SlideShare uma empresa Scribd logo
NÚMEROS INTEIROS RELATIVOS
INTRODUÇÃO:
Observe que, no conjunto dos números naturais, a operação de subtração nem
sempre é possível
exemplos:
a) 5 - 3 = 2 (possível: 2 é um número natural)
b) 9 - 9 = 0 ( possível: 0 é um número natural)
c) 3 - 5 = ? (impossível nos números naturais)
Para tonar sempre possível a subtração, foi criado o conjunto dos números inteiros
relativos,
-1, -2, -3..........
lê-se: menos um ou 1 negativo
lê-se: menos dois ou dois negativo
lê-se: menos três ou três negativo
Reunindo os números negativos, o zero e os números positivos, formamos o conjunto
dos numeros inteiros relativos, que será representado por Z.
Z = {.....-3, -2, -1, 0, +1, +2, +3,......}
Importante: os números inteiros positivos podem ser indicados sem o sinal de +.
exemplo
a) +7 = 7
b) +2 = 2
c) +13 = 13
d) +45 = 45
Sendo que o zero não é positivo nem negativo.
EXERCICIOS
1) Observe os números e diga:
-15, +6, -1, 0, +54, +12, -93, -8, +23, -72, +72
a) Quais os números inteiros negativos?
b) Quais são os números inteiros positivos?
2) Qual o número inteiro que não é nem positivo nem negativo?
3) Escreva a leitura dos seguintes números inteiros:
a) -8 =
b)+6 =
c) -10 =
d) +12 =
e) +75 =
f) -100 =
4) Quais das seguintes sentenças são verdadeiras?
a) +4 = 4 =
b) -6 = 6 =
c) -8 = 8 =
d) 54 = +54 =
e) 93 = -93 =
5) As temperaturas acima de 0°C (zero grau) são representadas por números positivos
e as temperaturas abaixo de 0°C, por números negativos. Represente a seguinte
situação com números inteiros relativos:
a) 5° acima de zero =
b) 3° abaixo de zero =
c) 9°C abaixo de zero=
d) 15° acima de zero =
REPRESENTAÇÃO DOS NÚMEROS INTEIROS NA RETA
Vamos traçar uma reta e marcar o ponto 0. À direta do ponto 0, com uma certa
unidade de medida, assinalemos os pontos que correspondem aos números positivos e
à esquerda de 0, com a mesma unidade, assinalaremos os pontos que correspondem
aos números negativos.
_I___I___I___I___I___I___I___I___I___I___I___I___I___I_
-6.. -5...-4. -3,. -2,..-1,.. 0,.+1,.+2,.+3,.+4,..+5,.+6
exercícios
1) Escreva os números inteiros:
a) compreendidos entre 1 e 7
b) compreendidos entre -3 e 3
c) compreendidos entre -4 e 2
d) compreendidos entre -2 e 4
e) compreendidos entre -5 e -1
f) compreendidos entre -6 e 0
2) Responda:
a) Qual é o sucessor de +8?
b) Qual é o sucessor de -6?
c) Qual é o sucessor de 0 ?
d) Qual é o antecessor de +8?
e) Qual é o antecessor de -6?
f) Qual é o antecessor de 0 ?
3) Escreva em Z o antecessor e o sucessor dos números:
a) +4
b) -4
c) 54
d) -68
e) -799
f) +1000
ADIÇÃO E SUBTRAÇÃO COM NÚMEROS INTEIROS
ADIÇÃO
1) Adição de números positivos
A soma de dois números positivos é um número positivo.
EXEMPLO
a) (+2) + (+5) = +7
b) (+1) + (+4) = +5
c) (+6) + (+3) = +9
Simplificando a maneira de escrever
a) +2 +5 = +7
b) +1 + 4 = +5
c) +6 + 3 = +9
Observe que escrevemos a soma dos números inteiros sem colocar o sinal + da adição
e eliminamos os parênteses das parcelas.
2) Adição de números negativos
A soma de dois números negativos é um número negativo
Exemplo
a) (-2) + (-3) = -5
b) (-1) + (-1) = -2
c) (-7) + (-2) = -9
Simplificando a maneira de escrever
a) -2 - 3 = -5
b) -1 -1 = -2
c) -7 - 2 = -9
Observe que podemos simplificar a maneira de escrever deixando de colocar o sinal
de + na operação e eliminando os parênteses das parcelas.
EXERCÍCIOS
1) Calcule
a) +5 + 3 =
b) +1 + 4 =
c) -4 - 2 =
d) -3 - 1 =
e) +6 + 9 =
f) +10 + 7 =
g) -8 -12 =
h) -4 -15 =
i) -10 - 15 =
j) +5 +18 =
l) -31 - 18 =
m) +20 +40 =
n) -60 - 30 =
o) +75 +15 =
p) -50 -50 =
2) Calcule:
a) (+3) + (+2) =
b) (+5) + (+1) =
c) (+7) + ( +5) =
d) (+2) + (+8) =
e) (+9) + (+4) =
f) (+6) + (+5) =
g) (-3) + (-2) =
h) (-5) + (-1) =
i) (-7) + (-5) =
j) (-4) + (-7) =
l) (-8) + ( -6) =
m) (-5) + ( -6) =
3) Calcule:
a) ( -22) + ( -19) =
b) (+32) + ( +14) =
c) (-25) + (-25) =
d) (-94) + (-18) =
e) (+105) + (+105) =
f) (-280) + (-509) =
g) (-321) + (-30) =
h) (+200) + (+137) =
3) Adição de números com sinais diferentes
A soma de dois números inteiros de sinais diferentes é obtida subtraindo-se os
valores absolutos, dando-se o sinal do número que tiver maior valor absoluto.
exemplos
a) (+6) + ( -1) = +5
b) (+2) + (-5) = -3
c) (-10) + ( +3) = -7
simplificando a maneira de escrever
a) +6 - 1 = +5
b) +2 - 5 = -3
c) -10 + 3 = -7
Note que o resultado da adição tem o mesmo sinal que o número de maior
valor absoluto
Observação:
Quando as parcelas são números opostos, a soma é igual a zero.
Exemplo
a) (+3) + (-3) = 0
b) (-8) + (+8) = 0
c) (+1) + (-1) = 0
simplificando a maneira de escrever
a) +3 - 3 = 0
b) -8 + 8 = 0
c) +1 - 1 = 0
4) Um dos números dados é zero
Quando um dos números é zero , a soma é igual ao outro número.
exemplo
a) (+5) +0 = +5
b) 0 + (-3) = -3
c) (-7) + 0 = -7
Simplificando a maneira de escrever
a) +5 + 0 = +5
b) 0 - 3 = -3
c) -7 + 0 = -7
exercícios
1) Calcule:
a) +1 - 6 =
b) -9 + 4 =
c) -3 + 6 =
d) -8 + 3 =
e) -9 + 11 =
f) +15 - 6 =
g) -2 + 14 =
h) +13 -1 =
i) +23 -17 =
j) -14 + 21 =
l) +28 -11 =
m) -31 + 30 =
2) Calcule:
a) (+9) + (-5) =
b) (+3) + (-4) =
c) (-8) + (+6) =
d) (+5) + (-9) =
e) (-6) + (+2) =
f) (+9) + (-1) =
g) (+8) + (-3) =
h) (+12) + (-3) =
i) (-7) + (+15) =
j) (-18) + (+8) =
i) (+7) + (-7) =
l) (-6) + 0 =
m) +3 + (-5) =
n) (+2) + (-2) =
o) (-4) +10 =
p) -7 + (+9) =
q) +4 + (-12) =
r) +6 + (-4) =
3) Calcule
a) (+5 + (+7) =
b) (-8) + (-9) =
c) (-37) + (+35) =
d) (+10) + (-9) =
e) (-15 ) + (+15) =
f) (+80) + 0 =
g) (-127) + (-51) =
h) (+37) + (+37) =
i) (-42) + (-18) =
j) (-18) + (+17) =
l) (-18) + (+19) =
m) (-1) + (-42) =
n) (+325) + (-257) =
o) 0 + (-75) =
p) (-121) + (+92) =
q ) (-578) + (-742) =
r) (+101) + (-101) =
s) (-1050) + (+876) =
PROPRIEDADE DA ADIÇÃO
1) Fechamento : a soma de dois números inteiros é sempre um número inteiro
exemplo (-4) + (+7) =( +3)
2) Comutativa: a ordem das parcelas não altera a soma.
exemplo: (+5) + (-3) = (-3) + (+5)
3) Elemento neutro: o número zero é o elemento neutro da adição.
exemplo: (+8) + 0 = 0 + (+8) = +8
4) Associativa: na adição de três números inteiros, podemos associar os dois
primeiros ou os dois últimos, sem que isso altere o resultado.
exemplo: [(+8) + (-3) ] + (+4) = (+8) + [(-3) + (+4)]
5) Elemento oposto: qualquer número inteiro admite um simétrico ou oposto.
exemplo: (+7) + (-7) = 0
ADIÇÃO DE TRÊS OU MAIS NÚMEROS
Para obter a soma de três ou mais números adicionamos os dois primeiros e, em
seguida, adicionamos esse resultado com o terceiro, e assim por diante.
exemplos
1) -12 + 8 - 9 + 2 - 6 =
= -4 - 9 + 2 - 6 =
= -13 + 2 - 6 =
= -11 - 6 =
= -17
2) +15 -5 -3 +1 - 2 =
= +10 -3 + 1 - 2 =
= +7 +1 -2 =
= +8 -2 =
= +6
Na adição de números inteiros podemos cancelar números opostos, poque a soma
deles é zero.
INDICAÇÃO SIMPLIFICADA
a) podemos dispensar o sinal de + da primeira parcela quando esta for positiva.
exemplos
a) (+7) + (-5) = 7 - 5 = +2
b) (+6) + (-9) = 6 - 9 = -3
b) Podemos dispensar o sinal + da soma quando esta for positiva
exemplos
a) (-5) + (+7) = -5 + 7 = 2
b) (+9) + (-4) = 9 - 4 = 5
EXERCÍCIOS
1) Calcule
a) 4 + 10 + 8 =
b) 5 - 9 + 1 =
c) -8 - 2 + 3 =
d) -15 + 8 - 7 =
e) 24 + 6 - 12 =
f) -14 - 3 - 6 - 1 =
g) -4 + 5 + 6 + 3 - 9 =
h) -1 + 2 - 4 - 6 - 3 - 8 =
i) 6 - 8 - 3 - 7 - 5 - 1 + 0 - 2 =
j) 2 - 10 - 6 + 14 - 1 + 20 =
l) -13 - 1 - 2 - 8 + 4 - 6 - 10 =
2) Efetue, cancelando os números opostos:
a) 6 + 4 - 6 + 9 - 9 =
b) -7 + 5 - 8 + 7 - 5 =
c) -3 + 5 + 3 - 2 + 2 + 1 =
d) -6 + 10 + 1 - 4 + 6=
e) 10 - 6 + 3 - 3 - 10 - 1 =
f) 15 - 8 + 4 - 4 + 8 - 15 =
3) Coloque em forma simplificada ( sem parênteses)
a) (+1) + (+4) +(+2) =
b) (+1) + (+8) + (-2) =
c) (+5) +(-8) + (-1) =
d) (-6) + (-2) + (+1) =
4) Calcule:
a) (-2) + (-3) + (+2) =
b) (+3) + (-3) + (-5) =
c) (+1) + (+8) +(-2) =
d) (+5) + (-8) + (-1) =
e) (-6) + (-2) + (+1) =
f) (-8) + ( +6) + (-2) =
g) (-7) + 6 + (-7) =
h) 6 + (-6) + (-7) =
i) -6 + (+9) + (-4) =
j) (-4) +2 +4 + (+1) =
5) Determine as seguintes somas
a) (-8) + (+10) + (+7) + (-2) =
b) (+20) + (-19) + (-13) + (-8) =
c) (-5) + (+8) + (+2) + (+9) =
d) (-1) + (+6) + (-3) + (-4) + (-5) =
e) (+10) + (-20) + (-15) + (+12) + (+30) + (-40) =
f) (+3) + (-6) + (+8) =
g) (-5) + (-12) + (+3) =
h) (-70) + (+20) + (+50) =
i) (+12) + (-25) + (+15) =
j) (-32) + (-13) + (+21) =
l) (+7) + (-5) + (-3) + (+10) =
m) (+12) + (-50) + (-8) + (+13) =
n) (-8)+(+4)+ (+8) + (-5) + (+3) =
o) (-36) + (-51) + (+100) + (-52) =
p) (+17) + (+13) + (+20) + (-5) + (-45) =
6) Dados os números x= 6, y = 5 e z= -6, calcule
a) x + y =
b) y + z =
c) x + z =
SUBTRAÇÃO
A operação de subtração é uma operação inversa à da adição
Exemplos
a) (+8) - (+4) = (+8) + (-4) = = +4
b) (-6) - (+9) = (-6) + (-9) = -15
c) (+5) - (-2) = ( +5) + (+2) = +7
Conclusão: Para subtraimos dois números relativos, basta que adicionemos ao
primeiro o oposto do segundo.
Observação: A subtração no conjunto Z tem apenas a propriedade do fechamento ( a
subtração é sempre possivel)
ELIMINAÇÃO DE PARÊNTESES PRECEDIDOS DE SINAL
NEGATIVO
Para facilitar o cálculo, eliminamos os parênteses usando o segnificado do oposto
veja:
a) -(+8) = -8 (significa o oposto de +8 é -8 )
b) -(-3) = +3 (significa o oposto de -3 é +3)
analogicamente:
a) -(+8) - (-3) = -8 +3 = -5
b) -(+2) - (+4) = -2 - 4 = -6
c) (+10) - (-3) - +3) = 10 + 3 - 3 = 10
conclusão: podemos eliminar parênteses precedidos de sinal negativo trocando-se o
sínal do número que está dentro dos parênteses.
EXERCÍCIOS
1) Elimine os parênteses
a) -(+5) =
b) -(-2) =
c) - (+4) =
d) -(-7) =
e) -(+12) =
f) -(-15) =
g) -(-42) =
h) -(+56) =
2) Calcule:
a) (+7) - (+3) =
b) (+5) - (-2) =
c) (-3) - ( +8) =
d) (-1) -(-4) =
e) (+3) - (+8) =
f) (+9) - (+9) =
g) (-8) - ( +5) =
h) (+5) - (-6) =
i) (-2) - (-4) =
j) (-7) - (-8) =
l) (+4) -(+4) =
m) (-3) - ( +2) =
n) -7 + 6 =
o) -8 -7 =
p) 10 -2 =
q) 7 -13 =
r) -1 -0 =
s) 16 - 20 =
t) -18 -9 =
u) 5 - 45 =
v) -15 -7 =
x) -8 +12 =
z) -32 -18 =
3) Calcule:
a) 7 - (-2) =
b) 7 - (+2) =
c) 2 - (-9) =
d) -5 - (-1) =
e) -5 -(+1) =
f) -4 - (+3) =
g) 8 - (-5) =
h) 7 - (+4) =
i) 26 - 45 =
j) -72 -72 =
l) -84 + 84 =
m) -10 -100 =
n) -2 -4 -1 =
o) -8 +6 -1 =
p) 12-7 + 3 =
q) 4 + 13 - 21 =
r) -8 +8 + 1 =
s) -7 + 6 + 9 =
t) -5 -3 -4 - 1 =
u) +10 - 43 -17 =
v) -6 -6 + 73 =
x) -30 +30 - 40 =
z) -60 - 18 +50 =
4) Calcule:
a) (-4) -(-2)+(-6) =
b) (-7)-(-5)+(-8) =
c) (+7)-(-6)-(-8) =
d) (-8) + (-6) -(+3) =
e) (-4) + (-3) - (+6) =
f) 20 - (-6) - (-8) =
g) 5 - 6 - (+7) + 1 =
h) -10 - (-3) - (-4) =
i) (+5) + (-8) =
j) (-2) - (-3) =
l) (-3) -(-9) =
m) (-7) - (-8) =
n) (-8) + (-6) - (-7) =
o) (-4) + (-6) + (-3) =
p) 15 -(-3) - (-1) =
q) 32 - (+1) -(-5) =
r) (+8) - (+2) =
s) (+15) - (-3) =
t) (-18) - (-10) =
u) (-25) - (+22) =
v) (-30) - 0 =
x) (+180) - (+182) =
z) (+42) - (-42) =
5) Calcule:
a) (-5) + (+2) - (-1) + (-7) =
b) (+2) - (-3) + (-5) -(-9) =
c) (-2) + (-1) -(-7) + (-4) =
d) (-5) + (-6) -(-2) + (-3) =
e) (+9) -(-2) + (-1) - (-3) =
f) 9 - (-7) -11 =
g) -2 + (-1) -6 =
h) -(+7) -4 -12 =
i) 15 -(+9) -(-2) =
j) -25 - ( -5) -30 =
l) -50 - (+7) -43 =
m) 10 -2 -5 -(+2) - (-3) =
n) 18 - (-3) - 13 -1 -(-4) =
o) 5 -(-5) + 3 - (-3) + 0 - 6 =
p) -28 + 7 + (-12) + (-1) -4 -2 =
q) -21 -7 -6 -(-15) -2 -(-10) =
r) 10 -(-8) + (-9) -(-12)-6 + 5 =
s) (-75) - (-25) =
t) (-75) - (+25) =
u) (+18) - 0 =
v) (-52) - (-52) =
x) (-16)-(-25) =
z) (-100) - (-200) =
ELIMINAÇÃO DOS PARENTESES
1) parenteses precedidos pelo sinal +
Ao eliminarmos os parênteses e o sinal + que os precede, devemos conservar os sinais
dos números contidos nesses parênteses.
exemplo
a) + (-4 + 5) = -4 + 5
b) +(3 +2 -7) = 3 +2 -7
2) Parênteses precedidos pelo sinal -
Ao eliminarmos os parênteses e o sinal de - que os precede, devemos trocar os sinais
dos números contidos nesses parênteses.
exemplo
a) -(4 - 5 + 3) = -4 + 5 -3
b) -(-6 + 8 - 1) = +6 -8 +1
EXERCICIOS
1) Elimine os parênteses:
a) +(-3 +8) =
b) -(-3 + 8) =
c) +(5 - 6) =
d) -(-3-1) =
e) -(-6 + 4 - 1) =
f) +(-3 -2 -1) =
g) -(4 -6 +8) =
h) + (2 + 5 - 1) =
2) Elimine os parênteses e calcule:
a) + 5 + ( 7 - 3) =
b) 8 - (-2-1) =
c) -6 - (-3 +2) =
d) 18 - ( -5 -2 -3 ) =
e) 30 - (6 - 1 +7) =
f) 4 + (-5 + 0 + 8 -4) =
g) 4 + (3 - 5) + ( -2 -6) =
h) 8 -(3 + 5 -20) + ( 3 -10) =
i) 20 - (-6 +8) - (-1 + 3) =
j) 35 -(4-1) - (-2 + 7) =
3) Calcule:
a) 10 - ( 15 + 25) =
b) 1 - (25 -18) =
c) 40 -18 - ( 10 +12) =
d) (2 - 7) - (8 -13) =
e) 7 - ( 3 + 2 + 1) - 6 =
f) -15 - ( 3 + 25) + 4 =
g) -32 -1 - ( -12 + 14) =
h) 7 + (-5-6) - (-9 + 3) =
i) -(+4-6) + (2 - 3) =
j) -6 - (2 -7 + 1 - 5) + 1 =
EXPRESSÕES COM NÚMEROS INTEIROS RELATIVOS
Lembre-se de que os sinais de associação são eliminados obedecendo à seguinte
ordem:
1°) PARÊNTESES ( ) ;
2°) COLCHETES [ ] ;
3°) CHAVES { } .
Exemplos:
1°) exemplo
8 + ( +7 -1 ) - ( -3 + 1 - 5 ) =
8 + 7 - 1 + 3 - 1 + 5 =
23 - 2 = 21
2°) exemplo
10 + [ -3 + 1 - ( -2 + 6 ) ] =
10 + [ -3 + 1 + 2 - 6 ] =
10 - 3 + 1 + 2 - 6 =
13 - 9 =
= 4
3°) exemplo
-17 + { +5 - [ +2 - ( -6 +9 ) ]} =
-17 + { +5 - [ +2 + 6 - 9]} =
-17 + { +5 - 2 - 6 + 9 } =
-17 +5 - 2 - 6 + 9 =
-25 + 14 =
= - 11
EXERCICIOS
a) Calcule o valor das seguintes expressões :
1) 15 -(3-2) + ( 7 -4) =
2) 25 - ( 8 - 5 + 3) - ( 12 - 5 - 8) =
3) ( 10 -2 ) - 3 + ( 8 + 7 - 5) =
4) ( 9 - 4 + 2 ) - 1 + ( 9 + 5 - 3) =
5) 18 - [ 2 + ( 7 - 3 - 8 ) - 10 ] =
6) -4 + [ -3 + ( -5 + 9 - 2 )] =
7) -6 - [10 + (-8 -3 ) -1] =
8) -8 - [ -2 - (-12) + 3 ] =
9) 25 - { -2 + [ 6 + ( -4 -1 )]} =
10) 17 - { 5 - 3 + [ 8 - ( -1 - 3 ) + 5 ] } =
11) 3 - { -5 -[8 - 2 + ( -5 + 9 ) ] } =
12) -10 - { -2 + [ + 1 - ( - 3 - 5 ) + 3 ] } =
13) { 2 + [ 1 + ( -15 -15 ) - 2] } =
14) { 30 + [ 10 - 5 + ( -2 -3)] -18 -12} =
15) 20 + { [ 7 + 5 + ( -9 + 7 ) + 3 ] } =
16) -4 - { 2 + [ - 3 - ( -1 + 7) ] + 2} =
17) 10 - { -2 + [ +1 + ( +7 - 3) - 2] + 6 } =
18) -{ -2 - [ -3 - (-5) + 1 ]} - 18 =
19) -20 - { -4 -[-8 + ( +12 - 6 - 2 ) + 2 +3 ]} =
20) {[( -50 -10) + 11 + 19 ] + 20 } + 10 =

Mais conteúdo relacionado

Mais procurados

Operações com Frações
Operações com FraçõesOperações com Frações
Operações com Frações
Luiz Alfredo Andrade Ferraz
 
Números inteiros relativos multiplicação e divisão
Números inteiros relativos multiplicação e divisãoNúmeros inteiros relativos multiplicação e divisão
Números inteiros relativos multiplicação e divisão
PatriciaLavos
 
Prova do 8º ano do auzanir
Prova do 8º ano do auzanirProva do 8º ano do auzanir
Prova do 8º ano do auzanir
alunosderoberto
 
Numeros inteiros piramide para o slide
Numeros inteiros piramide para o slideNumeros inteiros piramide para o slide
Numeros inteiros piramide para o slide
Adriano Augusto
 
Listão 7º ano
Listão 7º anoListão 7º ano
Listão 7º ano
Andréia Rodrigues
 
3ª lista de exercícios complementares de matemática (expressões algébricas) p...
3ª lista de exercícios complementares de matemática (expressões algébricas) p...3ª lista de exercícios complementares de matemática (expressões algébricas) p...
3ª lista de exercícios complementares de matemática (expressões algébricas) p...
Josie Michelle Soares
 
Lista de exercícios de função afim
Lista de exercícios de função afimLista de exercícios de função afim
Lista de exercícios de função afim
ProfessoraIve
 
Microsoft word exercicio matemática com gabarito equações do 2º grau
Microsoft word   exercicio matemática com  gabarito equações do 2º grauMicrosoft word   exercicio matemática com  gabarito equações do 2º grau
Microsoft word exercicio matemática com gabarito equações do 2º grau
Betão Betão
 
Equações 1º grau simples e com parenteses
Equações 1º grau   simples e com parentesesEquações 1º grau   simples e com parenteses
Equações 1º grau simples e com parentesesRita Sousa
 
1ª lista de exerc(monomios) 8º ano ilton bruno
1ª lista de exerc(monomios) 8º ano   ilton bruno1ª lista de exerc(monomios) 8º ano   ilton bruno
1ª lista de exerc(monomios) 8º ano ilton bruno
Ilton Bruno
 
2ª lista de exercícios 9º ano (eq. 2º grau)
2ª lista de exercícios   9º ano (eq. 2º grau)2ª lista de exercícios   9º ano (eq. 2º grau)
2ª lista de exercícios 9º ano (eq. 2º grau)
Ilton Bruno
 
Lista de Exercícios – Decomposição em Fatores Primos
Lista de Exercícios – Decomposição em Fatores PrimosLista de Exercícios – Decomposição em Fatores Primos
Lista de Exercícios – Decomposição em Fatores Primos
Everton Moraes
 
EXPRESSÕES NUMÉRICAS - Gabarito das expressões numéricas
EXPRESSÕES NUMÉRICAS - Gabarito das expressões numéricasEXPRESSÕES NUMÉRICAS - Gabarito das expressões numéricas
EXPRESSÕES NUMÉRICAS - Gabarito das expressões numéricas
Otávio Sales
 
Lista de exercícios 8º ano - 3ª etapa - produto notável
Lista de exercícios   8º ano - 3ª etapa - produto notávelLista de exercícios   8º ano - 3ª etapa - produto notável
Lista de exercícios 8º ano - 3ª etapa - produto notável
Alessandra Dias
 
Adição e Subtração de Frações
Adição  e Subtração de FraçõesAdição  e Subtração de Frações
7° ano
7° ano7° ano
Banco de-atividades-de-matematica-7c2ba-ano
Banco de-atividades-de-matematica-7c2ba-anoBanco de-atividades-de-matematica-7c2ba-ano
Banco de-atividades-de-matematica-7c2ba-ano
Jorge Basílio
 
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
Hélio Rocha
 
Atividades números inteiros
Atividades números inteirosAtividades números inteiros
Atividades números inteiros
Leandro Marin
 
Lista de exercícios – expressões algébricas
Lista de exercícios – expressões algébricasLista de exercícios – expressões algébricas
Lista de exercícios – expressões algébricas
Everton Moraes
 

Mais procurados (20)

Operações com Frações
Operações com FraçõesOperações com Frações
Operações com Frações
 
Números inteiros relativos multiplicação e divisão
Números inteiros relativos multiplicação e divisãoNúmeros inteiros relativos multiplicação e divisão
Números inteiros relativos multiplicação e divisão
 
Prova do 8º ano do auzanir
Prova do 8º ano do auzanirProva do 8º ano do auzanir
Prova do 8º ano do auzanir
 
Numeros inteiros piramide para o slide
Numeros inteiros piramide para o slideNumeros inteiros piramide para o slide
Numeros inteiros piramide para o slide
 
Listão 7º ano
Listão 7º anoListão 7º ano
Listão 7º ano
 
3ª lista de exercícios complementares de matemática (expressões algébricas) p...
3ª lista de exercícios complementares de matemática (expressões algébricas) p...3ª lista de exercícios complementares de matemática (expressões algébricas) p...
3ª lista de exercícios complementares de matemática (expressões algébricas) p...
 
Lista de exercícios de função afim
Lista de exercícios de função afimLista de exercícios de função afim
Lista de exercícios de função afim
 
Microsoft word exercicio matemática com gabarito equações do 2º grau
Microsoft word   exercicio matemática com  gabarito equações do 2º grauMicrosoft word   exercicio matemática com  gabarito equações do 2º grau
Microsoft word exercicio matemática com gabarito equações do 2º grau
 
Equações 1º grau simples e com parenteses
Equações 1º grau   simples e com parentesesEquações 1º grau   simples e com parenteses
Equações 1º grau simples e com parenteses
 
1ª lista de exerc(monomios) 8º ano ilton bruno
1ª lista de exerc(monomios) 8º ano   ilton bruno1ª lista de exerc(monomios) 8º ano   ilton bruno
1ª lista de exerc(monomios) 8º ano ilton bruno
 
2ª lista de exercícios 9º ano (eq. 2º grau)
2ª lista de exercícios   9º ano (eq. 2º grau)2ª lista de exercícios   9º ano (eq. 2º grau)
2ª lista de exercícios 9º ano (eq. 2º grau)
 
Lista de Exercícios – Decomposição em Fatores Primos
Lista de Exercícios – Decomposição em Fatores PrimosLista de Exercícios – Decomposição em Fatores Primos
Lista de Exercícios – Decomposição em Fatores Primos
 
EXPRESSÕES NUMÉRICAS - Gabarito das expressões numéricas
EXPRESSÕES NUMÉRICAS - Gabarito das expressões numéricasEXPRESSÕES NUMÉRICAS - Gabarito das expressões numéricas
EXPRESSÕES NUMÉRICAS - Gabarito das expressões numéricas
 
Lista de exercícios 8º ano - 3ª etapa - produto notável
Lista de exercícios   8º ano - 3ª etapa - produto notávelLista de exercícios   8º ano - 3ª etapa - produto notável
Lista de exercícios 8º ano - 3ª etapa - produto notável
 
Adição e Subtração de Frações
Adição  e Subtração de FraçõesAdição  e Subtração de Frações
Adição e Subtração de Frações
 
7° ano
7° ano7° ano
7° ano
 
Banco de-atividades-de-matematica-7c2ba-ano
Banco de-atividades-de-matematica-7c2ba-anoBanco de-atividades-de-matematica-7c2ba-ano
Banco de-atividades-de-matematica-7c2ba-ano
 
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
SIMULADO: POTENCIAÇÃO E RADICIAÇÃO (8º ANO E H2)
 
Atividades números inteiros
Atividades números inteirosAtividades números inteiros
Atividades números inteiros
 
Lista de exercícios – expressões algébricas
Lista de exercícios – expressões algébricasLista de exercícios – expressões algébricas
Lista de exercícios – expressões algébricas
 

Destaque

Números inteiros diversos exercícios 2 2014 gabarito
Números inteiros   diversos exercícios 2 2014 gabaritoNúmeros inteiros   diversos exercícios 2 2014 gabarito
Números inteiros diversos exercícios 2 2014 gabarito
CIEP 456 - E.M. Milcah de Sousa
 
Números inteiros
Números inteirosNúmeros inteiros
Números inteiros
Helena Borralho
 
Mat numeros inteiros slides
Mat numeros inteiros slidesMat numeros inteiros slides
Mat numeros inteiros slides
trigono_metria
 
AdiçãO De NúMeros Inteiros
AdiçãO De NúMeros InteirosAdiçãO De NúMeros Inteiros
AdiçãO De NúMeros Inteiros
Helena Borralho
 
Números Inteiros
Números InteirosNúmeros Inteiros
Números Inteiros
milla_matematica
 
Lista (3) de exercícios números inteiros ( gabaritada)
Lista (3) de exercícios números inteiros ( gabaritada)Lista (3) de exercícios números inteiros ( gabaritada)
Lista (3) de exercícios números inteiros ( gabaritada)
Olicio Silva
 
Conjunto dos Números Inteiros
Conjunto dos Números Inteiros Conjunto dos Números Inteiros
Conjunto dos Números Inteiros
Helen Batista
 
Números inteiros 6º ano
Números inteiros 6º anoNúmeros inteiros 6º ano
Números inteiros 6º ano
Graca Quinta Braga
 
Operações com Números Naturais
Operações com Números NaturaisOperações com Números Naturais
Operações com Números Naturais
rubensdiasjr07
 
Prova números inteiros - 7° ano
Prova números inteiros  - 7° anoProva números inteiros  - 7° ano
Prova números inteiros - 7° ano
Gentil De Almeida Junior
 
Números inteiros
Números inteirosNúmeros inteiros
Números inteiros
Shaieny Leite
 
Números Inteiros
Números InteirosNúmeros Inteiros
Números Inteiros
Mauro de Oliveira Lima
 
I lista de exercícios de matemática 7ano - gabarito
I lista de exercícios de matemática   7ano - gabaritoI lista de exercícios de matemática   7ano - gabarito
I lista de exercícios de matemática 7ano - gabarito
jonihson
 
numeros inteiros
 numeros inteiros numeros inteiros
numeros inteiros
Professora Rakell
 
Subtracao de números naturais
Subtracao de números naturaisSubtracao de números naturais
Subtracao de números naturais
celioj
 
Gabriel guarino eslaide do biel
Gabriel guarino eslaide do bielGabriel guarino eslaide do biel
Gabriel guarino eslaide do biel
Sheila Abdala
 
Lista com gabarito Equações fracionárias, biquadradas e irracionais
Lista com gabarito Equações fracionárias, biquadradas e irracionaisLista com gabarito Equações fracionárias, biquadradas e irracionais
Lista com gabarito Equações fracionárias, biquadradas e irracionais
Andréia Rodrigues
 
Grupo c
Grupo cGrupo c
Grupo c
Amaral Te
 
Lista (5) de exercícios adição e subtração 2 parte
Lista (5) de exercícios adição e subtração 2 parteLista (5) de exercícios adição e subtração 2 parte
Lista (5) de exercícios adição e subtração 2 parte
Olicio Silva
 
1ª prova de 2014 2° bimestre HISTÓRIA
1ª prova de 2014 2° bimestre HISTÓRIA1ª prova de 2014 2° bimestre HISTÓRIA
1ª prova de 2014 2° bimestre HISTÓRIA
Katia Lopes
 

Destaque (20)

Números inteiros diversos exercícios 2 2014 gabarito
Números inteiros   diversos exercícios 2 2014 gabaritoNúmeros inteiros   diversos exercícios 2 2014 gabarito
Números inteiros diversos exercícios 2 2014 gabarito
 
Números inteiros
Números inteirosNúmeros inteiros
Números inteiros
 
Mat numeros inteiros slides
Mat numeros inteiros slidesMat numeros inteiros slides
Mat numeros inteiros slides
 
AdiçãO De NúMeros Inteiros
AdiçãO De NúMeros InteirosAdiçãO De NúMeros Inteiros
AdiçãO De NúMeros Inteiros
 
Números Inteiros
Números InteirosNúmeros Inteiros
Números Inteiros
 
Lista (3) de exercícios números inteiros ( gabaritada)
Lista (3) de exercícios números inteiros ( gabaritada)Lista (3) de exercícios números inteiros ( gabaritada)
Lista (3) de exercícios números inteiros ( gabaritada)
 
Conjunto dos Números Inteiros
Conjunto dos Números Inteiros Conjunto dos Números Inteiros
Conjunto dos Números Inteiros
 
Números inteiros 6º ano
Números inteiros 6º anoNúmeros inteiros 6º ano
Números inteiros 6º ano
 
Operações com Números Naturais
Operações com Números NaturaisOperações com Números Naturais
Operações com Números Naturais
 
Prova números inteiros - 7° ano
Prova números inteiros  - 7° anoProva números inteiros  - 7° ano
Prova números inteiros - 7° ano
 
Números inteiros
Números inteirosNúmeros inteiros
Números inteiros
 
Números Inteiros
Números InteirosNúmeros Inteiros
Números Inteiros
 
I lista de exercícios de matemática 7ano - gabarito
I lista de exercícios de matemática   7ano - gabaritoI lista de exercícios de matemática   7ano - gabarito
I lista de exercícios de matemática 7ano - gabarito
 
numeros inteiros
 numeros inteiros numeros inteiros
numeros inteiros
 
Subtracao de números naturais
Subtracao de números naturaisSubtracao de números naturais
Subtracao de números naturais
 
Gabriel guarino eslaide do biel
Gabriel guarino eslaide do bielGabriel guarino eslaide do biel
Gabriel guarino eslaide do biel
 
Lista com gabarito Equações fracionárias, biquadradas e irracionais
Lista com gabarito Equações fracionárias, biquadradas e irracionaisLista com gabarito Equações fracionárias, biquadradas e irracionais
Lista com gabarito Equações fracionárias, biquadradas e irracionais
 
Grupo c
Grupo cGrupo c
Grupo c
 
Lista (5) de exercícios adição e subtração 2 parte
Lista (5) de exercícios adição e subtração 2 parteLista (5) de exercícios adição e subtração 2 parte
Lista (5) de exercícios adição e subtração 2 parte
 
1ª prova de 2014 2° bimestre HISTÓRIA
1ª prova de 2014 2° bimestre HISTÓRIA1ª prova de 2014 2° bimestre HISTÓRIA
1ª prova de 2014 2° bimestre HISTÓRIA
 

Semelhante a Números inteiros relativos adição e subtração

3 matemática
3   matemática3   matemática
3 matemática
afrodite2007
 
Apostila matematica concursos
Apostila matematica concursosApostila matematica concursos
Apostila matematica concursos
educacao f
 
F6 apa
F6 apaF6 apa
F6 apa
vmariano
 
Matemática apostila 1 suely
Matemática   apostila 1 suelyMatemática   apostila 1 suely
Matemática apostila 1 suely
Suely Do Nascimento
 
Complexos
ComplexosComplexos
Complexos
Nome Sobrenome
 
Complexos
ComplexosComplexos
Complexos
Adriana Cunha
 
Complexos
ComplexosComplexos
Complexos
Nome Sobrenome
 
Conjuntos numéricos versão mini
Conjuntos numéricos   versão miniConjuntos numéricos   versão mini
Conjuntos numéricos versão mini
Luciano Pessanha
 
Apostila de matematica para concursos
Apostila de matematica para concursosApostila de matematica para concursos
Apostila de matematica para concursos
Salomao Severo da Silva
 
Numeros inteiros
Numeros inteirosNumeros inteiros
Numeros inteiros
con_seguir
 
Exercício de aprofundamento lista extra para a terceira prova
Exercício de aprofundamento   lista extra para a terceira provaExercício de aprofundamento   lista extra para a terceira prova
Exercício de aprofundamento lista extra para a terceira prova
marina_cordova
 
Recuperação lista exercicios 9º ano 1º bimestre
Recuperação lista exercicios 9º ano 1º bimestreRecuperação lista exercicios 9º ano 1º bimestre
Recuperação lista exercicios 9º ano 1º bimestre
Rafael Marques
 
Números inteiros relativos
Números inteiros relativosNúmeros inteiros relativos
Números inteiros relativos
matematica3g
 
Lista exercicios 7º ano 1º bimestre
Lista exercicios 7º ano 1º bimestreLista exercicios 7º ano 1º bimestre
Lista exercicios 7º ano 1º bimestre
Rafael Marques
 
Ficha6 7 f
Ficha6 7 fFicha6 7 f
Ficha6 7 f
vmariano
 
Matemática 7ºs-anos1
Matemática 7ºs-anos1Matemática 7ºs-anos1
Matemática 7ºs-anos1
ALICE DA GUIA DE OLIVEIRA
 
Algebra basica
Algebra basicaAlgebra basica
Algebra basica
nyltton
 
Exercícios matrizes ii gabarito
Exercícios matrizes ii gabaritoExercícios matrizes ii gabarito
Exercícios matrizes ii gabarito
Otávio Sales
 
3º teste 10_resolucao.pdf
3º teste 10_resolucao.pdf3º teste 10_resolucao.pdf
3º teste 10_resolucao.pdf
Raquel129278
 
Plano de aula 1 º ano ensino medio - 1º bimestre
Plano de aula  1 º ano ensino medio - 1º bimestrePlano de aula  1 º ano ensino medio - 1º bimestre
Plano de aula 1 º ano ensino medio - 1º bimestre
Angela Machado Verissimo
 

Semelhante a Números inteiros relativos adição e subtração (20)

3 matemática
3   matemática3   matemática
3 matemática
 
Apostila matematica concursos
Apostila matematica concursosApostila matematica concursos
Apostila matematica concursos
 
F6 apa
F6 apaF6 apa
F6 apa
 
Matemática apostila 1 suely
Matemática   apostila 1 suelyMatemática   apostila 1 suely
Matemática apostila 1 suely
 
Complexos
ComplexosComplexos
Complexos
 
Complexos
ComplexosComplexos
Complexos
 
Complexos
ComplexosComplexos
Complexos
 
Conjuntos numéricos versão mini
Conjuntos numéricos   versão miniConjuntos numéricos   versão mini
Conjuntos numéricos versão mini
 
Apostila de matematica para concursos
Apostila de matematica para concursosApostila de matematica para concursos
Apostila de matematica para concursos
 
Numeros inteiros
Numeros inteirosNumeros inteiros
Numeros inteiros
 
Exercício de aprofundamento lista extra para a terceira prova
Exercício de aprofundamento   lista extra para a terceira provaExercício de aprofundamento   lista extra para a terceira prova
Exercício de aprofundamento lista extra para a terceira prova
 
Recuperação lista exercicios 9º ano 1º bimestre
Recuperação lista exercicios 9º ano 1º bimestreRecuperação lista exercicios 9º ano 1º bimestre
Recuperação lista exercicios 9º ano 1º bimestre
 
Números inteiros relativos
Números inteiros relativosNúmeros inteiros relativos
Números inteiros relativos
 
Lista exercicios 7º ano 1º bimestre
Lista exercicios 7º ano 1º bimestreLista exercicios 7º ano 1º bimestre
Lista exercicios 7º ano 1º bimestre
 
Ficha6 7 f
Ficha6 7 fFicha6 7 f
Ficha6 7 f
 
Matemática 7ºs-anos1
Matemática 7ºs-anos1Matemática 7ºs-anos1
Matemática 7ºs-anos1
 
Algebra basica
Algebra basicaAlgebra basica
Algebra basica
 
Exercícios matrizes ii gabarito
Exercícios matrizes ii gabaritoExercícios matrizes ii gabarito
Exercícios matrizes ii gabarito
 
3º teste 10_resolucao.pdf
3º teste 10_resolucao.pdf3º teste 10_resolucao.pdf
3º teste 10_resolucao.pdf
 
Plano de aula 1 º ano ensino medio - 1º bimestre
Plano de aula  1 º ano ensino medio - 1º bimestrePlano de aula  1 º ano ensino medio - 1º bimestre
Plano de aula 1 º ano ensino medio - 1º bimestre
 

Último

Aula04A-Potencia em CA eletricidade USP.pdf
Aula04A-Potencia em CA eletricidade USP.pdfAula04A-Potencia em CA eletricidade USP.pdf
Aula04A-Potencia em CA eletricidade USP.pdf
vitorreissouzasilva
 
Copia de cartilla de portugués 1 2024.pdf
Copia de cartilla de portugués 1 2024.pdfCopia de cartilla de portugués 1 2024.pdf
Copia de cartilla de portugués 1 2024.pdf
davidreyes364666
 
DNA e RNA - Estrutura dos Ácidos nucleicos
DNA e RNA - Estrutura dos Ácidos nucleicosDNA e RNA - Estrutura dos Ácidos nucleicos
DNA e RNA - Estrutura dos Ácidos nucleicos
jonny615148
 
Exercicios de Word Básico para a aulas de informatica Basica
Exercicios de Word Básico para a aulas de informatica BasicaExercicios de Word Básico para a aulas de informatica Basica
Exercicios de Word Básico para a aulas de informatica Basica
ElinarioCosta
 
Razonamiento Matematico 6to Primaria MA6 Ccesa007.pdf
Razonamiento Matematico 6to Primaria MA6 Ccesa007.pdfRazonamiento Matematico 6to Primaria MA6 Ccesa007.pdf
Razonamiento Matematico 6to Primaria MA6 Ccesa007.pdf
Demetrio Ccesa Rayme
 
Infografia | Resultados das Eleições Europeias 2024-2029
Infografia | Resultados das Eleições Europeias 2024-2029Infografia | Resultados das Eleições Europeias 2024-2029
Infografia | Resultados das Eleições Europeias 2024-2029
Centro Jacques Delors
 
Slides Lição 12, Central Gospel, O Milênio, 1Tr24, Pr Henrique.pptx
Slides Lição 12, Central Gospel, O Milênio, 1Tr24, Pr Henrique.pptxSlides Lição 12, Central Gospel, O Milênio, 1Tr24, Pr Henrique.pptx
Slides Lição 12, Central Gospel, O Milênio, 1Tr24, Pr Henrique.pptx
LuizHenriquedeAlmeid6
 
Pedagogia universitária em ciência e tecnologia
Pedagogia universitária em ciência e tecnologiaPedagogia universitária em ciência e tecnologia
Pedagogia universitária em ciência e tecnologia
Nertan Dias
 
Slides Lição 12, CPAD, A Bendita Esperança, A Marca do Cristão, 2Tr24.pptx
Slides Lição 12, CPAD, A Bendita Esperança, A Marca do Cristão, 2Tr24.pptxSlides Lição 12, CPAD, A Bendita Esperança, A Marca do Cristão, 2Tr24.pptx
Slides Lição 12, CPAD, A Bendita Esperança, A Marca do Cristão, 2Tr24.pptx
LuizHenriquedeAlmeid6
 
Apostila-Microbiologia-e-Parasitologia-doc.pdf
Apostila-Microbiologia-e-Parasitologia-doc.pdfApostila-Microbiologia-e-Parasitologia-doc.pdf
Apostila-Microbiologia-e-Parasitologia-doc.pdf
bmgrama
 
Aula 1 - Ordem Mundial Aula de Geografia
Aula 1 - Ordem Mundial Aula de GeografiaAula 1 - Ordem Mundial Aula de Geografia
Aula 1 - Ordem Mundial Aula de Geografia
WELTONROBERTOFREITAS
 
Loteria - Adição, subtração, multiplicação e divisão.
Loteria - Adição,  subtração,  multiplicação e divisão.Loteria - Adição,  subtração,  multiplicação e divisão.
Loteria - Adição, subtração, multiplicação e divisão.
Mary Alvarenga
 
UFCD_10789_Metodologias de desenvolvimento de software_índice.pdf
UFCD_10789_Metodologias de desenvolvimento de software_índice.pdfUFCD_10789_Metodologias de desenvolvimento de software_índice.pdf
UFCD_10789_Metodologias de desenvolvimento de software_índice.pdf
Manuais Formação
 
AVALIAÇÃO PRESENCIAL 8º período pedagogia
AVALIAÇÃO PRESENCIAL 8º período  pedagogiaAVALIAÇÃO PRESENCIAL 8º período  pedagogia
AVALIAÇÃO PRESENCIAL 8º período pedagogia
KarollayneRodriguesV1
 
O século XVII e o nascimento da pedagogia.pptx
O século XVII e o nascimento da pedagogia.pptxO século XVII e o nascimento da pedagogia.pptx
O século XVII e o nascimento da pedagogia.pptx
geiseortiz1
 
Cartinhas de solidariedade e esperança.pptx
Cartinhas de solidariedade e esperança.pptxCartinhas de solidariedade e esperança.pptx
Cartinhas de solidariedade e esperança.pptx
Zenir Carmen Bez Trombeta
 
Aula de filosofia sobre Sexo, Gênero e sexualidade
Aula de filosofia sobre Sexo, Gênero e sexualidadeAula de filosofia sobre Sexo, Gênero e sexualidade
Aula de filosofia sobre Sexo, Gênero e sexualidade
AlessandraRibas7
 
Psicologia e Sociologia - Módulo 2 – Sociedade e indivíduo.pptx
Psicologia e Sociologia - Módulo 2 – Sociedade e indivíduo.pptxPsicologia e Sociologia - Módulo 2 – Sociedade e indivíduo.pptx
Psicologia e Sociologia - Módulo 2 – Sociedade e indivíduo.pptx
TiagoLouro8
 
Tabela Funções Orgânicas.pdfnsknsknksnksn nkasn
Tabela Funções Orgânicas.pdfnsknsknksnksn nkasnTabela Funções Orgânicas.pdfnsknsknksnksn nkasn
Tabela Funções Orgânicas.pdfnsknsknksnksn nkasn
CarlosJean21
 
3ª série HIS - PROVA PAULISTA DIA 1 - 1º BIM-24.pdf
3ª série HIS - PROVA PAULISTA DIA 1 - 1º BIM-24.pdf3ª série HIS - PROVA PAULISTA DIA 1 - 1º BIM-24.pdf
3ª série HIS - PROVA PAULISTA DIA 1 - 1º BIM-24.pdf
AdrianoMontagna1
 

Último (20)

Aula04A-Potencia em CA eletricidade USP.pdf
Aula04A-Potencia em CA eletricidade USP.pdfAula04A-Potencia em CA eletricidade USP.pdf
Aula04A-Potencia em CA eletricidade USP.pdf
 
Copia de cartilla de portugués 1 2024.pdf
Copia de cartilla de portugués 1 2024.pdfCopia de cartilla de portugués 1 2024.pdf
Copia de cartilla de portugués 1 2024.pdf
 
DNA e RNA - Estrutura dos Ácidos nucleicos
DNA e RNA - Estrutura dos Ácidos nucleicosDNA e RNA - Estrutura dos Ácidos nucleicos
DNA e RNA - Estrutura dos Ácidos nucleicos
 
Exercicios de Word Básico para a aulas de informatica Basica
Exercicios de Word Básico para a aulas de informatica BasicaExercicios de Word Básico para a aulas de informatica Basica
Exercicios de Word Básico para a aulas de informatica Basica
 
Razonamiento Matematico 6to Primaria MA6 Ccesa007.pdf
Razonamiento Matematico 6to Primaria MA6 Ccesa007.pdfRazonamiento Matematico 6to Primaria MA6 Ccesa007.pdf
Razonamiento Matematico 6to Primaria MA6 Ccesa007.pdf
 
Infografia | Resultados das Eleições Europeias 2024-2029
Infografia | Resultados das Eleições Europeias 2024-2029Infografia | Resultados das Eleições Europeias 2024-2029
Infografia | Resultados das Eleições Europeias 2024-2029
 
Slides Lição 12, Central Gospel, O Milênio, 1Tr24, Pr Henrique.pptx
Slides Lição 12, Central Gospel, O Milênio, 1Tr24, Pr Henrique.pptxSlides Lição 12, Central Gospel, O Milênio, 1Tr24, Pr Henrique.pptx
Slides Lição 12, Central Gospel, O Milênio, 1Tr24, Pr Henrique.pptx
 
Pedagogia universitária em ciência e tecnologia
Pedagogia universitária em ciência e tecnologiaPedagogia universitária em ciência e tecnologia
Pedagogia universitária em ciência e tecnologia
 
Slides Lição 12, CPAD, A Bendita Esperança, A Marca do Cristão, 2Tr24.pptx
Slides Lição 12, CPAD, A Bendita Esperança, A Marca do Cristão, 2Tr24.pptxSlides Lição 12, CPAD, A Bendita Esperança, A Marca do Cristão, 2Tr24.pptx
Slides Lição 12, CPAD, A Bendita Esperança, A Marca do Cristão, 2Tr24.pptx
 
Apostila-Microbiologia-e-Parasitologia-doc.pdf
Apostila-Microbiologia-e-Parasitologia-doc.pdfApostila-Microbiologia-e-Parasitologia-doc.pdf
Apostila-Microbiologia-e-Parasitologia-doc.pdf
 
Aula 1 - Ordem Mundial Aula de Geografia
Aula 1 - Ordem Mundial Aula de GeografiaAula 1 - Ordem Mundial Aula de Geografia
Aula 1 - Ordem Mundial Aula de Geografia
 
Loteria - Adição, subtração, multiplicação e divisão.
Loteria - Adição,  subtração,  multiplicação e divisão.Loteria - Adição,  subtração,  multiplicação e divisão.
Loteria - Adição, subtração, multiplicação e divisão.
 
UFCD_10789_Metodologias de desenvolvimento de software_índice.pdf
UFCD_10789_Metodologias de desenvolvimento de software_índice.pdfUFCD_10789_Metodologias de desenvolvimento de software_índice.pdf
UFCD_10789_Metodologias de desenvolvimento de software_índice.pdf
 
AVALIAÇÃO PRESENCIAL 8º período pedagogia
AVALIAÇÃO PRESENCIAL 8º período  pedagogiaAVALIAÇÃO PRESENCIAL 8º período  pedagogia
AVALIAÇÃO PRESENCIAL 8º período pedagogia
 
O século XVII e o nascimento da pedagogia.pptx
O século XVII e o nascimento da pedagogia.pptxO século XVII e o nascimento da pedagogia.pptx
O século XVII e o nascimento da pedagogia.pptx
 
Cartinhas de solidariedade e esperança.pptx
Cartinhas de solidariedade e esperança.pptxCartinhas de solidariedade e esperança.pptx
Cartinhas de solidariedade e esperança.pptx
 
Aula de filosofia sobre Sexo, Gênero e sexualidade
Aula de filosofia sobre Sexo, Gênero e sexualidadeAula de filosofia sobre Sexo, Gênero e sexualidade
Aula de filosofia sobre Sexo, Gênero e sexualidade
 
Psicologia e Sociologia - Módulo 2 – Sociedade e indivíduo.pptx
Psicologia e Sociologia - Módulo 2 – Sociedade e indivíduo.pptxPsicologia e Sociologia - Módulo 2 – Sociedade e indivíduo.pptx
Psicologia e Sociologia - Módulo 2 – Sociedade e indivíduo.pptx
 
Tabela Funções Orgânicas.pdfnsknsknksnksn nkasn
Tabela Funções Orgânicas.pdfnsknsknksnksn nkasnTabela Funções Orgânicas.pdfnsknsknksnksn nkasn
Tabela Funções Orgânicas.pdfnsknsknksnksn nkasn
 
3ª série HIS - PROVA PAULISTA DIA 1 - 1º BIM-24.pdf
3ª série HIS - PROVA PAULISTA DIA 1 - 1º BIM-24.pdf3ª série HIS - PROVA PAULISTA DIA 1 - 1º BIM-24.pdf
3ª série HIS - PROVA PAULISTA DIA 1 - 1º BIM-24.pdf
 

Números inteiros relativos adição e subtração

  • 1. NÚMEROS INTEIROS RELATIVOS INTRODUÇÃO: Observe que, no conjunto dos números naturais, a operação de subtração nem sempre é possível exemplos: a) 5 - 3 = 2 (possível: 2 é um número natural) b) 9 - 9 = 0 ( possível: 0 é um número natural) c) 3 - 5 = ? (impossível nos números naturais) Para tonar sempre possível a subtração, foi criado o conjunto dos números inteiros relativos, -1, -2, -3.......... lê-se: menos um ou 1 negativo lê-se: menos dois ou dois negativo lê-se: menos três ou três negativo Reunindo os números negativos, o zero e os números positivos, formamos o conjunto dos numeros inteiros relativos, que será representado por Z. Z = {.....-3, -2, -1, 0, +1, +2, +3,......} Importante: os números inteiros positivos podem ser indicados sem o sinal de +. exemplo a) +7 = 7 b) +2 = 2 c) +13 = 13 d) +45 = 45 Sendo que o zero não é positivo nem negativo. EXERCICIOS 1) Observe os números e diga: -15, +6, -1, 0, +54, +12, -93, -8, +23, -72, +72 a) Quais os números inteiros negativos?
  • 2. b) Quais são os números inteiros positivos? 2) Qual o número inteiro que não é nem positivo nem negativo? 3) Escreva a leitura dos seguintes números inteiros: a) -8 = b)+6 = c) -10 = d) +12 = e) +75 = f) -100 = 4) Quais das seguintes sentenças são verdadeiras? a) +4 = 4 = b) -6 = 6 = c) -8 = 8 = d) 54 = +54 = e) 93 = -93 = 5) As temperaturas acima de 0°C (zero grau) são representadas por números positivos e as temperaturas abaixo de 0°C, por números negativos. Represente a seguinte situação com números inteiros relativos: a) 5° acima de zero = b) 3° abaixo de zero = c) 9°C abaixo de zero= d) 15° acima de zero = REPRESENTAÇÃO DOS NÚMEROS INTEIROS NA RETA Vamos traçar uma reta e marcar o ponto 0. À direta do ponto 0, com uma certa unidade de medida, assinalemos os pontos que correspondem aos números positivos e à esquerda de 0, com a mesma unidade, assinalaremos os pontos que correspondem aos números negativos. _I___I___I___I___I___I___I___I___I___I___I___I___I___I_ -6.. -5...-4. -3,. -2,..-1,.. 0,.+1,.+2,.+3,.+4,..+5,.+6
  • 3. exercícios 1) Escreva os números inteiros: a) compreendidos entre 1 e 7 b) compreendidos entre -3 e 3 c) compreendidos entre -4 e 2 d) compreendidos entre -2 e 4 e) compreendidos entre -5 e -1 f) compreendidos entre -6 e 0 2) Responda: a) Qual é o sucessor de +8? b) Qual é o sucessor de -6? c) Qual é o sucessor de 0 ? d) Qual é o antecessor de +8? e) Qual é o antecessor de -6? f) Qual é o antecessor de 0 ? 3) Escreva em Z o antecessor e o sucessor dos números: a) +4 b) -4 c) 54 d) -68 e) -799 f) +1000 ADIÇÃO E SUBTRAÇÃO COM NÚMEROS INTEIROS ADIÇÃO 1) Adição de números positivos A soma de dois números positivos é um número positivo. EXEMPLO a) (+2) + (+5) = +7 b) (+1) + (+4) = +5 c) (+6) + (+3) = +9
  • 4. Simplificando a maneira de escrever a) +2 +5 = +7 b) +1 + 4 = +5 c) +6 + 3 = +9 Observe que escrevemos a soma dos números inteiros sem colocar o sinal + da adição e eliminamos os parênteses das parcelas. 2) Adição de números negativos A soma de dois números negativos é um número negativo Exemplo a) (-2) + (-3) = -5 b) (-1) + (-1) = -2 c) (-7) + (-2) = -9 Simplificando a maneira de escrever a) -2 - 3 = -5 b) -1 -1 = -2 c) -7 - 2 = -9 Observe que podemos simplificar a maneira de escrever deixando de colocar o sinal de + na operação e eliminando os parênteses das parcelas. EXERCÍCIOS 1) Calcule a) +5 + 3 = b) +1 + 4 = c) -4 - 2 = d) -3 - 1 = e) +6 + 9 = f) +10 + 7 = g) -8 -12 = h) -4 -15 = i) -10 - 15 = j) +5 +18 = l) -31 - 18 = m) +20 +40 = n) -60 - 30 = o) +75 +15 = p) -50 -50 =
  • 5. 2) Calcule: a) (+3) + (+2) = b) (+5) + (+1) = c) (+7) + ( +5) = d) (+2) + (+8) = e) (+9) + (+4) = f) (+6) + (+5) = g) (-3) + (-2) = h) (-5) + (-1) = i) (-7) + (-5) = j) (-4) + (-7) = l) (-8) + ( -6) = m) (-5) + ( -6) = 3) Calcule: a) ( -22) + ( -19) = b) (+32) + ( +14) = c) (-25) + (-25) = d) (-94) + (-18) = e) (+105) + (+105) = f) (-280) + (-509) = g) (-321) + (-30) = h) (+200) + (+137) = 3) Adição de números com sinais diferentes A soma de dois números inteiros de sinais diferentes é obtida subtraindo-se os valores absolutos, dando-se o sinal do número que tiver maior valor absoluto. exemplos a) (+6) + ( -1) = +5 b) (+2) + (-5) = -3 c) (-10) + ( +3) = -7 simplificando a maneira de escrever a) +6 - 1 = +5 b) +2 - 5 = -3 c) -10 + 3 = -7
  • 6. Note que o resultado da adição tem o mesmo sinal que o número de maior valor absoluto Observação: Quando as parcelas são números opostos, a soma é igual a zero. Exemplo a) (+3) + (-3) = 0 b) (-8) + (+8) = 0 c) (+1) + (-1) = 0 simplificando a maneira de escrever a) +3 - 3 = 0 b) -8 + 8 = 0 c) +1 - 1 = 0 4) Um dos números dados é zero Quando um dos números é zero , a soma é igual ao outro número. exemplo a) (+5) +0 = +5 b) 0 + (-3) = -3 c) (-7) + 0 = -7 Simplificando a maneira de escrever a) +5 + 0 = +5 b) 0 - 3 = -3 c) -7 + 0 = -7
  • 7. exercícios 1) Calcule: a) +1 - 6 = b) -9 + 4 = c) -3 + 6 = d) -8 + 3 = e) -9 + 11 = f) +15 - 6 = g) -2 + 14 = h) +13 -1 = i) +23 -17 = j) -14 + 21 = l) +28 -11 = m) -31 + 30 = 2) Calcule: a) (+9) + (-5) = b) (+3) + (-4) = c) (-8) + (+6) = d) (+5) + (-9) = e) (-6) + (+2) = f) (+9) + (-1) = g) (+8) + (-3) = h) (+12) + (-3) = i) (-7) + (+15) = j) (-18) + (+8) = i) (+7) + (-7) = l) (-6) + 0 = m) +3 + (-5) = n) (+2) + (-2) = o) (-4) +10 = p) -7 + (+9) = q) +4 + (-12) = r) +6 + (-4) =
  • 8. 3) Calcule a) (+5 + (+7) = b) (-8) + (-9) = c) (-37) + (+35) = d) (+10) + (-9) = e) (-15 ) + (+15) = f) (+80) + 0 = g) (-127) + (-51) = h) (+37) + (+37) = i) (-42) + (-18) = j) (-18) + (+17) = l) (-18) + (+19) = m) (-1) + (-42) = n) (+325) + (-257) = o) 0 + (-75) = p) (-121) + (+92) = q ) (-578) + (-742) = r) (+101) + (-101) = s) (-1050) + (+876) = PROPRIEDADE DA ADIÇÃO 1) Fechamento : a soma de dois números inteiros é sempre um número inteiro exemplo (-4) + (+7) =( +3) 2) Comutativa: a ordem das parcelas não altera a soma. exemplo: (+5) + (-3) = (-3) + (+5) 3) Elemento neutro: o número zero é o elemento neutro da adição. exemplo: (+8) + 0 = 0 + (+8) = +8 4) Associativa: na adição de três números inteiros, podemos associar os dois primeiros ou os dois últimos, sem que isso altere o resultado. exemplo: [(+8) + (-3) ] + (+4) = (+8) + [(-3) + (+4)] 5) Elemento oposto: qualquer número inteiro admite um simétrico ou oposto. exemplo: (+7) + (-7) = 0
  • 9. ADIÇÃO DE TRÊS OU MAIS NÚMEROS Para obter a soma de três ou mais números adicionamos os dois primeiros e, em seguida, adicionamos esse resultado com o terceiro, e assim por diante. exemplos 1) -12 + 8 - 9 + 2 - 6 = = -4 - 9 + 2 - 6 = = -13 + 2 - 6 = = -11 - 6 = = -17 2) +15 -5 -3 +1 - 2 = = +10 -3 + 1 - 2 = = +7 +1 -2 = = +8 -2 = = +6 Na adição de números inteiros podemos cancelar números opostos, poque a soma deles é zero. INDICAÇÃO SIMPLIFICADA a) podemos dispensar o sinal de + da primeira parcela quando esta for positiva. exemplos a) (+7) + (-5) = 7 - 5 = +2 b) (+6) + (-9) = 6 - 9 = -3 b) Podemos dispensar o sinal + da soma quando esta for positiva exemplos a) (-5) + (+7) = -5 + 7 = 2 b) (+9) + (-4) = 9 - 4 = 5
  • 10. EXERCÍCIOS 1) Calcule a) 4 + 10 + 8 = b) 5 - 9 + 1 = c) -8 - 2 + 3 = d) -15 + 8 - 7 = e) 24 + 6 - 12 = f) -14 - 3 - 6 - 1 = g) -4 + 5 + 6 + 3 - 9 = h) -1 + 2 - 4 - 6 - 3 - 8 = i) 6 - 8 - 3 - 7 - 5 - 1 + 0 - 2 = j) 2 - 10 - 6 + 14 - 1 + 20 = l) -13 - 1 - 2 - 8 + 4 - 6 - 10 = 2) Efetue, cancelando os números opostos: a) 6 + 4 - 6 + 9 - 9 = b) -7 + 5 - 8 + 7 - 5 = c) -3 + 5 + 3 - 2 + 2 + 1 = d) -6 + 10 + 1 - 4 + 6= e) 10 - 6 + 3 - 3 - 10 - 1 = f) 15 - 8 + 4 - 4 + 8 - 15 = 3) Coloque em forma simplificada ( sem parênteses) a) (+1) + (+4) +(+2) = b) (+1) + (+8) + (-2) = c) (+5) +(-8) + (-1) = d) (-6) + (-2) + (+1) = 4) Calcule: a) (-2) + (-3) + (+2) = b) (+3) + (-3) + (-5) = c) (+1) + (+8) +(-2) = d) (+5) + (-8) + (-1) = e) (-6) + (-2) + (+1) =
  • 11. f) (-8) + ( +6) + (-2) = g) (-7) + 6 + (-7) = h) 6 + (-6) + (-7) = i) -6 + (+9) + (-4) = j) (-4) +2 +4 + (+1) = 5) Determine as seguintes somas a) (-8) + (+10) + (+7) + (-2) = b) (+20) + (-19) + (-13) + (-8) = c) (-5) + (+8) + (+2) + (+9) = d) (-1) + (+6) + (-3) + (-4) + (-5) = e) (+10) + (-20) + (-15) + (+12) + (+30) + (-40) = f) (+3) + (-6) + (+8) = g) (-5) + (-12) + (+3) = h) (-70) + (+20) + (+50) = i) (+12) + (-25) + (+15) = j) (-32) + (-13) + (+21) = l) (+7) + (-5) + (-3) + (+10) = m) (+12) + (-50) + (-8) + (+13) = n) (-8)+(+4)+ (+8) + (-5) + (+3) = o) (-36) + (-51) + (+100) + (-52) = p) (+17) + (+13) + (+20) + (-5) + (-45) = 6) Dados os números x= 6, y = 5 e z= -6, calcule a) x + y = b) y + z = c) x + z = SUBTRAÇÃO A operação de subtração é uma operação inversa à da adição Exemplos a) (+8) - (+4) = (+8) + (-4) = = +4 b) (-6) - (+9) = (-6) + (-9) = -15 c) (+5) - (-2) = ( +5) + (+2) = +7
  • 12. Conclusão: Para subtraimos dois números relativos, basta que adicionemos ao primeiro o oposto do segundo. Observação: A subtração no conjunto Z tem apenas a propriedade do fechamento ( a subtração é sempre possivel) ELIMINAÇÃO DE PARÊNTESES PRECEDIDOS DE SINAL NEGATIVO Para facilitar o cálculo, eliminamos os parênteses usando o segnificado do oposto veja: a) -(+8) = -8 (significa o oposto de +8 é -8 ) b) -(-3) = +3 (significa o oposto de -3 é +3) analogicamente: a) -(+8) - (-3) = -8 +3 = -5 b) -(+2) - (+4) = -2 - 4 = -6 c) (+10) - (-3) - +3) = 10 + 3 - 3 = 10 conclusão: podemos eliminar parênteses precedidos de sinal negativo trocando-se o sínal do número que está dentro dos parênteses. EXERCÍCIOS 1) Elimine os parênteses a) -(+5) = b) -(-2) = c) - (+4) = d) -(-7) = e) -(+12) = f) -(-15) = g) -(-42) = h) -(+56) = 2) Calcule: a) (+7) - (+3) = b) (+5) - (-2) = c) (-3) - ( +8) =
  • 13. d) (-1) -(-4) = e) (+3) - (+8) = f) (+9) - (+9) = g) (-8) - ( +5) = h) (+5) - (-6) = i) (-2) - (-4) = j) (-7) - (-8) = l) (+4) -(+4) = m) (-3) - ( +2) = n) -7 + 6 = o) -8 -7 = p) 10 -2 = q) 7 -13 = r) -1 -0 = s) 16 - 20 = t) -18 -9 = u) 5 - 45 = v) -15 -7 = x) -8 +12 = z) -32 -18 = 3) Calcule: a) 7 - (-2) = b) 7 - (+2) = c) 2 - (-9) = d) -5 - (-1) = e) -5 -(+1) = f) -4 - (+3) = g) 8 - (-5) = h) 7 - (+4) = i) 26 - 45 = j) -72 -72 = l) -84 + 84 = m) -10 -100 = n) -2 -4 -1 = o) -8 +6 -1 = p) 12-7 + 3 = q) 4 + 13 - 21 = r) -8 +8 + 1 = s) -7 + 6 + 9 = t) -5 -3 -4 - 1 = u) +10 - 43 -17 = v) -6 -6 + 73 = x) -30 +30 - 40 = z) -60 - 18 +50 =
  • 14. 4) Calcule: a) (-4) -(-2)+(-6) = b) (-7)-(-5)+(-8) = c) (+7)-(-6)-(-8) = d) (-8) + (-6) -(+3) = e) (-4) + (-3) - (+6) = f) 20 - (-6) - (-8) = g) 5 - 6 - (+7) + 1 = h) -10 - (-3) - (-4) = i) (+5) + (-8) = j) (-2) - (-3) = l) (-3) -(-9) = m) (-7) - (-8) = n) (-8) + (-6) - (-7) = o) (-4) + (-6) + (-3) = p) 15 -(-3) - (-1) = q) 32 - (+1) -(-5) = r) (+8) - (+2) = s) (+15) - (-3) = t) (-18) - (-10) = u) (-25) - (+22) = v) (-30) - 0 = x) (+180) - (+182) = z) (+42) - (-42) = 5) Calcule: a) (-5) + (+2) - (-1) + (-7) = b) (+2) - (-3) + (-5) -(-9) = c) (-2) + (-1) -(-7) + (-4) = d) (-5) + (-6) -(-2) + (-3) = e) (+9) -(-2) + (-1) - (-3) = f) 9 - (-7) -11 = g) -2 + (-1) -6 = h) -(+7) -4 -12 = i) 15 -(+9) -(-2) = j) -25 - ( -5) -30 = l) -50 - (+7) -43 = m) 10 -2 -5 -(+2) - (-3) = n) 18 - (-3) - 13 -1 -(-4) = o) 5 -(-5) + 3 - (-3) + 0 - 6 = p) -28 + 7 + (-12) + (-1) -4 -2 = q) -21 -7 -6 -(-15) -2 -(-10) = r) 10 -(-8) + (-9) -(-12)-6 + 5 = s) (-75) - (-25) = t) (-75) - (+25) =
  • 15. u) (+18) - 0 = v) (-52) - (-52) = x) (-16)-(-25) = z) (-100) - (-200) = ELIMINAÇÃO DOS PARENTESES 1) parenteses precedidos pelo sinal + Ao eliminarmos os parênteses e o sinal + que os precede, devemos conservar os sinais dos números contidos nesses parênteses. exemplo a) + (-4 + 5) = -4 + 5 b) +(3 +2 -7) = 3 +2 -7 2) Parênteses precedidos pelo sinal - Ao eliminarmos os parênteses e o sinal de - que os precede, devemos trocar os sinais dos números contidos nesses parênteses. exemplo a) -(4 - 5 + 3) = -4 + 5 -3 b) -(-6 + 8 - 1) = +6 -8 +1 EXERCICIOS 1) Elimine os parênteses: a) +(-3 +8) = b) -(-3 + 8) = c) +(5 - 6) = d) -(-3-1) = e) -(-6 + 4 - 1) = f) +(-3 -2 -1) = g) -(4 -6 +8) = h) + (2 + 5 - 1) = 2) Elimine os parênteses e calcule: a) + 5 + ( 7 - 3) =
  • 16. b) 8 - (-2-1) = c) -6 - (-3 +2) = d) 18 - ( -5 -2 -3 ) = e) 30 - (6 - 1 +7) = f) 4 + (-5 + 0 + 8 -4) = g) 4 + (3 - 5) + ( -2 -6) = h) 8 -(3 + 5 -20) + ( 3 -10) = i) 20 - (-6 +8) - (-1 + 3) = j) 35 -(4-1) - (-2 + 7) = 3) Calcule: a) 10 - ( 15 + 25) = b) 1 - (25 -18) = c) 40 -18 - ( 10 +12) = d) (2 - 7) - (8 -13) = e) 7 - ( 3 + 2 + 1) - 6 = f) -15 - ( 3 + 25) + 4 = g) -32 -1 - ( -12 + 14) = h) 7 + (-5-6) - (-9 + 3) = i) -(+4-6) + (2 - 3) = j) -6 - (2 -7 + 1 - 5) + 1 = EXPRESSÕES COM NÚMEROS INTEIROS RELATIVOS Lembre-se de que os sinais de associação são eliminados obedecendo à seguinte ordem: 1°) PARÊNTESES ( ) ; 2°) COLCHETES [ ] ; 3°) CHAVES { } . Exemplos: 1°) exemplo 8 + ( +7 -1 ) - ( -3 + 1 - 5 ) = 8 + 7 - 1 + 3 - 1 + 5 = 23 - 2 = 21 2°) exemplo 10 + [ -3 + 1 - ( -2 + 6 ) ] = 10 + [ -3 + 1 + 2 - 6 ] = 10 - 3 + 1 + 2 - 6 = 13 - 9 = = 4
  • 17. 3°) exemplo -17 + { +5 - [ +2 - ( -6 +9 ) ]} = -17 + { +5 - [ +2 + 6 - 9]} = -17 + { +5 - 2 - 6 + 9 } = -17 +5 - 2 - 6 + 9 = -25 + 14 = = - 11 EXERCICIOS a) Calcule o valor das seguintes expressões : 1) 15 -(3-2) + ( 7 -4) = 2) 25 - ( 8 - 5 + 3) - ( 12 - 5 - 8) = 3) ( 10 -2 ) - 3 + ( 8 + 7 - 5) = 4) ( 9 - 4 + 2 ) - 1 + ( 9 + 5 - 3) = 5) 18 - [ 2 + ( 7 - 3 - 8 ) - 10 ] = 6) -4 + [ -3 + ( -5 + 9 - 2 )] = 7) -6 - [10 + (-8 -3 ) -1] = 8) -8 - [ -2 - (-12) + 3 ] = 9) 25 - { -2 + [ 6 + ( -4 -1 )]} = 10) 17 - { 5 - 3 + [ 8 - ( -1 - 3 ) + 5 ] } = 11) 3 - { -5 -[8 - 2 + ( -5 + 9 ) ] } = 12) -10 - { -2 + [ + 1 - ( - 3 - 5 ) + 3 ] } = 13) { 2 + [ 1 + ( -15 -15 ) - 2] } = 14) { 30 + [ 10 - 5 + ( -2 -3)] -18 -12} = 15) 20 + { [ 7 + 5 + ( -9 + 7 ) + 3 ] } = 16) -4 - { 2 + [ - 3 - ( -1 + 7) ] + 2} = 17) 10 - { -2 + [ +1 + ( +7 - 3) - 2] + 6 } = 18) -{ -2 - [ -3 - (-5) + 1 ]} - 18 = 19) -20 - { -4 -[-8 + ( +12 - 6 - 2 ) + 2 +3 ]} = 20) {[( -50 -10) + 11 + 19 ] + 20 } + 10 =