forças no processo da empresa como um todo.  Visão Estratégica. Consiste na determinação da imagem que a empresa pretende ter no futuro.  Estratégia de Negócio. Consiste no desenvolvimento de uma estratégia ba- seada em dados e informações obtidos nas etapas anteriores.  Identificar Objetivos e Metas Estratégicas. Descrições das direções para uma empresa, ou seja, a definição de um objetivo diferencial quanto ao mercado, na qual exige que uma meta seja bem definida.  Definir a Meta Estratégica. Qualificar os objetivos definidos com base em cronograma. As metas e alvos estratégicos guiam para execução operacional e permite que o progresso seja rastreado em relação aos objetivos gerais. 3.1.1 Lacuna Estratégica De acordo com a revista FORTUNE de 1999, 70% das falhas de CEOs são resultantes de execução ruim, ao invés de estratégicas ruins (Craran & Colvin, 1999). Nivem (2005) apontou quatro fontes de lacuna entre a estratégia e execução:  Visão – uma citação do filme Rebeldia Indomável, “O que temos aqui é uma falha de comunicação”, aplica-se á visão estratégica.  Pessoas – planos de incentivos são ligadas á resultado financeiros á curto prazo, não ao plano estratégico ou iniciativas estratégicas articuladas no plano operacional (Plano de projetos designado para assegurar que a estratégica da empresa seja realizada).  Gerenciamento – pode gastar tempo nos problemas, ao invés de concentrar nos elementos da estratégia.  Recursos – constantemente é questionada a necessidade para o orçamento e todo o processo em si.
  • 30. 27 3.1.2 Medida de Desempenho A estratégia tratada na pesquisa será aplicada á sistemas de medida de desempenho, de acordo com Simons (2002), tratam como medidas de comparação, na qual auxiliam os gerentes á identificar as implementações á estratégica de negócio, com análise dos resultados reais e tem como base as metas e objetivos. O projeto da pesquisa permitirá a medida de desempenho englobando os métodos sistemáticos de união de metas de negócio com relatórios de retorno periódicos – que indicam fatores de atenção ou sucesso. 3.1.3 Estratégia no Call Center Para melhores estratégias em Call Center, tem por base os elementos básicos:  Plano Estratégico, com objetivos e metas deve ser definido;  Cadastro do cliente confiável e atualizado;  Clara definição do produto, serviço ou mensagem á oferecer;  Capacitação de todos os setores envolvidos para que a empresa torna-se colaborativa;  Call Center bem equipado, treinado e motivado. Para o sucesso da operação com base na estratégia, deve identificar se a campanha trata-se de telemarketing ativo ou receptivo, definir o produto ou serviço á ser vendido, possuir o acompanhamento após recebimento do produto ou realização do serviço, considerada como pós-venda. Atualizar o cadastro do consumidor e ter acompanhamento de contatos (follow-up). A análise de custo e benefícios em comparação ao desempenho com outras campanhas pode auxiliar na sintonia do trabalho com equipe e atingir o objetivo da campanha, ou seja, atingir a meta proposta pelo cliente. Para empresa de terceirização do serviço de Call Center, os recursos alocados e qualificação dos membros faz a diferença nas metas estabelecidas pela entidade, os objetivos sempre são quantitativos com metas de curto, médio e longo prazo, sendo assim é possível avaliar o retorno, desafio e efetuar correções estratégicas.
  • 31. 28 Operacionalmente deve conter um estudo do perfil do público alvo da entidade, seleção de mailing, elaboração de script, capacitação de profissionais e homologa- ções nos sistemas a fim de avaliar a necessidade do processo da campanha ativa ou receptiva. Durante o planejamento, devem ser respondidas as perguntas básicas quanto ao produto ou serviço: O quê? Como? Quanto? Quando? Quem? 3.2 Gestão de Conhecimento Algumas definições de conhecimento são: “Ato ou efeito de conhecer, realizado por meio da razão e/ou da experiência.” 2 Dicionário Houaiss “Conhecimento consiste em uma crença verdadeira e justificada.” 3 Platão – 428 A.C. a 347 A.C. Em qualquer segmento, o conhecimento é um elemento chave. Na área operacio- nal de um Call Center, quem tem maior conhecimento sobre o produto ou serviço oferecido, também tem maior facilidade de administrar as estratégias necessárias em uma campanha, como identificar o perfil da equipe de operador e cruzar com o perfil dos clientes potenciais a serem contatados. Uma definição de gestão de conhecimento é: “Processo pelo qual uma organização consciente e sistematicamente coleta, organiza, compartilha e analisa seu acervo de conhecimento para atingir seus objetivos”. (Falcão & Bresciani Filho apud Carbone et al., 2005, p. 82) 2 http://houaiss.uol.com.br, acesso em ago. 2011. 3 http://www.santanna.g12.br/professores/marcelo_etica/tipos_de-conhecimento_humano.pdf
  • 32. 29 3.2.1 Aplicabilidade Para a gestão do conhecimento, tem como objetivo:  Tornar acessíveis grandes quantidades de informação organizacional;  Permitir a identificação e mapeamento dos ativos de conhecimento e informações;  Apoiar a geração de novos conhecimentos, propiciando o estabelecimento de vantagens competitivas;  Organiza e acrescenta lógica aos dados de forma a torná-los compreensíveis;  Aumentar a competitividade da organização através da valorização de seus bens intangíveis. Vantagem competitiva em relação à concorrência, quanto á gestão do conhecimento em Call Center:  Redução dos custos e tempo de produção e desenvolvimento de produtos;  Rápida comercialização de novos produtos;  Processos internos e maior fluidez nas operações;  Tomada de decisões mais eficientes e melhores resultados;  Coordenação de esforços entre unidades de negócios;  Prestação de serviços (agilidade), da qualidade dos produtos e da qualidade do serviço cliente.
  • 33. 30 4 INTELIGÊNCIA EMPRESARIAL O capitulo terá como objetivo abranger tecnologias que auxiliam para tomadas de decisões corporativas, para os executivos mais experientes, o gerenciamento da tomada de decisões pode ser extremamente facilitado com uso de ferramentas informatizadas. Hoje as empresas estão informatizadas ao ponto de exigir sistemas para análise de desempenho, que consistem em sistemas distribuídos, com acesso a extranet e à internet, que podem ser acessados de qualquer lugar. A integração dos sistemas auxilia cada vez mais a comparação e análise de dimensões distintas no mundo do negócio. 4.1 CRM CRM (Customer Relationship Management – Gestão de Relacionamento com o Cliente) está ligado a hábitos de compras, ao individuo, ou público alvo de alguma entidade. Sistemas que possibilitam que as empresas projetem o futuro potencial de cada usuário (como futuros produtos que podem ser adquiridos da organização) permitem atender a cada cliente de uma forma personalizada e até mesmo a perso- nalidade que compõe a carteira de clientes. São pontos principais no CRM: identificar o cliente, diferenciar, interagir e perso- nalizar o contato, conhecer suas preferências e dados pessoais. Todas as informa- ções coletadas durante um contato podem auxiliar nas análises do cliente, como: Segmentação, análise da campanha, vendas, fidelidade, lucratividade, desempenho nos negócios, atendimento ao cliente. Para conhecer os clientes com base no histórico de compra ou opções no mercado, aplica-se o conceito de Data Warehouse, conforme Figura 4. Dados do CRM Data Warehouse – Operacional DW Integração e análise de dados CRM Figura 4: CRM X DW Fonte: Machado (2008 p 18)
  • 34. 31 4.2 Data Warehouse Data Warehouse (DW) é uma coleção de dados projetada para oferecer suporte à tomada de decisões, contém variedade de dados que representam as condições da empresa em um determinado ponto no tempo. A estrutura técnica de um DW é um banco de dados (armazém de dados) que contém as informações do sistema, incluindo dados históricos, aparentemente on- line, porém é montada e organizada em uma forma que oferece rapidez e eficiência nas consultas, análise e suporte à decisões. De acordo com BILL IMON (1987) e RALPH KIMBALL (1998): O Data Warehouse é parte de um sistema completo de Business Intelligence. Uma empresa possui um Data Warehouse, de onde os Data Marts extraem sua informação. No Data Warehouse, as informações são armazenadas em terceira forma normal. (Inmon,1987) O Data Warehouse é o conglomerado de todos os Data Marts da empresa. A informação sempre é armazenada em modelo dimensional. (Kimball,1998) 4.2.1 Características O DW integra e consolida as informações de fontes internas e externa, suma- rizando, filtrando e limpando esses dados, preparando para análise e suporte à decisão. São características do DW:  Extração de dados de fontes heterogêneas;  Transformação e integração dos dados antes de sua carga final;  Requer recursos de hardware e suporte;  Diversos níveis para visualização;  Utilização da ferramenta voltada para os diferentes níveis de apresentação;  Dados somente são inseridos, não existindo atualização ou alteração. Para o processamento que alimenta os dados no DW, a integração dos dados é fundamental. Por exemplo, no sistema de cadastro de clientes de uma determinada entidade, pode ser apresentado como o tipo de sexo: 1 – Feminino / 2- Masculino, no sistema CRM da entidade o tipo de sexo é representado: “f” – Feminino / “m”- Masculino. Na mineração dos dados, estes campos devem ser unificados na sua representação (Figura 5). Essa informação pode contribuir para análise e tomada de
  • 35. 32 decisão do tipo: funcionárias são mais efetivas em vendas com clientes do sexo masculino, então é melhor destinar somente contatos de clientes do sexo masculino para as funcionárias. O sistema transacional coorporativo tem como foco o projeto de banco de dados e o projeto dos processos transacionais e suas atividades e controles operacionais. Por outro lado, o DW tem como foco a modelagem dos dados e o projeto de banco de dados. 1 – Feminino / 2- Masculino BD Cadastro de Funcionários Mineração de Dados Extração DW Filtro “F” – Feminino BD Cadastro de Clientes ( Mailing ) “M”- Masculino “f” – Feminino / “m”- Masculino Figura 5: Estrutura – Integração Fonte: Machado (2008 p 31) Adaptado. As principais justificativas para implantação de DW numa empresa são:  Diversas plataformas de hardware e software;  Sistemas transacionais corporativos sofrem diversas alterações;  Risco / Dificuldade de restore de dados de uma empresa com dados que antecedem há um ano;  Diversos sistemas em “pacotes” de fornecedores diferentes;  A integração de dados existentes em diferentes sistemas;
  • 36. 33  Falta de documentação e segurança nas tratativas de armazenamento dos dados;  As aplicações de EIS e DSS há dificuldade quanto à dependência de multi- plataformas nos sistemas coorporativos;  A empresa pode montar o DW tendo uma base global ou local;  Pode implicar na utilização de arquiteturas especificas para a construção de um DW, as quais têm evoluído desde o inicio da plataforma. 4.2.2 Arquitetura A arquitetura DW engloba estrutura de dados, mecanismo de comunicação, processamento e apresentação da informação para o usuário final. Figura 6: Estrutura – DW Fonte: http://www.fulcrumlogic.com/data_warehousing.shtml A estrutura – DW, apresentada na Figura 6, pertencem ao conjunto de ferramentas que envolvem desde a carga até o processamento de consultas, como repositório de dados, como Data Warehouse e Data Mart, são divididas em dois grupos de ferramentas:
  • 37. 34  Relacionadas à carga inicial e ás atualizações do DW, efetua a extração dos dados de diversos sistemas operativos e fontes externas, filtrando, limpando e tratando e integração dos dados;  Consultas realizadas pelo usuário final, para elaboração de relatórios, pes- quisas, análise de desempenho e mineração dos dados – Data Mining. Arquitetura Global em um DW constitui um repositório de dados com grande grau de acessibilidade, com base na necessidade da empresa como um todo. Habilita que os usuários tenham a visão corporativa de dados, normalmente são requisitos de negócio, entretanto esse tipo de ambiente consome tempo e administração e com custo mais alto. Para a mineração de dados é utilizado o Operational Data Store (ODS)4 que consiste numa base de dados que compartilha dados de ambiente de produção. Na arquitetura proposta neste trabalho, o ODS será usado para alimentar o DW. 4.2.3 Variação Tempo Os dados tratados no DW são precisos quanto ao tempo, representam resultados operacionais em determinado momento de tempo, na qual foram capturados – dados do DW são classificados como snapshot, ou seja, um conjunto estático de registros de uma ou mais tabelas, capturados em um determinado momento. O dado de um sistema transacional reflete o valor corrente, a exatidão é válida, mas pode ser alterado, logo atualizado. Na aplicação DW a dimensão "Data" é extremamente importante e de grande valia para a realização de análises. Nesta dimensão pode-se consultar os dados armazenados por um período de até 10 anos, com seus respectivos históricos previamente datados e detalhados. 4.2.4 Modelagem Multidimensional Uma técnica de concepção e visualização de um modelo de dados de um conjunto de medidas que apresentam aspectos comuns de negócios sumariza a estrutura de dados para serem visualizados nas análises. O modelo multidimensional que será utilizado na aplicação possui três elementos básicos. 4 http://www.factdata.com.br/index.php?option=com_content&task=view&id=38&Itemid=27. Acessado Setembro – 2011.
  • 38. 35  Fatos: uma coleção de itens de dados, composta de medidas e conceitos. Cada fato representa um item, uma transação ou um evento de negócio, usa- do para analisar o processo de negocio de uma empresa. Como característica um fato é representado por valores numéricos e implementado em tabelas denominadas tabelas fato (fact table).  Dimensões: São elementos que participam de uma Tabela Fato permitindo ao usuário a visualização de filtros, tais como: Por Mês, Por Produto, Por Região, etc. Nestas dimensões, em um cubo BI de venda de produtos, pode-se consultar: Data da venda/contato, Localização de cliente, Vendedores e Cenário (realizados / projetados).  Membros das Dimensões: trata-se da hierarquia de uma dimensão, uma classificação dentro de uma Dimensão. Por exemplo, na dimensão Data tem a hierarquia apresentado na Figura 7. Ano Trimestre Mês Semana Dia Figura 7: Hierarquia de Dimensões Fonte: Machado (2008 p 117) Adaptado.  Medidas (Variáveis): São atributos numéricos que representam um fato, uma medida é determinada pela combinação das dimensões que participam de um fato, e estão localizadas como atributos de um fato. Segundo Kimball (1997), desenvolver um DW é uma questão de casar as neces- sidades dos seus usuários com a realidade dos dados disponíveis. Aponta um conjunto de pontos fundamentais no projeto de uma estrutura de DW, chamado de ponto de decisão, constituem em definições que correspondem a etapa do projeto:
  • 39. 36  Os processos, por conseqüência, a identidade das tabelas fatos;  A granularidade de cada tabela de fatos;  As dimensões de cada tabela de fatos;  Os fatos, incluídos fatos pré-calculados;  Os atributos das dimensões;  Como acompanhar mudanças graduais em dimensões;  As agregações, dimensões heterogenias, mini dimensões e outras decisões do projeto físico;  Duração histórica do bando de dados do DW;  A frequência com que se dá a extração e a carga para o DW. Kimball (1997) recomenda que essas definições se façam de ordem citadas. Essa metodologia segue a linha de top down, pois começa identificando os grandes pro- cessos da empresa, mapeando esses processos de negócio. O modelo multidimensional é facilmente representado como um cubo. A Figura 8 apresenta um fato vendas por meio de um cubo. Figura 8: Representação de um fato de vendas por meio de um cubo. Fonte: MACHADO (2008 p 82).
  • 40. 37 Medida do volume de vendas é determinada pelas dimensões: localização, produto e tempo. A dimensão localização e produto possuem dois níveis de hierarquia. Cada sub-cubo possui o valor da medida d quantidade de venda. A denominação CUBO trata-se apenas da aproximação da forma como os dados estão organizados, mas não representa a expressão de uma realidade. O processo de analise para saber as vendas totais classificadas por região de venda pode ser visualizado da seguinte forma. Região Venda Sul $ 1.500,00 Sudeste $ 5.000,00 Nordeste $ 2.350,00 Norte $ 1.890,00 Centro-0este $ 1.732 Total de Vendas $ 11.472,00 Tabela 1: Consulta Cubos BI por dimensão vendas por Região. Fonte: Machado (2008 p 83) Tal analise pode ser expandido, utilizando a hierarquia da dimensão data, sendo assim possibilita a consulta conforme Tabela 2. Região Trimestre Venda Sul 1 $ 250,00 2 $ 700,00 3 $ 250,00 4 $ 300 Tabela 2: Consulta Cubos BI por dimensão vendas por Região por trimestre. Fonte: Machado (2008) Pag. 84 - Adaptada.
  • 41. 38 4.2.5 Estrutura Multidimensional Existem diversos modelos de dados multidimensionais, para aplicação do trabalho será apenas detalhado o modelo que será aplicado na arquitetura OLAP. Modelo Star ou Estrela: Trata-se de uma estrutura básica de um modelo de dados Multidimensional, sua composição possui uma grande entidade central denominada fato (fact table) e um conjunto de entidades menores denominadas dimensões (dimension table), organizadas visualmente ao redor dessa entidade central, formando uma estrela conforme Figura 9, já representando o ambiente da aplicação. Dimensão de Tempo Dimensão Cliente Dimensão Região Fatos de Vendas Dimensão Vendedor Dimensão Produto Figura 9: Modelo Star – Estrela. Fonte: Machado (2008 p 93) Adaptado. Na Figura 9, o centro da estrela é o fato vendas, e os seus redores estão as dimensões: vendedor, cliente, produto, região e tempo. Os relacionamentos entre as entidades fato e as dimensões são simples ligações entre as duas entidades em um relacionamento de uma para muitos no sentido da dimensão para o fato.
  • 42. 39 4.2.6 Storage Modes As agregações são valores de medidas somando com diversos cruzamentos possíveis de dimensões de um cubo, as informações dos cruzamentos ficam armazenadas não havendo necessidade de recalcular o cruzamento dos dados, possibilitando uma análise e pesquisa rápida. Quando é criado um cubo deve ser informada a forma que será armazenada. Na ferramenta de Analysis Services, plataforma Windows, tem opção de MOLAP, ROLAP e HOLAP como forma de armazenamento, o armazenamento utilizado na aplicação proposta no trabalho será a MOLAP, uma breve classificação de ROLAP e HOLAP está disponível no próxima seção 4.3.7. MOLAP: Toda a estrutura é armazenada em um modelo multidimensional, onde após o processamento do cubo, o Analysis Services não faz mais uso do modelo relacional, e sim multidimensional. Considerado mais comum para soluções OLAP que apresenta melhor desempenho, a única desvantagem é o processamento constante do cubo – quando o DW é atualizado, para que os dados sejam visualizados é necessário processar o cubo, neste processo é agregado aos novos dados. 4.2.7 Ferramentas OLAP As ferramentas OLAP, permitem que o usuário analise a justificativa dos resul- tados obtidos, existem diversas ferramentas disponíveis, conforme conceituadas na Tabela 3. Classificação Ferramenta Armazenamento acessível – Storage Mode OLAP ROLAP Relacional Relacionais. Multidimensionais – por meio de cubos e MOLAP Multidimensional hipercubos. HOLAP Híbrida Relacionais e Multidimensionais. DOLAP Desktop Emprega aos BD individuais e análises de DM. Tabela 3: Armazenamentos Acessíveis por Ferramenta Fonte: Machado (2008).
  • 43. 40 4.2.8 Data Marts O DW une todos os bancos envolvidos de uma empresa, o Data Mart normalmente é menor, trata assunto ou departamentos específicos, pode ser considerado um subconjunto de um DW, podendo ser:  Dependente – suportam o conceito de um único modelo de dados na empresa, mas o DW deve ser estruturado antes, garantindo que o usuário visualize a versão de dados apresentada pelos outros usuários do DW.  Independente – um Warehouse pequeno, com finalidade para apenas uma unidade estratégia de negócio (UEN) ou um departamento. As vantagens de usar modelos de dados consistentes e apresentam dados de qualidade. 4.2.9 Arquitetura A arquitetura de Data Mart pode ser:  Independente: Controladas por um grupo de usuários, atende somente as necessidades específicas da campanha / entidade em uma empresa de Call Center, sem foco corporativo. Esta arquitetura não permite a conectividade de com outros Data Mart aplicadas para outras entidades, até concorrentes. Não permite uma visão global, ou seja, analise de toda a empresa prestadora de serviços.  Integrados: São Data Mart integrados e conectados com visão toda da empresa, similar a arquitetura global, os usuários podem acessar as informações de outras campanhas / entidades. Com base no estudo de caso já mencionado na introdução deste trabalho, para garantir segurança de dados, sigilo na estratégia de cada cliente/entidade será utilizado a arquitetura de Data Mart independente, ou seja, para cada campanha será criado um repositório de dados – DW, assim extraído para o conceito de Data Mart.
  • 44. 41 4.2.10 Data Mining Data Mining consiste num conjunto de técnicas para análise de informação, procura padrões ocultos em coleção dos dados que podem ser utilizados em análise históricos com enfoque no futuro. Sua finalidade é facilitar a análise em grandes dimensões no armazém de dados, identificando significativas correlações, padrões e tendências. 4.2.11 Histórico e Definição – Business Intelligence De acordo com a definição do livro Business Intelligence – TURBAN, CsShardam Aronzon, King – Business Intelligence (BI) é um termo considerado “guarda-chuva”, foi batizado o termo por volta de 1990, pela Garner Group - empresa de consultoria fundada em fundado em 1979 por Gideon Gartner, mas aplicabilidade teve inicio muito antes, nos sistemas de geração de relatório (SIG) por volta de 1970, neste período os relatórios eram estáticos, bidimensionais e não permitia recurso de análise. No início de 1980, surgiu o conceito de sistemas de informações executivas (EIS), expandiu o suporte computadorizado aos gerentes e executivos de nível superior, os recursos foram os sistemas de relatórios dinâmicos multidimensionais , prognósticos e previsões, análise de tendências , detalhamento, acesso a status e fatores críticos de sucesso, até no meio da década de 1990 os recursos apareceram em dezenas de produtos comerciais, após esses recursos e novas funcionalidades deram origem ao conceito de BI. Atualmente reconhece que as informações na qual os executivos necessitam podem ser fornecidas pela arquitetura BI. Em 2005, aprimorou os recursos do BI interagindo com o conceito dá inteligência artificial. A grande vantagem do BI é fornecer as informações que uma empresa precisa quando necessário, podendo ser em tempo real para análise de desempenho corporativo. (THOMPSON 2004) Apontou que as áreas mais comuns de aplicação BI são relatórios gerais, análise de vendas e marketing, planejamento e previsão, consolidação financeira, relatórios regulamentares, orçamento e análise rentabilidade. THOMPSON também menciona que os maiores benefícios do BI são:  Geração de relatório mais rápida e precisa;  Melhor tomada de decisões;  Melhor serviço ao cliente;  Maior receita.
  • 45. 42 O processo de criação de inteligência inicia na identificação e priorização de projetos específicos de BI nas organizações. O processo cíclico com uma seria de etapas inter-relacionadas, a principal etapa é a análise onde são convertidos os dados em informações, na qual dará suporte na decisão. Com o DW é definido a criação da inteligência, começa pela identificação e prioridades definidas no BI, onde cada projeto pode ser examinado os custos em relação ás fases em geral, permite a estimativa de envolver análises do usuário sobre o impacto das decisões, contabilizando os benefícios e fluxo no caixa. Figura 10: Processo de criação e uso da inteligência. Fonte: krizan (1999, p. 8) Com processo de criação e uso de inteligência, o banco de dados considerado consolidado para análises multidimensionais pode ser chamado por Cubos BI, facilitam o ambiente corporativo criando um clico de geração de inteligência focado ao mercado, estratégia e metas á serem definidas.
  • 46. 43 4.2.12 Comunidade de Usuários de BI A comunidade de usuários de BI é grande e diversificada, o sucesso de análises depende em parte quais as pessoas na organização fariam uso. A Tabela 4 representa diferentes usuários que utilizam a ferramenta de acordo com o estudo de caso. Clientes De Extranet: Tipos De Usuários Gerentes Equipe De TI Executivos Informação Parceiros, Usuário Avançados Funcionais Esporádicas Consumidores Número de Dezenas e Centenas e Centenas e Poucos Dezenas Dezenas usuários centenas milhares milhares Desenvolvedor Consulta Administrador, Ad hoc, Dashboard Relatórios Metadados, Dados Ferramentas Relatórios de Indicador, Planilha Relatórios de Segurança, Relatórios e Funções de OLAP, Data Relatórios Visão de Planilha gerenciamento, Acompanhamento. BI Mining, de COM e OLAP, BAM, Consultas. Aplicações e Análise PM. COM. Integração. Avançada. Valor Baixo Alto Muito Alto Médio Baixo Alto Estratégico Tabela 4: Correspondência entre tipos de usuários e funcionalidades. Fontes: Compilado de Gartner Inc. (2004) ; Imhoff e Petti (2004).
  • 47. 44 5 INTELIGÊNCIA APLICADA AO NEGÓCIO Neste capitulo será apresentado os conceitos de redes neurais, tais como seu processamento e a forma que são tratados os dados. 5.1 Redes Neurais Artificiais O final da década de 1980 marcou o ressurgimento da área de Redes Neurais Artificiais (RNAs), conhecida como conexionismo ou sistemas de processamento paralelo e distribuído, que constitui em uma alternativa à computação algorítmica convencional (Braga, 2000). Redes neurais representam uma metáfora do cérebro para processamento da informação, são biologicamente inspirados e não são uma réplica exata de como o cérebro realmente funciona. O cérebro humano tem em torno de 10 bilhões neurônios, as funções e movimentos do organismo estão relacionados ao funcionamento destas pequenas células. Os neurônios estão conectados uns aos outros através de sinapses, e juntos formam uma grande rede, cada rede contém alguns milhares de neurônios interconectados, o cérebro pode ser visto como uma coleção de redes neurais. Uma parte da rede é composta por duas células que compõe:  Núcleo: parte de processamento central da célula.  Dendritos: fornecem sinais de entrada para a célula.  Axônio: envia sinais de saída para a célula2 através dos terminais do axônio, unindo-se aos dendritos da célula. Nos neurônios a comunicação é realizada através de impulsos, quando um impulso é recebido, o neurônio o processa, e passado um limite de ação, dispara um segundo impulso que produz uma substância neurotransmissora o qual flui do corpo celular para o axônio. Os sinais podem ser transmitidos inalterados, ou serem alterados pelas sinapses.  Sinapse: capaz de aumentar ou diminuir a intensidade da ligação entre os neurônios e estimular ou inibir um neurônio subseqüente, onde a informação é armazenada.
  • 48. 45 Figura 11: Parte de uma rede: duas células biológicas interconectadas. Fonte: Turban (2008 p. W6-6) Um modelo de rede neural artificial (RNA) emula uma rede neural biológica, a computação é uma metodologia de reconhecimento padrão para aprendizado da máquina. A aplicabilidade tem sido usada para reconhecimento de previsão, predição e classificação. Computação de rede neural é o principal componente de qualquer conjunto de ferramenta de Data Mining, na qual será aplicado o conceito para desenvolvimento do sistema no decorrer do trabalho. O cérebro humano possui recursos para o processamento da informação e resolução de problemas com os quais computadores não conseguem competir em muitos aspectos. Redes neurais biológicas são compostas de muitos neurônios biológicos primitivos interconectados, cada neurônio possui axônios e dendritos, semelhantes a dedos que permitem ao neurônio comunicar-se com seus neurônios vizinhos através da transmissão e do recebimento de sinais químicos e elétricos. A RNA é composta de elementos de processamento simples e interconectados chamados neurônios artificiais. No processamento os elementos em uma RNA funcionam de maneira simultânea e coletiva em um modo semelhante aos neurônios biológicos. A RNA possui algumas características similares àquelas das redes neurais biológicas, como os recursos de aprendizagem, auto-organização intolerância ao erro. Os conceitos neurais geralmente são como simulações de software dos processos paralelos que envolvem os elementos de processamento em uma arquitetura de rede. O neurônio artificial recebe sinais de entrada análogos aos impulsos eletroquímicos que os dendritos dos neurônios biológicos recebem de
  • 49. 46 outros neurônios. Os sinais de saída do neurônio artificial correspondem aos sinais enviados do neurônio biológico através do seu axônio. Os sinais artificiais podem ser mudados pelos pesos, de maneira semelhante às mudanças físicas que ocorrem nas sinapses. Figura 12: Processamento da informação em um neurônio artificial. Fonte: Turban(2008 p W6-6). Alguns paradigmas de RNA foram propostos para aplicações em vários domínios de problema, pois emula estruturalmente o cérebro humano, a maneira na qual o modelo neural processa as informações e como os modelos neurais aprendem a executar as tarefas designadas, conforme Figura 12, os neurônios artificiais recebem a “informação” total de outros neurônios ou estímulos externos de entrada, realizam transformações nas entradas e, então, passam a informação transformada para outros neurônios ou estímulos externos de saída. Isso é semelhante como o cérebro humano funciona, passando a informação de um neurônio para outro de uma maneira de ativar ou desencadear uma reação de determinados neurônios com base nas informações ou nos estímulos recebidos. A relação entre as redes neurais biológicas e artificiais de acordo com ZAHEDI (1993) menciona sobre um papel duplo para RNA. Adotamos os conceitos do mundo biológico para melhorar a estrutura dos computadores. A tecnologia de RNA é usada para processamento de informações complexas e inteligência de máquina. Por outro lado, as redes neurais também podem ser usadas como modelos biológicos simples para testar hipóteses sobre processamento de informação neuronal biológico “real”. No contexto de Data Mining o uso das redes neurais para aprendizado de máquina e processamento de informação, está descrito na tabela 5, breves conceitos.
  • 50. 47 Biológica Artificial Corpo Nó Dendritos Entrada Axônio Entrada Sinapse Peso Velocidade Baixa Velocidade Alta Poucos Neurônios (Dezenas à Muitos Neurônios (10º) centenas de milhares ) Tabela 5: Comparação Redes Biológicas X Artificiais. Fontes: L. Medsker e J. Liebowitz, Design and Development of Expert Systems and Neural Networks, Macmillan, New York, 1994, p.163; e F. ZAHEDI, Intelligent Systems for Business: Expert Systems with Neural Networks, Wadsworth, Belmont, CA, 1993. As redes neurais podem ter uma ou mais camadas de neurônios e podem altamente ou completamente interconectados, ou somente camadas específicas podem estar conectadas. As ligações entre neurônios têm um peso associado, o conhecimento que a rede possui é avaliado nesses pesos de interconexão. Cada neurônio calcula m total ponderado dos valores de entrada do neurônio, transforma essa entrada e repassa seu valor neural como entrada para os neurônios subseqüentes, ás vezes a transformação da entrada/saída no nível individual do neurônio é feito de modo não-linear. 5.1.1 Elementos de RNA Uma rede neural é composta de elementos de processamento organizados de diferentes maneiras para formar a estrutura da rede. A unidade básica de processamento é o neurônio. Uma série de neurônios está organizada dentro de uma rede. Existem muitas formas de organizar os neurônios; elas são referidas como topologias. Uma abordagem popular, conhecida como o paradigma da retro propagação, permite que todos os neurônios liguem a saída em uma camada à entrada da camada seguinte, mas não permite qualquer ligação de feedback. (Haykin, 1999).
  • 51. 48 5.1.2 Elementos de processamento Os Elementos de Processamento (PE) de uma RNA são os neurônios artificiais, cada um recebe entradas, processa e entrega uma única saída, como na Figura 12. A entrada pode ser de dados brutos de entrada ou a saída de outros elementos de processamento com resultado binário ou pode ser entradas para outros neurônios. 5.1.3 Estrutura da rede A RNA é composta de um conjunto de neurônios, agrupados em camadas apresentado na Figura 13 - Rede neural com uma camada escondida - pode ser organizada de várias maneiras e são interconectados de diferentes formas. Quando a informação é processada é calculado os elementos do processamento, tais elementos são paralelos como o cérebro funciona, e difere do processamento serial da computação convencional. A camada escondida é uma camada de neurônios que recebe entradas provenientes da camada anterior e as converte em saídas para novo processamento, podem ser colocadas entre as camadas de entrada e saída. A camada escondida converte entradas em uma combinação não-linear e transfere as entradas transformadas para a camada de saída, pode-se interpretar como um mecanismo de extração de atributos, na qual, converte as entradas originais no problema em algumas combinações de alto nível de tais entradas. Figura 13: Rede neural com uma camada escondida. Fonte: Turban (2008 p W6-9)
  • 52. 49 Ao analisar a Figura 13 - Rede neural com uma camada escondida, quando é determinada uma estrutura de uma rede neural, a informação pode ser processada. Conceituando-se:  Entradas: uma entrada corresponde a um único atributo. O valor numérico, ou representação, de um atributo é à entrada da rede. Pode ser consideradas entradas vários tipos de dados como: texto, imagens e voz. Algumas vezes é necessário um pré-processamento para converter os dados em entradas relevantes de dados simbólicos ou graduar os dados.  Saídas: uma rede contém a solução para um problema. A RNA atribui valores numéricos às saídas, como 1 para sim e 0 para não – binários, com objetivo da rede é calcular os valores da saída.  Pesos de conexão: são os principais elementos em uma RNA e expressam a intensidade relativa dos dados de entrada ou as muitas conexões que transferem dados de uma camada para outra. Os pesos são fundamentais armazenam os padrões de informação aprendidos, através dele que as redes aprendem.  Função de soma: calcula os totais ponderados de todos os elementos de entrada que são inseridos em cada elemento de processamento. Uma função de soma multiplica cada valor de entrada pelo seu peso e adiciona os valores para um total ponderado Y. Figura 9 – Fórmula para n entradas em um elemento de processamento. Figura 10 – Formula para jº neurônio de inúmeros neurônios de processamento em uma camada
  • 53. 50 Figura 14: Função de soma para um neurônio (a) e vários neurônios (b). Fonte: Turban (2008 p W6-10).  Função de transformação: calcula o estímulo interno do neurônio, tendo como base nesse nível o neurônio pode ou não produzir uma saída. O nível de ativação interna e a saída pode ser linear ou não- linear, expressa por um dos vários tipos de função de transformação. A função de transformação soma as entradas vindas de outros neurônios/outras fontes em direção a um neurônio e após produz uma saída baseada na escolha da função de transferência. Figura 15: Exemplo de funções para RNA. Fonte: Turban (2008 p W6-11).
  • 54. 51  Função Sigmóide: transfere em forma de S com variação de 0 a 1, sendo uma função de transferência não-linear comum. Figura 16: YT é o valor transformado de –Y. Fonte: Turban (2008 p W6-11). A transformação modifica os níveis de saída para valores aceitáveis, realizada antes que as saídas alcancem o próximo nível. Sem essa transformação, o valor da saída torna-se muito grande, especialmente quando existem diversas camadas de neurônios, algumas vezes e utilizado o valor limite.  Valor limite: barreira para a saída de um neurônio a fim de ativar o próximo nível de neurônios. Se um valor de saída for menor do que o valor limite, não será passado para o próximo nível de neurônios.  Camadas escondidas: práticas complexas exigem uma ou mais camadas escondidas entre os neurônios de entrada e saída e um número igualmente grande de pesos. Algumas RNAs experimentais usam milhões de elementos de processamento, cada camada aumenta exponencialmente o esforço de treinamento e o cálculo necessário, o uso de mais de três camadas escondidas é raro na maioria dos sistemas comerciais, no caso tratado no trabalho. 5.1.4 Arquiteturas da rede neural Há diversos modelos de algoritmo eficazes na rede neural, mais comuns são retro propagação, memória associativa e rede recorrente indicada na Figura 13 -Rede neural com uma camada escondida, outras são representadas na Figura 17 e 18.
  • 55. 52 Figura 17: Estruturas de rede neural: fluxo progressivo Fonte: Turban(2008 p W6-12). Figura 18: Estrutura recorrente comparada com fonte progressiva. Fonte: Baseado em PC AI, May/June 1992, p.35. O funcionamento de um modelo completo de rede neural é acionado pela tarefa para a qual foi programado normalmente são modelos multicamadas nos quais a informação é passada de uma camada para outra, com o objetivo de mapear uma entrada para uma rede para uma categoria específica, conforme identificado pela saída da rede, ou pode ser usado um modelo neural usado como otimizador pode ser uma única camada de neurônios, altamente interconectada, e pode calcular valores de neurônio repetidamente até que o modelo convirja a um estado estável, ou seja, representaria uma solução ideal para o problema sob análise.
  • 56. 53 Uma rede é treinada para executar a tarefa designada é outra característica do modelo identificador. O aprendizado da rede neural pode ocorrer em dois modos:  Aprendizado supervisionado: conjunto de treinamento usado para “ensinar” a rede sobre seu domínio de problema é repetidamente apresentado à rede neural. A saída da rede no seu formato atual é calculada e comparada à saída desejada. O algoritmo de aprendizado usado determina como os pesos de interconexão neural são corrigidos devido a diferenças entre as saídas reais e desejadas para um membro do conjunto de treinamento, a atualização dos pesos de interconexão da rede continua até que o critério de parada do algoritmo de treinamento seja encontrado.  Aprendizado não supervisionado: a rede neural aprende um padrão através de exposição repetida, ser previsto conforme a rede neural adequadamente se auto-organiza ou agrupa seus neurônios relacionados à determinada tarefa desejada. Uma classe de modelos que tem potencial em problemas de classificação e previsão, na qual, consistem de múltiplas camadas de neurônios são as redes neurais progressivas com multicamadas, nelas a informação é passada por em uma única direção, das camadas de entrada da rede, através de uma ou mais camadas escondidas, em direção à camada de saída dos neurônios, para os neurônios de cada camada estão conectados aos neurônios da camada subseqüente. O progressivo Perceptron Multicamadas (MLP) trata-se do modelo neural para problemas de classificação, são redes que avaliam os elementos de processamento, de modo supervisionado são compostos de uma ou mais camadas de nós, entre os nós de entrada e saída. Na Figura 13 - Rede neural com uma camada escondida, os nós de entrada representam onde a informação é apresentada à rede, os nós de saída fornecem a “decisão” da rede neural, os nós escondidos contêm o mapeamento adequado das entradas até as saídas, por meio dos pesos de interconexão, podem ser consideradas como decisões.