CONJUNTO DOS NÚMEROS
      INTEIROS
O QUE SÃO NÚMEROS NEGATIVOS?
    São números que representam medidas
 abaixo de zero.
Exemplos:
            -4   -35   -1    -2137

 Os números acima de zero são chamados de
                positivos.

                  E O ZERO?

       O zero não é positivo nem negativo.
PARA QUE SERVEM OS NÚMEROS
        NEGATIVOS?

  Dentre várias utilidades veremos as mais comuns:
 Representar temperaturas abaixo de zero.
 Indicar um saldo negativo de uma conta bancária.
 Efetuar subtrações onde o subtraendo é maior que
  o minuendo. Ex: 7-10
COMO É FORMADO O CONJUNTO
  DOS NÚMEROS INTEIROS?
 É formado pelo conjunto dos números naturais,
mais os números negativos.
Representações:
      Ν = { 0,1,2,3,4,5,...}
      Ζ = {... − 5,−4,−3,−2,−1,0,1,2,3,4,5,...}

                                       Z
                                N
COMO REPRESENTAMOS O
CONJUNTO DOS NÚMEROS INTEIROS
      NA RETA NUMÉRICA?


    -5 -4 -3 -2 -1   0   1   2   3   4   5


                           O conjunto dos
                         números naturais é
                         um subconjunto dos
                          números inteiros.
OBSERVAÇÃO:
   Quanto mais a direita estiver um número,
 maior ele será.

Veja:
         -5 -4 -3 -2 -1   0   1   2   3   4   5


        5>3         -3 > -5           0 > -2

          Macete: quanto mais negativo
          for um número, menor ele será.
TENTE FAZER SOZINHO!
                Responda:

a) Qual é o maior número negativo?

b) Qual é o antecessor de -5?

c) Qual é o sucessor de -10?
SOLUÇÃO

a) O maior número negativo é -1.

b) O antecessor de -5 é -6.

c) O sucessor de -10 é -9.
O QUE SIGNIFICAM OS SÍMBOLOS:
               Ζ ,Ζ ,Ζ ,Ζ e Ζ ?
                  *
                  +    −
                            *
                            +
                                   *
                                    −
 Ζ é o conjunto dos números inteiros sem o zero.
  *

                Ζ* = {...,−3,−2,−1,1,2,3,...}
 Ζ + é o conjunto dos números inteiros não-negativos.
                  Ζ + = { 0,1,2,3,...}
 Ζ − é o conjunto dos números inteiros não-positivos.
                      Ζ − = {...,−3,−2,−1,0}
  Ζ   *
      + é o conjunto dos números inteiros positivos.
                       Ζ* = {1,2,3,...}
                        +

          Ζ   *
              − é o conjunto dos números inteiros negativos.
                       Ζ* = {...,−3,−2,−1}
                        _
O QUE É O MÓDULO DE UM NÚMERO?
   É o valor que representa a distância entre
 esse número e o zero.

Exemplo:

           -4           0             4

             A distância entre o número 4 e o
           zero é a mesma entre o número -4
           e o zero. Logo, o módulo desses de
                     4 e -4 é igual a 4.
COMO INDICAMOS O
   MÓDULO DE UM NÚMERO?

    Colocando esse número entre duas barras
 verticais.
Exemplos:   6 =6        20 = 20
            −6 = 6      − 20 = 20

                      O módulo também
                     pode ser chamado de
                        valor absoluto
VAMOS PRATICAR!

Quais são os possíveis valores para x em
                  x = 2?

Resposta:
 2 e -2, pois qualquer um desses números,
quando colocado no lugar do x tem
resultado igual a 2.
TENTE FAZER SOZINHO!


 Apresente os possíveis valores de
         x na expressão:

            x <4
Solução

  Temos que verificar quais são os números
que o módulo dá um resultado menor que 4.


   Logo, a resposta é {-3,-2,-1,0,1,2,3}
O QUE SÃO NÚMEROS SIMÉTRICOS?
   São números que apresentam o mesmo
 módulo.

Exemplos:
            10 e -10
            8 e -8
            201 e -201

               Os números simétricos
               também são chamados
                    de opostos.
RESOLVENDO PROBLEMAS
Responda:
Qual é o simétrico de 5?
            -5
Qual é o oposto de -10?
            10
Qual é o módulo do oposto de -35?
                 35
TENTE FAZER SOZINHO!

    Apresente o simétrico do
 oposto do módulo de -7.


      SOLUÇÃO

  O módulo de -7 é 7.
  O oposto de 7 é -7.
  O simétrico de -7 é 7.
COMO SOMAMOS E SUBTRAÍMOS
        NÚMEROS INTEIROS?

    Primeiro retiramos os parênteses e depois
efetuamos os cálculos.

Se o sinal antes do parêntese for +, então conservamos
o sinal de todos os números dentro do parêntese.

Se o sinal antes do parêntese for -, então mudamos o
sinal de todos os números dentro do parêntese.

     Exemplos: a) + (+30) + (-25) = + 30 – 25 = + 5
                 b) - (-17) + (+3) = + 17 + 3 = + 20
PARA EFETUAR OS CÁLCULOS, USAREMOS A
               SEGUINTE REGRA:

 Se os sinais forem iguais, somamos os valores absolutos e
  conservamos o sinal.

 Se os sinais forem diferentes, subtraímos os valores
  absolutos e conservamos o sinal do maior.

  Exemplos:
                   a) -(+45) + (-5) = - 45 - 5 = - 50

                   b) -(+20) + (+4) = - 20 + 4 = -16
OBSERVAÇÕES IMPORTANTES!

1) Se não existir sinal antes de um parênteses ou
   antes de um número, então dizemos que o
   sinal é +. Ou seja, + (30) = (+30) = + (+30) =
   30.

2) A soma de números simétricos é igual a zero.
   Ou seja, -10 + 10 = 0 e 8 - 8 = 0.
RESOLVENDO EXPRESSÕES
               (-5) + (-9) + (-3) + (+8) + (+2)=

Tirando os parênteses, temos:

                     -5–9–3+8+2=
Juntando os números negativos e os números positivos, temos
                         - 17 + 10 =
Efetuando os cálculos, encontramos:
                              -7
TENTE FAZER SOZINHO!


    Resolva a expressão:

 12 + {- 2 + [- 3 – (- 2 + 11)]} =
SOLUÇÃO

12 + {- 2 + [- 3 – (- 2 + 11)]} =
12 + {- 2 + [- 3 – (+ 9)]} =
12 + {- 2 + [- 3 – 9]} =
12 + {- 2 + [- 12]} =
12 + {- 2 - 12} =
12 + {- 14} =
12 – 14 =
-2
COMO MULTIPLICAMOS E
 DIVIDIMOS NÚMEROS INTEIROS?

    Basta efetuar os cálculos com os valores
absolutos. O sinal deve obedecer a seguinte
regra: se forem iguais, +, se forem diferentes, - .

Exemplos:
                a) (-3) . (-4) = 12
                b) (+8) : (+4) = 2
                c) (-3) . (+4) = - 12
                d) (+8) : (-4) = - 2
TENTE FAZER SOZINHO!


      Resolva a expressão:

[-27 + (- 12 + 4)] : [1 + (- 3) . (- 2)]=
SOLUÇÃO

[-27 + (- 12 + 4)] : [1 + (- 3) . (- 2)]=
[-27 + (- 8)] : [1 + (+ 6)]=
[-27 - 8] : [1 + 6]=
[-35] : [7]=
-5
COMO ELEVAMOS UM NÚMEROS
  INTEIRO A UMA POTÊNCIA?
   Basta efetuar o cálculo da potência com os
valores absolutos. Se o expoente for par, o
resultado é sempre positivo. Se o for ímpar,
permanece o sinal inicial.


 Exemplos:
              a) (-5)2 = 25
              b) (+5)2 = 25
              c) (-5)3 = - 125
              d) (+5)3 = 125
REGRAS IMPORTANTES
 Qualquer base elevada a 1 é igual a ela mesma.

                     a1 = a
 Zero elevado a qualquer expoente é igual a
  zero.

                      0b = 0
 Qualquer base elevada a zero é igual a 1.


                       a0 = 1
COMO MULTIPLICAMOS
 POTÊNCIAS COM A MESMA BASE?

Basta conservar a base e somar os expoentes.

Exemplos:

 (6)7 . (6)3 = 67+3 = 610
                             Quando um número não
                              apresenta expoente,
 (-20)4 . (-20) = (-20)5      dizemos que está
                                  elevado a 1.
COMO DIVIDIMOS POTÊNCIAS COM
       A MESMA BASE?

Basta conservar a base e subtrair os expoentes.

   Exemplos:


           (5)7 : (5)3 = (5)7-3 = 54

           (-9)5 : (-9)3 = (-9)5-3 = (-9)2
COMO ELEVAMOS UMA POTÊNCIA
    A OUTRA POTÊNCIA?

     Basta conservar a base e multiplicar os
expoentes.


Exemplos:
            (42)3 = 42x3 = 46
            (53)6 = 53x6 = 518
COMO EXTRAÍMOS A RAIZ QUADRADA
    DOS NÚMEROS INTEIROS?

  Basta efetuar os cálculos que já conhecemos,
  pois só podemos extrair raiz quadrada de
números não-negativos.

 Exemplos:

             +9 =3
            − 9 não existe no conjunto Ζ.
TENTE FAZER SOZINHO!


      Resolva a expressão:

 ( − 2)   2
                [                    ]
              − ( − 7 ) : 10 0 + 5.( − 3) − 36 =
SOLUÇÃO

( − 2) − [( − 7 ) : 100 + 5.( − 3) ] −
      2
                                         36 =
4 − [ ( − 7 ) : 1 + 5.( − 3) ] − 6
4 − [ − 7 + ( − 15) ] − 6 =
4 − [ − 7 − 15] − 6 =
4 − [ − 22] − 6 =
4 + 22 − 6 =
26 − 6 =
20

www.AulasDeMatematicaApoio.com.br - Matemática - Conjunto de Números Inteiros

  • 1.
  • 2.
    O QUE SÃONÚMEROS NEGATIVOS? São números que representam medidas abaixo de zero. Exemplos: -4 -35 -1 -2137 Os números acima de zero são chamados de positivos. E O ZERO? O zero não é positivo nem negativo.
  • 3.
    PARA QUE SERVEMOS NÚMEROS NEGATIVOS? Dentre várias utilidades veremos as mais comuns:  Representar temperaturas abaixo de zero.  Indicar um saldo negativo de uma conta bancária.  Efetuar subtrações onde o subtraendo é maior que o minuendo. Ex: 7-10
  • 4.
    COMO É FORMADOO CONJUNTO DOS NÚMEROS INTEIROS? É formado pelo conjunto dos números naturais, mais os números negativos. Representações: Ν = { 0,1,2,3,4,5,...} Ζ = {... − 5,−4,−3,−2,−1,0,1,2,3,4,5,...} Z N
  • 5.
    COMO REPRESENTAMOS O CONJUNTODOS NÚMEROS INTEIROS NA RETA NUMÉRICA? -5 -4 -3 -2 -1 0 1 2 3 4 5 O conjunto dos números naturais é um subconjunto dos números inteiros.
  • 6.
    OBSERVAÇÃO: Quanto mais a direita estiver um número, maior ele será. Veja: -5 -4 -3 -2 -1 0 1 2 3 4 5 5>3 -3 > -5 0 > -2 Macete: quanto mais negativo for um número, menor ele será.
  • 7.
    TENTE FAZER SOZINHO! Responda: a) Qual é o maior número negativo? b) Qual é o antecessor de -5? c) Qual é o sucessor de -10?
  • 8.
    SOLUÇÃO a) O maiornúmero negativo é -1. b) O antecessor de -5 é -6. c) O sucessor de -10 é -9.
  • 9.
    O QUE SIGNIFICAMOS SÍMBOLOS: Ζ ,Ζ ,Ζ ,Ζ e Ζ ? * + − * + * − Ζ é o conjunto dos números inteiros sem o zero. * Ζ* = {...,−3,−2,−1,1,2,3,...} Ζ + é o conjunto dos números inteiros não-negativos. Ζ + = { 0,1,2,3,...} Ζ − é o conjunto dos números inteiros não-positivos. Ζ − = {...,−3,−2,−1,0} Ζ * + é o conjunto dos números inteiros positivos. Ζ* = {1,2,3,...} + Ζ * − é o conjunto dos números inteiros negativos. Ζ* = {...,−3,−2,−1} _
  • 10.
    O QUE ÉO MÓDULO DE UM NÚMERO? É o valor que representa a distância entre esse número e o zero. Exemplo: -4 0 4 A distância entre o número 4 e o zero é a mesma entre o número -4 e o zero. Logo, o módulo desses de 4 e -4 é igual a 4.
  • 11.
    COMO INDICAMOS O MÓDULO DE UM NÚMERO? Colocando esse número entre duas barras verticais. Exemplos: 6 =6 20 = 20 −6 = 6 − 20 = 20 O módulo também pode ser chamado de valor absoluto
  • 12.
    VAMOS PRATICAR! Quais sãoos possíveis valores para x em x = 2? Resposta: 2 e -2, pois qualquer um desses números, quando colocado no lugar do x tem resultado igual a 2.
  • 13.
    TENTE FAZER SOZINHO! Apresente os possíveis valores de x na expressão: x <4
  • 14.
    Solução Temosque verificar quais são os números que o módulo dá um resultado menor que 4. Logo, a resposta é {-3,-2,-1,0,1,2,3}
  • 15.
    O QUE SÃONÚMEROS SIMÉTRICOS? São números que apresentam o mesmo módulo. Exemplos: 10 e -10 8 e -8 201 e -201 Os números simétricos também são chamados de opostos.
  • 16.
    RESOLVENDO PROBLEMAS Responda: Qual éo simétrico de 5? -5 Qual é o oposto de -10? 10 Qual é o módulo do oposto de -35? 35
  • 17.
    TENTE FAZER SOZINHO! Apresente o simétrico do oposto do módulo de -7. SOLUÇÃO O módulo de -7 é 7. O oposto de 7 é -7. O simétrico de -7 é 7.
  • 18.
    COMO SOMAMOS ESUBTRAÍMOS NÚMEROS INTEIROS? Primeiro retiramos os parênteses e depois efetuamos os cálculos. Se o sinal antes do parêntese for +, então conservamos o sinal de todos os números dentro do parêntese. Se o sinal antes do parêntese for -, então mudamos o sinal de todos os números dentro do parêntese. Exemplos: a) + (+30) + (-25) = + 30 – 25 = + 5 b) - (-17) + (+3) = + 17 + 3 = + 20
  • 19.
    PARA EFETUAR OSCÁLCULOS, USAREMOS A SEGUINTE REGRA:  Se os sinais forem iguais, somamos os valores absolutos e conservamos o sinal.  Se os sinais forem diferentes, subtraímos os valores absolutos e conservamos o sinal do maior. Exemplos: a) -(+45) + (-5) = - 45 - 5 = - 50 b) -(+20) + (+4) = - 20 + 4 = -16
  • 20.
    OBSERVAÇÕES IMPORTANTES! 1) Senão existir sinal antes de um parênteses ou antes de um número, então dizemos que o sinal é +. Ou seja, + (30) = (+30) = + (+30) = 30. 2) A soma de números simétricos é igual a zero. Ou seja, -10 + 10 = 0 e 8 - 8 = 0.
  • 21.
    RESOLVENDO EXPRESSÕES (-5) + (-9) + (-3) + (+8) + (+2)= Tirando os parênteses, temos: -5–9–3+8+2= Juntando os números negativos e os números positivos, temos - 17 + 10 = Efetuando os cálculos, encontramos: -7
  • 22.
    TENTE FAZER SOZINHO! Resolva a expressão: 12 + {- 2 + [- 3 – (- 2 + 11)]} =
  • 23.
    SOLUÇÃO 12 + {-2 + [- 3 – (- 2 + 11)]} = 12 + {- 2 + [- 3 – (+ 9)]} = 12 + {- 2 + [- 3 – 9]} = 12 + {- 2 + [- 12]} = 12 + {- 2 - 12} = 12 + {- 14} = 12 – 14 = -2
  • 24.
    COMO MULTIPLICAMOS E DIVIDIMOS NÚMEROS INTEIROS? Basta efetuar os cálculos com os valores absolutos. O sinal deve obedecer a seguinte regra: se forem iguais, +, se forem diferentes, - . Exemplos: a) (-3) . (-4) = 12 b) (+8) : (+4) = 2 c) (-3) . (+4) = - 12 d) (+8) : (-4) = - 2
  • 25.
    TENTE FAZER SOZINHO! Resolva a expressão: [-27 + (- 12 + 4)] : [1 + (- 3) . (- 2)]=
  • 26.
    SOLUÇÃO [-27 + (-12 + 4)] : [1 + (- 3) . (- 2)]= [-27 + (- 8)] : [1 + (+ 6)]= [-27 - 8] : [1 + 6]= [-35] : [7]= -5
  • 27.
    COMO ELEVAMOS UMNÚMEROS INTEIRO A UMA POTÊNCIA? Basta efetuar o cálculo da potência com os valores absolutos. Se o expoente for par, o resultado é sempre positivo. Se o for ímpar, permanece o sinal inicial. Exemplos: a) (-5)2 = 25 b) (+5)2 = 25 c) (-5)3 = - 125 d) (+5)3 = 125
  • 28.
    REGRAS IMPORTANTES  Qualquerbase elevada a 1 é igual a ela mesma. a1 = a  Zero elevado a qualquer expoente é igual a zero. 0b = 0  Qualquer base elevada a zero é igual a 1. a0 = 1
  • 29.
    COMO MULTIPLICAMOS POTÊNCIASCOM A MESMA BASE? Basta conservar a base e somar os expoentes. Exemplos:  (6)7 . (6)3 = 67+3 = 610 Quando um número não apresenta expoente,  (-20)4 . (-20) = (-20)5 dizemos que está elevado a 1.
  • 30.
    COMO DIVIDIMOS POTÊNCIASCOM A MESMA BASE? Basta conservar a base e subtrair os expoentes. Exemplos:  (5)7 : (5)3 = (5)7-3 = 54  (-9)5 : (-9)3 = (-9)5-3 = (-9)2
  • 31.
    COMO ELEVAMOS UMAPOTÊNCIA A OUTRA POTÊNCIA? Basta conservar a base e multiplicar os expoentes. Exemplos: (42)3 = 42x3 = 46 (53)6 = 53x6 = 518
  • 32.
    COMO EXTRAÍMOS ARAIZ QUADRADA DOS NÚMEROS INTEIROS? Basta efetuar os cálculos que já conhecemos, pois só podemos extrair raiz quadrada de números não-negativos. Exemplos: +9 =3 − 9 não existe no conjunto Ζ.
  • 33.
    TENTE FAZER SOZINHO! Resolva a expressão: ( − 2) 2 [ ] − ( − 7 ) : 10 0 + 5.( − 3) − 36 =
  • 34.
    SOLUÇÃO ( − 2)− [( − 7 ) : 100 + 5.( − 3) ] − 2 36 = 4 − [ ( − 7 ) : 1 + 5.( − 3) ] − 6 4 − [ − 7 + ( − 15) ] − 6 = 4 − [ − 7 − 15] − 6 = 4 − [ − 22] − 6 = 4 + 22 − 6 = 26 − 6 = 20