SlideShare uma empresa Scribd logo
SABER DIREITO
                                                 www.itbsite.blogspot.com
                                                Binômio de Newton
Introdução

  Pelos produtos notáveis, sabemos que (a+b)² = a² + 2ab + b².
  Se quisermos calcular (a + b)³, podemos escrever:

                                               (a + b)3 = a3 + 3a2b + 3ab2 + b3


  Se quisermos calcular         , podemos adotar o mesmo procedimento:

                                   (a + b)4 = (a + b)3 (a+b) = (a3 + 3a2b + 3ab2 + b3) (a+b)

                                               = a4 + 4a3b + 6a2b2 + 4ab3 + b4




De modo análogo, podemos calcular as quintas e sextas potências e, de modo geral, obter o desenvolvimento da potência
        a partir da anterior, ou seja, de         .
Porém quando o valor de n é grande, este processo gradativo de cálculo é muito trabalhoso.
Existe um método para desenvolver a enésima potência de um binômio, conhecido como binômio de Newton (Isaac Newton,
matemático e físico inglês, 1642 - 1727). Para esse método é necessário saber o que são coeficientes binomiais, algumas de
suas propriedades e o triângulo de Pascal.




Coeficientes Binomiais


  Sendo n e p dois números naturais          , chamamos de coeficiente binomial de classe p, do número n, o número


          , que indicamos por     (lê-se: n sobre p). Podemos escrever:




  O coeficiente binomial também é chamado de número binomial. Por analogia com as frações, dizemos que n é o seu
numerador e p, o denominador. Podemos escrever:




   É também imediato que, para qualquer n natural, temos:




 Exemplos:
SABER DIREITO
                                                www.itbsite.blogspot.com




Propriedades dos coeficientes binomiais




                          Se n, p, k     e p + k = n então

         1ª)




  Coeficientes binomiais como esses, que tem o mesmo numerador e a soma dos denominadores igual ao numerador, são
chamados complementares.

 Exemplos:




                                 Se n, p, k    ep    p-1     0 então




          2ª)




 Essa igualdade é conhecida como relação de Stifel (Michael Stifel, matemático alemão, 1487 - 1567).

 Exemplos:




Triângulo de Pascal
SABER DIREITO
                                                   www.itbsite.blogspot.com




  A disposição ordenada dos
números binomiais, como na tabela
ao lado, recebe o nome de Triângulo
de Pascal




  Nesta tabela triangular, os números binomiais com o mesmo numerador são escritos na mesma linha e os de mesmo
denominador, na mesma coluna.


    Por exemplo, os números binomiais     ,    ,    e    estão na linha 3 e os números binomiais   ,   ,     ,   , ...,
, ... estão na coluna 1.

  Substituindo cada número binomial pelo seu respectivo valor, temos:




Construção do triângulo de Pascal

  Para construir o triângulo do Pascal, basta lembrar as seguintes propriedades dos números binomiais, não sendo necessário
calculá-los:




1ª) Como      = 1, todos os elementos da coluna 0 são iguais a 1.




2ª) Como      = 1, o último elemento de cada linha é igual a 1.

3ª) Cada elemento do triângulo que não seja da coluna 0 nem o último de cada linha é igual à soma daquele
    que está na mesma coluna e linha anterior com o elemento que se situa à esquerda deste último (relação
    de Stifel).

    Observe os passos e aplicação da relação de Stifel para a construção do triângulo:
SABER DIREITO
                                                www.itbsite.blogspot.com




Propriedade do triângulo de Pascal

P1 Em Qualquer linha, dois números binomiais eqüidistantes dos extremos são iguais.




 De fato, esses binomiais são complementares.




P2 Teorema das linhas: A soma dos elementos da enésima linha é       .




 De modo geral temos:




P3 Teorema das colunas: A soma dos elementos de qualquer coluna, do 1º elemento até um qualquer, é igual ao elemento
situado na coluna à direita da considerada e na linha imediatamente abaixo.
SABER DIREITO
                                               www.itbsite.blogspot.com




                                                           1 + 2 + 3 + 4 + 5 + 6 = 21

                                                           1 + 4 + 10 + 20 = 35




P4 Teorema das diagonais: A soma dos elementos situados na mesma diagonal desde o elemento da 1ª coluna até o de
uma qualquer é igual ao elemento imediatamente abaixo deste.




                                                           1 + 3 + 6 + 10 + 15 = 35




Fórmula do desenvolvimento do binômio de Newton


 Como vimos, a potência da forma         , em que a,                 , é chamada binômio de Newton. Além disso:


   •   quando n = 0 temos

   •   quando n = 1 temos

   •   quando n = 2 temos

   •   quando n = 3 temos

   •   quando n = 4 temos




  Observe que os coeficientes dos desenvolvimentos foram o triângulo de Pascal. Então, podemos escrever também:
SABER DIREITO
                                                                          www.itbsite.blogspot.com




 De modo geral, quando o expoente é n, podemos escrever a fórmula do desenvolvimento do binômio de Newton:




  Note que os expoentes de a vão diminuindo de unidade em unidade, variando de n até 0, e os expoentes de b vão
aumentando de unidade em unidade, variando de 0 até n. O desenvolvimento de (a + b)n possui n + 1 termos.




Fórmula do termo geral do binômio

 Observando os termos do desenvolvimento de (a + b)n, notamos que cada                               um deles é da forma


                 .




   •   Quando p = 0 temos o 1º termo:


   •   Quando p = 1 temos o 2º termo:


   •   Quando p = 2 temos o 3º termo:


   •   Quando p = 3 temos o 4º termo:


   •   Quando p = 4 temos o 5º termo:
       ..............................................................................

 Percebemos, então, que um termo qualquer T de ordem p + 1pode ser expresso por:

Mais conteúdo relacionado

Mais procurados

equação de terceiro grau
equação de terceiro grauequação de terceiro grau
equação de terceiro grau
Renan Metzker
 
equação do terceiro grau
equação do terceiro grauequação do terceiro grau
equação do terceiro grau
Renan Metzker
 
Análise Combinatória
Análise CombinatóriaAnálise Combinatória
Análise Combinatória
Nanda Freitas
 
A fórmula de cardano para a equação cúbica
A fórmula de cardano para a equação cúbicaA fórmula de cardano para a equação cúbica
A fórmula de cardano para a equação cúbica
Mário César Cunha
 
Resumo EquaçõEs 8º Ano
Resumo EquaçõEs 8º AnoResumo EquaçõEs 8º Ano
Resumo EquaçõEs 8º Ano
nescalda
 
Lista 1 - FUV - Resolução
Lista 1 - FUV - ResoluçãoLista 1 - FUV - Resolução
Lista 1 - FUV - Resolução
Rodrigo Thiago Passos Silva
 
Demonstrações
DemonstraçõesDemonstrações
Demonstrações
Chromus Master
 
Aula sobre prova de teoremas
Aula sobre prova de teoremasAula sobre prova de teoremas
Aula sobre prova de teoremas
Carlos Campani
 
Proporcionalidade
ProporcionalidadeProporcionalidade
Proporcionalidade
guest827f9
 
Matemática discreta cap. 1
Matemática discreta   cap. 1Matemática discreta   cap. 1
Matemática discreta cap. 1
Arquimedes Paschoal
 
Exercitandoaula6
Exercitandoaula6Exercitandoaula6
Exercitandoaula6
AlexGrift
 
Expressoes algebricas
Expressoes algebricasExpressoes algebricas
Expressoes algebricas
Alexandre Cirqueira
 
Progressão geométrica
Progressão geométricaProgressão geométrica
Progressão geométrica
Jorgelgl
 
Proporcionalidade direta
Proporcionalidade diretaProporcionalidade direta
Proporcionalidade direta
Helena Borralho
 
Forma trigonométrica
Forma trigonométricaForma trigonométrica
Forma trigonométrica
Winny18
 
Proporcionalidade
ProporcionalidadeProporcionalidade
Proporcionalidade
guestf5f9e16
 
Análise Combinatória
Análise CombinatóriaAnálise Combinatória
Análise Combinatória
Jhonatan Max
 

Mais procurados (17)

equação de terceiro grau
equação de terceiro grauequação de terceiro grau
equação de terceiro grau
 
equação do terceiro grau
equação do terceiro grauequação do terceiro grau
equação do terceiro grau
 
Análise Combinatória
Análise CombinatóriaAnálise Combinatória
Análise Combinatória
 
A fórmula de cardano para a equação cúbica
A fórmula de cardano para a equação cúbicaA fórmula de cardano para a equação cúbica
A fórmula de cardano para a equação cúbica
 
Resumo EquaçõEs 8º Ano
Resumo EquaçõEs 8º AnoResumo EquaçõEs 8º Ano
Resumo EquaçõEs 8º Ano
 
Lista 1 - FUV - Resolução
Lista 1 - FUV - ResoluçãoLista 1 - FUV - Resolução
Lista 1 - FUV - Resolução
 
Demonstrações
DemonstraçõesDemonstrações
Demonstrações
 
Aula sobre prova de teoremas
Aula sobre prova de teoremasAula sobre prova de teoremas
Aula sobre prova de teoremas
 
Proporcionalidade
ProporcionalidadeProporcionalidade
Proporcionalidade
 
Matemática discreta cap. 1
Matemática discreta   cap. 1Matemática discreta   cap. 1
Matemática discreta cap. 1
 
Exercitandoaula6
Exercitandoaula6Exercitandoaula6
Exercitandoaula6
 
Expressoes algebricas
Expressoes algebricasExpressoes algebricas
Expressoes algebricas
 
Progressão geométrica
Progressão geométricaProgressão geométrica
Progressão geométrica
 
Proporcionalidade direta
Proporcionalidade diretaProporcionalidade direta
Proporcionalidade direta
 
Forma trigonométrica
Forma trigonométricaForma trigonométrica
Forma trigonométrica
 
Proporcionalidade
ProporcionalidadeProporcionalidade
Proporcionalidade
 
Análise Combinatória
Análise CombinatóriaAnálise Combinatória
Análise Combinatória
 

Semelhante a Binômio de newton

Apostila de matemática; fatorial triangulo de pascal-binomio de newton
Apostila de matemática; fatorial triangulo de pascal-binomio de newtonApostila de matemática; fatorial triangulo de pascal-binomio de newton
Apostila de matemática; fatorial triangulo de pascal-binomio de newton
André Gustavo Santos
 
Razão e proporção1
Razão e proporção1Razão e proporção1
Razão e proporção1
Luccy Crystal
 
Teoria dos numeros primos i
Teoria dos numeros primos iTeoria dos numeros primos i
Teoria dos numeros primos i
Paulo Martins
 
Intro teoria dos numerros cap5
Intro teoria dos numerros cap5Intro teoria dos numerros cap5
Intro teoria dos numerros cap5
Paulo Martins
 
Matemática pga1
Matemática pga1Matemática pga1
Matemática pga1
takahico
 
Apostila de-2013
Apostila de-2013Apostila de-2013
Apostila de-2013
Ricardo Antonio Zimmermann
 
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo AindaConjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Antonio Carneiro
 
Conjunto E EquaçãO Do 2º Grau
Conjunto E EquaçãO Do 2º GrauConjunto E EquaçãO Do 2º Grau
Conjunto E EquaçãO Do 2º Grau
guest47023a
 
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo AindaConjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Antonio Carneiro
 
Introducaoanalise
IntroducaoanaliseIntroducaoanalise
Introducaoanalise
José Mota
 
Funções
FunçõesFunções
Funções
jasf13
 
Funções polinomiais
Funções polinomiais Funções polinomiais
Funções polinomiais
Michele Andreza
 
Conceitos fundamentais da álgebra
Conceitos fundamentais da álgebraConceitos fundamentais da álgebra
Conceitos fundamentais da álgebra
Everton Moraes
 
Matemática - 9° ano Resumo da coleção FTD
Matemática - 9° ano Resumo da coleção FTDMatemática - 9° ano Resumo da coleção FTD
Matemática - 9° ano Resumo da coleção FTD
JosFilho109274
 
Mat conjuntos numericos
Mat conjuntos numericosMat conjuntos numericos
Mat conjuntos numericos
trigono_metria
 
Matemática 8ª classe lição 4
Matemática 8ª classe lição 4 Matemática 8ª classe lição 4
Matemática 8ª classe lição 4
Nivea Neves
 
Analise Comb E Probabilidades
Analise Comb E ProbabilidadesAnalise Comb E Probabilidades
Analise Comb E Probabilidades
gueste0e57c
 
Analise Comb E Probabilidades
Analise Comb E ProbabilidadesAnalise Comb E Probabilidades
Analise Comb E Probabilidades
ISJ
 
Formulas para numeros primos 1ed - Eric Campos Bastos Guedes
Formulas para numeros primos 1ed - Eric Campos Bastos GuedesFormulas para numeros primos 1ed - Eric Campos Bastos Guedes
Formulas para numeros primos 1ed - Eric Campos Bastos Guedes
ericnalanhouse2
 
Apostila de geometria_analitica_filipe
Apostila de geometria_analitica_filipeApostila de geometria_analitica_filipe
Apostila de geometria_analitica_filipe
Everaldo Geb
 

Semelhante a Binômio de newton (20)

Apostila de matemática; fatorial triangulo de pascal-binomio de newton
Apostila de matemática; fatorial triangulo de pascal-binomio de newtonApostila de matemática; fatorial triangulo de pascal-binomio de newton
Apostila de matemática; fatorial triangulo de pascal-binomio de newton
 
Razão e proporção1
Razão e proporção1Razão e proporção1
Razão e proporção1
 
Teoria dos numeros primos i
Teoria dos numeros primos iTeoria dos numeros primos i
Teoria dos numeros primos i
 
Intro teoria dos numerros cap5
Intro teoria dos numerros cap5Intro teoria dos numerros cap5
Intro teoria dos numerros cap5
 
Matemática pga1
Matemática pga1Matemática pga1
Matemática pga1
 
Apostila de-2013
Apostila de-2013Apostila de-2013
Apostila de-2013
 
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo AindaConjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
 
Conjunto E EquaçãO Do 2º Grau
Conjunto E EquaçãO Do 2º GrauConjunto E EquaçãO Do 2º Grau
Conjunto E EquaçãO Do 2º Grau
 
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo AindaConjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
Conjunto,Potencias E Eq.2º Gr. Para 7ª E 8ª Estou Fazendo Ainda
 
Introducaoanalise
IntroducaoanaliseIntroducaoanalise
Introducaoanalise
 
Funções
FunçõesFunções
Funções
 
Funções polinomiais
Funções polinomiais Funções polinomiais
Funções polinomiais
 
Conceitos fundamentais da álgebra
Conceitos fundamentais da álgebraConceitos fundamentais da álgebra
Conceitos fundamentais da álgebra
 
Matemática - 9° ano Resumo da coleção FTD
Matemática - 9° ano Resumo da coleção FTDMatemática - 9° ano Resumo da coleção FTD
Matemática - 9° ano Resumo da coleção FTD
 
Mat conjuntos numericos
Mat conjuntos numericosMat conjuntos numericos
Mat conjuntos numericos
 
Matemática 8ª classe lição 4
Matemática 8ª classe lição 4 Matemática 8ª classe lição 4
Matemática 8ª classe lição 4
 
Analise Comb E Probabilidades
Analise Comb E ProbabilidadesAnalise Comb E Probabilidades
Analise Comb E Probabilidades
 
Analise Comb E Probabilidades
Analise Comb E ProbabilidadesAnalise Comb E Probabilidades
Analise Comb E Probabilidades
 
Formulas para numeros primos 1ed - Eric Campos Bastos Guedes
Formulas para numeros primos 1ed - Eric Campos Bastos GuedesFormulas para numeros primos 1ed - Eric Campos Bastos Guedes
Formulas para numeros primos 1ed - Eric Campos Bastos Guedes
 
Apostila de geometria_analitica_filipe
Apostila de geometria_analitica_filipeApostila de geometria_analitica_filipe
Apostila de geometria_analitica_filipe
 

Mais de Dinho Paulo Clakly

Música traduzida
Música traduzidaMúsica traduzida
Música traduzida
Dinho Paulo Clakly
 
3ª aula
3ª aula3ª aula
Inglês fácil 2
Inglês fácil 2Inglês fácil 2
Inglês fácil 2
Dinho Paulo Clakly
 
Música e tradução
Música e traduçãoMúsica e tradução
Música e tradução
Dinho Paulo Clakly
 
Aula 1
Aula 1Aula 1
Equações trigonométricas
Equações trigonométricasEquações trigonométricas
Equações trigonométricas
Dinho Paulo Clakly
 
Sistemas lineares
Sistemas linearesSistemas lineares
Sistemas lineares
Dinho Paulo Clakly
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
Dinho Paulo Clakly
 
Função de 1º grau
Função de 1º grauFunção de 1º grau
Função de 1º grau
Dinho Paulo Clakly
 
Binômio de newton
Binômio de newtonBinômio de newton
Binômio de newton
Dinho Paulo Clakly
 
Binômio de newton
Binômio de newtonBinômio de newton
Binômio de newton
Dinho Paulo Clakly
 
Binômio de newton
Binômio de newtonBinômio de newton
Binômio de newton
Dinho Paulo Clakly
 
Conjuntos
ConjuntosConjuntos
Func mod
Func modFunc mod
Func log
Func logFunc log
Func log
Func logFunc log
Func exp
Func expFunc exp
Identidades trigonométricas
Identidades trigonométricasIdentidades trigonométricas
Identidades trigonométricas
Dinho Paulo Clakly
 
Progressões geométricas
Progressões geométricasProgressões geométricas
Progressões geométricas
Dinho Paulo Clakly
 
Pa
PaPa

Mais de Dinho Paulo Clakly (20)

Música traduzida
Música traduzidaMúsica traduzida
Música traduzida
 
3ª aula
3ª aula3ª aula
3ª aula
 
Inglês fácil 2
Inglês fácil 2Inglês fácil 2
Inglês fácil 2
 
Música e tradução
Música e traduçãoMúsica e tradução
Música e tradução
 
Aula 1
Aula 1Aula 1
Aula 1
 
Equações trigonométricas
Equações trigonométricasEquações trigonométricas
Equações trigonométricas
 
Sistemas lineares
Sistemas linearesSistemas lineares
Sistemas lineares
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
 
Função de 1º grau
Função de 1º grauFunção de 1º grau
Função de 1º grau
 
Binômio de newton
Binômio de newtonBinômio de newton
Binômio de newton
 
Binômio de newton
Binômio de newtonBinômio de newton
Binômio de newton
 
Binômio de newton
Binômio de newtonBinômio de newton
Binômio de newton
 
Conjuntos
ConjuntosConjuntos
Conjuntos
 
Func mod
Func modFunc mod
Func mod
 
Func log
Func logFunc log
Func log
 
Func log
Func logFunc log
Func log
 
Func exp
Func expFunc exp
Func exp
 
Identidades trigonométricas
Identidades trigonométricasIdentidades trigonométricas
Identidades trigonométricas
 
Progressões geométricas
Progressões geométricasProgressões geométricas
Progressões geométricas
 
Pa
PaPa
Pa
 

Último

Se A Música É O Alimento do Amor Não Parem de Tocar Luzia Gabriele.ppsx
Se A Música É O Alimento do Amor Não Parem de Tocar Luzia Gabriele.ppsxSe A Música É O Alimento do Amor Não Parem de Tocar Luzia Gabriele.ppsx
Se A Música É O Alimento do Amor Não Parem de Tocar Luzia Gabriele.ppsx
Luzia Gabriele
 
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
LuizHenriquedeAlmeid6
 
IV Jornada Nacional Tableau - Apresentações.pptx
IV Jornada Nacional Tableau - Apresentações.pptxIV Jornada Nacional Tableau - Apresentações.pptx
IV Jornada Nacional Tableau - Apresentações.pptx
Ligia Galvão
 
Licao de adultos Topico 1 CPAD edit.pptx
Licao de adultos Topico 1 CPAD edit.pptxLicao de adultos Topico 1 CPAD edit.pptx
Licao de adultos Topico 1 CPAD edit.pptx
jetroescola
 
Caça-palavras e cruzadinha - Encontros consonantais.
Caça-palavras e cruzadinha -  Encontros consonantais.Caça-palavras e cruzadinha -  Encontros consonantais.
Caça-palavras e cruzadinha - Encontros consonantais.
Mary Alvarenga
 
oficia de construção de recursos para aluno DI.pdf
oficia de construção de recursos para aluno DI.pdfoficia de construção de recursos para aluno DI.pdf
oficia de construção de recursos para aluno DI.pdf
marcos oliveira
 
Registros da 8ª edição da FECINTEC - AFV
Registros da 8ª edição da FECINTEC - AFVRegistros da 8ª edição da FECINTEC - AFV
Registros da 8ª edição da FECINTEC - AFV
Yan Kayk da Cruz Ferreira
 
Relatório de Atividades 2021/2022 CENSIPAM.pdf
Relatório de Atividades 2021/2022 CENSIPAM.pdfRelatório de Atividades 2021/2022 CENSIPAM.pdf
Relatório de Atividades 2021/2022 CENSIPAM.pdf
Falcão Brasil
 
Resolução do Exame de Biologia UEM - 2008.
Resolução do Exame de Biologia UEM - 2008.Resolução do Exame de Biologia UEM - 2008.
Resolução do Exame de Biologia UEM - 2008.
mozalgebrista
 
Acróstico - Bullying é crime!
Acróstico - Bullying é crime!Acróstico - Bullying é crime!
Acróstico - Bullying é crime!
Mary Alvarenga
 
Relatório de Atividades 2015 CENSIPAM.pdf
Relatório de Atividades 2015 CENSIPAM.pdfRelatório de Atividades 2015 CENSIPAM.pdf
Relatório de Atividades 2015 CENSIPAM.pdf
Falcão Brasil
 
CALENDÁRIO GRADUAÇÃO 2024-07ddddd-04 (1).pdf
CALENDÁRIO GRADUAÇÃO 2024-07ddddd-04 (1).pdfCALENDÁRIO GRADUAÇÃO 2024-07ddddd-04 (1).pdf
CALENDÁRIO GRADUAÇÃO 2024-07ddddd-04 (1).pdf
CristviaFerreira
 
As Ideias Têm Consequências - Richard M. Weaver
As Ideias Têm Consequências - Richard M. WeaverAs Ideias Têm Consequências - Richard M. Weaver
As Ideias Têm Consequências - Richard M. Weaver
C4io99
 
A experiência do professor. Publicado EM 08.07.2024
A experiência do professor. Publicado EM 08.07.2024A experiência do professor. Publicado EM 08.07.2024
A experiência do professor. Publicado EM 08.07.2024
Espanhol Online
 
Temática – Projeto para Empreendedores Locais
Temática – Projeto para Empreendedores LocaisTemática – Projeto para Empreendedores Locais
Temática – Projeto para Empreendedores Locais
Colaborar Educacional
 
Caderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdf
Caderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdfCaderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdf
Caderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdf
shirleisousa9166
 
TEORIAS UECE.pdf química geral nome de cientistas famosos da química
TEORIAS UECE.pdf química geral nome de cientistas famosos da químicaTEORIAS UECE.pdf química geral nome de cientistas famosos da química
TEORIAS UECE.pdf química geral nome de cientistas famosos da química
VictorEmanoel37
 
Relatório de Atividades 2017 CENSIPAM.pdf
Relatório de Atividades 2017 CENSIPAM.pdfRelatório de Atividades 2017 CENSIPAM.pdf
Relatório de Atividades 2017 CENSIPAM.pdf
Falcão Brasil
 
Caça - palavras e cruzadinha com dígrafos
Caça - palavras  e cruzadinha   com  dígrafosCaça - palavras  e cruzadinha   com  dígrafos
Caça - palavras e cruzadinha com dígrafos
Mary Alvarenga
 

Último (20)

Se A Música É O Alimento do Amor Não Parem de Tocar Luzia Gabriele.ppsx
Se A Música É O Alimento do Amor Não Parem de Tocar Luzia Gabriele.ppsxSe A Música É O Alimento do Amor Não Parem de Tocar Luzia Gabriele.ppsx
Se A Música É O Alimento do Amor Não Parem de Tocar Luzia Gabriele.ppsx
 
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
Slides Lição 2, Betel, A Igreja e a relevância, para a adoração verdadeira no...
 
IV Jornada Nacional Tableau - Apresentações.pptx
IV Jornada Nacional Tableau - Apresentações.pptxIV Jornada Nacional Tableau - Apresentações.pptx
IV Jornada Nacional Tableau - Apresentações.pptx
 
Licao de adultos Topico 1 CPAD edit.pptx
Licao de adultos Topico 1 CPAD edit.pptxLicao de adultos Topico 1 CPAD edit.pptx
Licao de adultos Topico 1 CPAD edit.pptx
 
Caça-palavras e cruzadinha - Encontros consonantais.
Caça-palavras e cruzadinha -  Encontros consonantais.Caça-palavras e cruzadinha -  Encontros consonantais.
Caça-palavras e cruzadinha - Encontros consonantais.
 
oficia de construção de recursos para aluno DI.pdf
oficia de construção de recursos para aluno DI.pdfoficia de construção de recursos para aluno DI.pdf
oficia de construção de recursos para aluno DI.pdf
 
Registros da 8ª edição da FECINTEC - AFV
Registros da 8ª edição da FECINTEC - AFVRegistros da 8ª edição da FECINTEC - AFV
Registros da 8ª edição da FECINTEC - AFV
 
Relatório de Atividades 2021/2022 CENSIPAM.pdf
Relatório de Atividades 2021/2022 CENSIPAM.pdfRelatório de Atividades 2021/2022 CENSIPAM.pdf
Relatório de Atividades 2021/2022 CENSIPAM.pdf
 
Resolução do Exame de Biologia UEM - 2008.
Resolução do Exame de Biologia UEM - 2008.Resolução do Exame de Biologia UEM - 2008.
Resolução do Exame de Biologia UEM - 2008.
 
Acróstico - Bullying é crime!
Acróstico - Bullying é crime!Acróstico - Bullying é crime!
Acróstico - Bullying é crime!
 
TALENTOS DA NOSSA ESCOLA .
TALENTOS DA NOSSA ESCOLA                .TALENTOS DA NOSSA ESCOLA                .
TALENTOS DA NOSSA ESCOLA .
 
Relatório de Atividades 2015 CENSIPAM.pdf
Relatório de Atividades 2015 CENSIPAM.pdfRelatório de Atividades 2015 CENSIPAM.pdf
Relatório de Atividades 2015 CENSIPAM.pdf
 
CALENDÁRIO GRADUAÇÃO 2024-07ddddd-04 (1).pdf
CALENDÁRIO GRADUAÇÃO 2024-07ddddd-04 (1).pdfCALENDÁRIO GRADUAÇÃO 2024-07ddddd-04 (1).pdf
CALENDÁRIO GRADUAÇÃO 2024-07ddddd-04 (1).pdf
 
As Ideias Têm Consequências - Richard M. Weaver
As Ideias Têm Consequências - Richard M. WeaverAs Ideias Têm Consequências - Richard M. Weaver
As Ideias Têm Consequências - Richard M. Weaver
 
A experiência do professor. Publicado EM 08.07.2024
A experiência do professor. Publicado EM 08.07.2024A experiência do professor. Publicado EM 08.07.2024
A experiência do professor. Publicado EM 08.07.2024
 
Temática – Projeto para Empreendedores Locais
Temática – Projeto para Empreendedores LocaisTemática – Projeto para Empreendedores Locais
Temática – Projeto para Empreendedores Locais
 
Caderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdf
Caderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdfCaderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdf
Caderno_de_referencias_Ocupacaohumana_IV_FlaviaCoelho_compressed.pdf
 
TEORIAS UECE.pdf química geral nome de cientistas famosos da química
TEORIAS UECE.pdf química geral nome de cientistas famosos da químicaTEORIAS UECE.pdf química geral nome de cientistas famosos da química
TEORIAS UECE.pdf química geral nome de cientistas famosos da química
 
Relatório de Atividades 2017 CENSIPAM.pdf
Relatório de Atividades 2017 CENSIPAM.pdfRelatório de Atividades 2017 CENSIPAM.pdf
Relatório de Atividades 2017 CENSIPAM.pdf
 
Caça - palavras e cruzadinha com dígrafos
Caça - palavras  e cruzadinha   com  dígrafosCaça - palavras  e cruzadinha   com  dígrafos
Caça - palavras e cruzadinha com dígrafos
 

Binômio de newton

  • 1. SABER DIREITO www.itbsite.blogspot.com Binômio de Newton Introdução Pelos produtos notáveis, sabemos que (a+b)² = a² + 2ab + b². Se quisermos calcular (a + b)³, podemos escrever: (a + b)3 = a3 + 3a2b + 3ab2 + b3 Se quisermos calcular , podemos adotar o mesmo procedimento: (a + b)4 = (a + b)3 (a+b) = (a3 + 3a2b + 3ab2 + b3) (a+b) = a4 + 4a3b + 6a2b2 + 4ab3 + b4 De modo análogo, podemos calcular as quintas e sextas potências e, de modo geral, obter o desenvolvimento da potência a partir da anterior, ou seja, de . Porém quando o valor de n é grande, este processo gradativo de cálculo é muito trabalhoso. Existe um método para desenvolver a enésima potência de um binômio, conhecido como binômio de Newton (Isaac Newton, matemático e físico inglês, 1642 - 1727). Para esse método é necessário saber o que são coeficientes binomiais, algumas de suas propriedades e o triângulo de Pascal. Coeficientes Binomiais Sendo n e p dois números naturais , chamamos de coeficiente binomial de classe p, do número n, o número , que indicamos por (lê-se: n sobre p). Podemos escrever: O coeficiente binomial também é chamado de número binomial. Por analogia com as frações, dizemos que n é o seu numerador e p, o denominador. Podemos escrever: É também imediato que, para qualquer n natural, temos: Exemplos:
  • 2. SABER DIREITO www.itbsite.blogspot.com Propriedades dos coeficientes binomiais Se n, p, k e p + k = n então 1ª) Coeficientes binomiais como esses, que tem o mesmo numerador e a soma dos denominadores igual ao numerador, são chamados complementares. Exemplos: Se n, p, k ep p-1 0 então 2ª) Essa igualdade é conhecida como relação de Stifel (Michael Stifel, matemático alemão, 1487 - 1567). Exemplos: Triângulo de Pascal
  • 3. SABER DIREITO www.itbsite.blogspot.com A disposição ordenada dos números binomiais, como na tabela ao lado, recebe o nome de Triângulo de Pascal Nesta tabela triangular, os números binomiais com o mesmo numerador são escritos na mesma linha e os de mesmo denominador, na mesma coluna. Por exemplo, os números binomiais , , e estão na linha 3 e os números binomiais , , , , ..., , ... estão na coluna 1. Substituindo cada número binomial pelo seu respectivo valor, temos: Construção do triângulo de Pascal Para construir o triângulo do Pascal, basta lembrar as seguintes propriedades dos números binomiais, não sendo necessário calculá-los: 1ª) Como = 1, todos os elementos da coluna 0 são iguais a 1. 2ª) Como = 1, o último elemento de cada linha é igual a 1. 3ª) Cada elemento do triângulo que não seja da coluna 0 nem o último de cada linha é igual à soma daquele que está na mesma coluna e linha anterior com o elemento que se situa à esquerda deste último (relação de Stifel). Observe os passos e aplicação da relação de Stifel para a construção do triângulo:
  • 4. SABER DIREITO www.itbsite.blogspot.com Propriedade do triângulo de Pascal P1 Em Qualquer linha, dois números binomiais eqüidistantes dos extremos são iguais. De fato, esses binomiais são complementares. P2 Teorema das linhas: A soma dos elementos da enésima linha é . De modo geral temos: P3 Teorema das colunas: A soma dos elementos de qualquer coluna, do 1º elemento até um qualquer, é igual ao elemento situado na coluna à direita da considerada e na linha imediatamente abaixo.
  • 5. SABER DIREITO www.itbsite.blogspot.com 1 + 2 + 3 + 4 + 5 + 6 = 21 1 + 4 + 10 + 20 = 35 P4 Teorema das diagonais: A soma dos elementos situados na mesma diagonal desde o elemento da 1ª coluna até o de uma qualquer é igual ao elemento imediatamente abaixo deste. 1 + 3 + 6 + 10 + 15 = 35 Fórmula do desenvolvimento do binômio de Newton Como vimos, a potência da forma , em que a, , é chamada binômio de Newton. Além disso: • quando n = 0 temos • quando n = 1 temos • quando n = 2 temos • quando n = 3 temos • quando n = 4 temos Observe que os coeficientes dos desenvolvimentos foram o triângulo de Pascal. Então, podemos escrever também:
  • 6. SABER DIREITO www.itbsite.blogspot.com De modo geral, quando o expoente é n, podemos escrever a fórmula do desenvolvimento do binômio de Newton: Note que os expoentes de a vão diminuindo de unidade em unidade, variando de n até 0, e os expoentes de b vão aumentando de unidade em unidade, variando de 0 até n. O desenvolvimento de (a + b)n possui n + 1 termos. Fórmula do termo geral do binômio Observando os termos do desenvolvimento de (a + b)n, notamos que cada um deles é da forma . • Quando p = 0 temos o 1º termo: • Quando p = 1 temos o 2º termo: • Quando p = 2 temos o 3º termo: • Quando p = 3 temos o 4º termo: • Quando p = 4 temos o 5º termo: .............................................................................. Percebemos, então, que um termo qualquer T de ordem p + 1pode ser expresso por: