Radiciação
Ao final dessa aula
                   você saberá:
 Identificar os elementos envolvidos em na
  radiciação
 Relacionar potências e raízes
 Calcular uma raiz de 2 formas diferentes
 Todas as regras e propriedades da radiciação
 Somar, subtrair, multiplicar e dividir radicais
 Elevar um radical a uma potência e extrair sua
  raiz.
 Racionalizar denominadores
Quais são os elementos
            envolvidos na radiciação?
 Toda operação com raiz apresenta um radical,
 um índice e o radicando.

                      índice         radical
Exemplos:

            3                        5
                216            144       32

                         radicando


        Note que quando indicamos a raiz quadrada,
           não colocamos o 2 no lugar do índice.
Qual é a relação entre
            radiciação e potenciação?

     A radiciação é a operação inversa da
potenciação.

Exemplos:
             32 = 9         9 =3

             53 = 125       3
                                 125 = 5
Por que não existe raiz com
               índice par de um número
              negativo no conjunto real?

  Porque não existe um número que, elevado
a expoente par, tenha como resultado um
número negativo.

Veja:   −9
                   Não existe um número que
                   elevado ao quadrado dá -9,
                      pois -3 e 3 elevado ao
                          quadrado dá 9.
Como calculamos raiz de
                     um número grande?
Usando a decomposição em fatores primos.
Exemplos:          448             3
                                       3375
            448     2   2          3375    3
            224     2               1125   3   3
             112    2                375   3
                        2
              56    2                125   5
              28    2                 25   5   5
                        2
              14    2                  5   5
               7    7                  1
               1


             448 = 8 7        3
                                  50625 = 3 x5 = 15
Como simplificamos o
                      radicando com o índice?
Basta dividir o expoente do radicando pelo índice.
Exemplos:

   3
        7 =7
         18       6



       54 = 52                      Note que no último
                                         exemplo foi
        2500 = 2 2.54 = 2.52 = 50   necessário decompor

                                       o número para
                                     simplificar. Essa é
                                       outra forma de
                                      calcular uma raiz.
E se o resultado da
                             divisão não for exato?

    Só sai da raiz se o resultado for exato, caso
    contrário, continua lá dentro.
Exemplos:
        125 = 5 = 5 .5
                     3         2



    5    35
         b .c   42
                     = b c c =b c
                         5    35 40 2   7 85
                                               c   2
E se o índice for
                          maior que o expoente
                             do radicando?
    Podemos apenas dividir pelo mesmo número,
    mas sem tirar de dentro da raiz.
Exemplos:
    9
         1,7 6 = 3 1,7 2

   15
         ( a + 1)   5
                        = 3 ( a + 1)
Tente fazer sozinho

Simplifique o radical:


                  3 12 6
            6
                8x y z
Solução

6
    8x y z = 2 x y z =
      3   12 6    6       3   3 12 6




y z 2 x =y z 2 x
    2 6   3   3       2
Como indicamos uma raiz
                     sem usar o radical?

    Trocando o índice e o expoente do radicando
    por um expoente fracionário.
Exemplos:
                                   O expoente do
        2 = ( 2)
                   5

    3    5             3           radicando vira
                                   numerador e o
                                     índice vira
        23 = ( 23)
                           1
                               2
                                  denominador.
O que são radicais
                 semelhantes?
  São os radicais que apresentam o mesmo
índice e o mesmo radicando.
Exemplo:

5 2e3 2            são semelhantes

5 2e5 24               não são semelhantes
           4
       5 2e7 2     4
                             são semelhantes
      3        3
           9e 12           não são semelhantes
Como somamos e
             subtraímos radicais?
Basta somar ou subtrair a quantidade de radicais
                  semelhantes.

Exemplo:
         3 7 + 7 − 6 7 = −2 7

    Caso fosse 3 2 + 5 − 6 7 nada
 poderíamos fazer, pois os radicais não são
                   semelhantes.
Como multiplicamos
                    e dividimos radicais
                     de mesmo índice?
Basta juntar os radicandos dentro de um radical.

Exemplo:

                              6.11 5
           5
               6 . 11 : 3 = 5
                5      5
                                  = 22
                               3
E se os índices forem
                 diferentes?
Basta igualar os índices e juntar os radicandos.

         Como igualamos os índices?
Basta achar o mmc entre os índices e ajustar os
expoentes dos radicandos.
           3    2 4
Exemplo:       5 . 7
  mmc (3,4) =12. Assim, temos:         12    8 12
                                            5 . 7   3


           Juntando no mesmo radical, temos:
                       12    8     3
                            5 .7
Tente fazer
                    sozinho
(Vunesp) O valor da expressão
                       3
                               4
                  16   4
                            2
                      1
                           : 2        é igual a:
                            8
                  8   3



a) 2-1    b) 20           c) 21/2 d) 24      e) 26
Solução

                                        (2 )
     3
         4    4   3     4           4     4 3     4
16  24
          16   2                                 2
   : 2 = 3   :                  =               : 6 =
 1
83
    8      8 23       ( )   2
                                         2       2


         4   12   4    3        6
             2 2    2 2
               : 6 = ⋅ 4 =2 4

             2 2    2 2
Como elevamos um
                  radical a uma
                    potência?
Basta elevar o radicando a essa potência.
Exemplos:

   ( 3 ) = 3 = 27
    4
        3       4   3       4



   (2 5 ) = 8 5 = 8 125
            3           3
Como extraímos a
                   raiz de um
                    radical?
           Basta multiplicar os índices.

Exemplos:

    3
          5 = 2 x3 5 = 6 5
   4 3
            6 =   4 x3x 2
                            6=   24
                                      6
Tente fazer sozinho


Sabendo que a = 2 e b = 4 2 ,

        calcule   3
                      ab .
Solução

          3
               ab =   3
                           2 2=
                              4

                 mmc (2,4) = 4.
      Logo, igualando os índices, temos:


3 4
      2   24
               2=   3 4
                          4.2 =   3 4
                                        8= 8
                                           12
O que é
             racionalização?
  É o cálculo que usamos para tirar um
radical do denominador de uma fração.


Como racionalizamos um denominador?
    Existem 3 procedimentos, que serão
             descritos a seguir.
1º) Quando o denominador é um produto e o
índice do radical é 2.
    Basta multiplicar o numerador e o denominador
          2
por           .

Exemplos: . 2
   5    5       5 2
     =        =
 2      2. 2    2

      3   3. 2    3 2 3 2
        =       =    =
     4 2 4 2 . 2 4.2   8

2º) Quando o denominador é um produto
e o índice do radical é diferente 2.
  Basta multiplicar o numerador e o denominador
  pelo fator racionalizante.

        O que é o fator racionalizante?
É o radical mais conveniente para eliminar o radical
                   do denominador.
            3
                7. 7 = 7 = 7
                 3   2   3   3
Veja:
                             Fatores racionalizantes
            5
                32 .5 33 = 5 35 = 3
Exemplo:
             7 3      7 3      7 3
    18    18. 3    18. 3    18. 3
       =         =        =        =6 3
                                     7 3
   7 4
     3   7 4 7 3
           3 . 3    7 7
                      3        3



        Tente fazer sozinho
            Indique o valor da expressão:
                    3   1 5
        5
              243 +   +  −  3
                    4   3 6
Solução
           3   1 5
5
     243 +   +  −  3=
           4   3 6
         3 1 5 3 10 5     3    3 5 3
5
     3 +
      5
           +   −   = 3 +    +   −    =
         4   3   6       2    3   6
        3    3 5 3 6 3 +3 3 + 2 3 −5 3
    3+    +   −     =                  =
       2    3    6          6
                   6 3
                =      = 3
                    6
3º) O denominador é uma soma ou subtração.
Basta multiplicar numerador e denominador pelo
  conjugado.
           2− 3                     2+ 3
Veja:             é conjugado de           .
           7+ 5                         7− 5
                é conjugado de       .
              2
                   =
                            (
                        2. 7 + 3
                                   =
                                        )
Exemplo:     7− 3               (
                      7 − 3. 7 + 3          )
             (        ) (
            2 7+ 3 2 7+ 3
                  =       =
                            7+ 3    )
              7−3     4      2
Tente fazer
                sozinho

(UFSE) Racionalizando-se o denominador de
            3
                    obtém-se:
           2+ 5
Solução

  3
      =
                       (
                   3. 2 + 5
                            =
                                    )
 2+ 5         (   2+ 5 2+ 5)(           )
 (        )
3. 2 + 5 3. 2 + 5
        =
                   (
                  =− 2+ 5
                                )
   2−5      −3

www.AulasDeMatematicaApoio.com.br - Matemática - Radiciação

  • 1.
  • 2.
    Ao final dessaaula você saberá:  Identificar os elementos envolvidos em na radiciação  Relacionar potências e raízes  Calcular uma raiz de 2 formas diferentes  Todas as regras e propriedades da radiciação  Somar, subtrair, multiplicar e dividir radicais  Elevar um radical a uma potência e extrair sua raiz.  Racionalizar denominadores
  • 3.
    Quais são oselementos envolvidos na radiciação? Toda operação com raiz apresenta um radical, um índice e o radicando. índice radical Exemplos: 3 5 216 144 32 radicando Note que quando indicamos a raiz quadrada, não colocamos o 2 no lugar do índice.
  • 4.
    Qual é arelação entre radiciação e potenciação? A radiciação é a operação inversa da potenciação. Exemplos: 32 = 9 9 =3 53 = 125 3 125 = 5
  • 5.
    Por que nãoexiste raiz com índice par de um número negativo no conjunto real? Porque não existe um número que, elevado a expoente par, tenha como resultado um número negativo. Veja: −9 Não existe um número que elevado ao quadrado dá -9, pois -3 e 3 elevado ao quadrado dá 9.
  • 6.
    Como calculamos raizde um número grande? Usando a decomposição em fatores primos. Exemplos: 448 3 3375 448 2 2 3375 3 224 2 1125 3 3 112 2 375 3 2 56 2 125 5 28 2 25 5 5 2 14 2 5 5 7 7 1 1 448 = 8 7 3 50625 = 3 x5 = 15
  • 7.
    Como simplificamos o radicando com o índice? Basta dividir o expoente do radicando pelo índice. Exemplos:  3 7 =7 18 6  54 = 52 Note que no último exemplo foi 2500 = 2 2.54 = 2.52 = 50 necessário decompor  o número para simplificar. Essa é outra forma de calcular uma raiz.
  • 8.
    E se oresultado da divisão não for exato? Só sai da raiz se o resultado for exato, caso contrário, continua lá dentro. Exemplos:  125 = 5 = 5 .5 3 2  5 35 b .c 42 = b c c =b c 5 35 40 2 7 85 c 2
  • 9.
    E se oíndice for maior que o expoente do radicando? Podemos apenas dividir pelo mesmo número, mas sem tirar de dentro da raiz. Exemplos:  9 1,7 6 = 3 1,7 2  15 ( a + 1) 5 = 3 ( a + 1)
  • 10.
    Tente fazer sozinho Simplifiqueo radical: 3 12 6 6 8x y z
  • 11.
    Solução 6 8x y z = 2 x y z = 3 12 6 6 3 3 12 6 y z 2 x =y z 2 x 2 6 3 3 2
  • 12.
    Como indicamos umaraiz sem usar o radical? Trocando o índice e o expoente do radicando por um expoente fracionário. Exemplos: O expoente do 2 = ( 2) 5  3 5 3 radicando vira numerador e o índice vira 23 = ( 23) 1 2  denominador.
  • 13.
    O que sãoradicais semelhantes? São os radicais que apresentam o mesmo índice e o mesmo radicando. Exemplo: 5 2e3 2 são semelhantes 5 2e5 24 não são semelhantes 4 5 2e7 2 4 são semelhantes 3 3 9e 12 não são semelhantes
  • 14.
    Como somamos e subtraímos radicais? Basta somar ou subtrair a quantidade de radicais semelhantes. Exemplo: 3 7 + 7 − 6 7 = −2 7 Caso fosse 3 2 + 5 − 6 7 nada poderíamos fazer, pois os radicais não são semelhantes.
  • 15.
    Como multiplicamos e dividimos radicais de mesmo índice? Basta juntar os radicandos dentro de um radical. Exemplo: 6.11 5 5 6 . 11 : 3 = 5 5 5 = 22 3
  • 16.
    E se osíndices forem diferentes? Basta igualar os índices e juntar os radicandos. Como igualamos os índices? Basta achar o mmc entre os índices e ajustar os expoentes dos radicandos. 3 2 4 Exemplo: 5 . 7 mmc (3,4) =12. Assim, temos: 12 8 12 5 . 7 3 Juntando no mesmo radical, temos: 12 8 3 5 .7
  • 17.
    Tente fazer sozinho (Vunesp) O valor da expressão 3 4 16 4 2 1 : 2 é igual a: 8 8 3 a) 2-1 b) 20 c) 21/2 d) 24 e) 26
  • 18.
    Solução (2 ) 3 4 4 3 4 4 4 3 4 16 24 16 2 2 : 2 = 3 : = : 6 = 1 83 8 8 23 ( ) 2 2 2 4 12 4 3 6 2 2 2 2 : 6 = ⋅ 4 =2 4 2 2 2 2
  • 19.
    Como elevamos um radical a uma potência? Basta elevar o radicando a essa potência. Exemplos:  ( 3 ) = 3 = 27 4 3 4 3 4  (2 5 ) = 8 5 = 8 125 3 3
  • 20.
    Como extraímos a raiz de um radical? Basta multiplicar os índices. Exemplos:  3 5 = 2 x3 5 = 6 5  4 3 6 = 4 x3x 2 6= 24 6
  • 21.
    Tente fazer sozinho Sabendoque a = 2 e b = 4 2 , calcule 3 ab .
  • 22.
    Solução 3 ab = 3 2 2= 4 mmc (2,4) = 4. Logo, igualando os índices, temos: 3 4 2 24 2= 3 4 4.2 = 3 4 8= 8 12
  • 23.
    O que é racionalização? É o cálculo que usamos para tirar um radical do denominador de uma fração. Como racionalizamos um denominador? Existem 3 procedimentos, que serão descritos a seguir.
  • 24.
    1º) Quando odenominador é um produto e o índice do radical é 2. Basta multiplicar o numerador e o denominador 2 por . Exemplos: . 2 5 5 5 2 = =  2 2. 2 2 3 3. 2 3 2 3 2 = = = 4 2 4 2 . 2 4.2 8 
  • 25.
    2º) Quando odenominador é um produto e o índice do radical é diferente 2. Basta multiplicar o numerador e o denominador pelo fator racionalizante. O que é o fator racionalizante? É o radical mais conveniente para eliminar o radical do denominador. 3 7. 7 = 7 = 7 3 2 3 3 Veja: Fatores racionalizantes 5 32 .5 33 = 5 35 = 3
  • 26.
    Exemplo: 7 3 7 3 7 3 18 18. 3 18. 3 18. 3 = = = =6 3 7 3 7 4 3 7 4 7 3 3 . 3 7 7 3 3 Tente fazer sozinho Indique o valor da expressão: 3 1 5 5 243 + + − 3 4 3 6
  • 27.
    Solução 3 1 5 5 243 + + − 3= 4 3 6 3 1 5 3 10 5 3 3 5 3 5 3 + 5 + − = 3 + + − = 4 3 6 2 3 6 3 3 5 3 6 3 +3 3 + 2 3 −5 3 3+ + − = = 2 3 6 6 6 3 = = 3 6
  • 28.
    3º) O denominadoré uma soma ou subtração. Basta multiplicar numerador e denominador pelo conjugado. 2− 3 2+ 3 Veja: é conjugado de . 7+ 5 7− 5 é conjugado de . 2 = ( 2. 7 + 3 = ) Exemplo: 7− 3 ( 7 − 3. 7 + 3 ) ( ) ( 2 7+ 3 2 7+ 3 = = 7+ 3 ) 7−3 4 2
  • 29.
    Tente fazer sozinho (UFSE) Racionalizando-se o denominador de 3 obtém-se: 2+ 5
  • 30.
    Solução 3 = ( 3. 2 + 5 = ) 2+ 5 ( 2+ 5 2+ 5)( ) ( ) 3. 2 + 5 3. 2 + 5 = ( =− 2+ 5 ) 2−5 −3