SlideShare uma empresa Scribd logo
SABER DIREITO
                             www.itbsite.blogspot.com


                           CONJUNTOS NUMÉRICOS

•   Conjunto dos números naturais (IN)

             IN={0, 1, 2, 3, 4, 5,...}

    Um subconjunto importante de IN é o conjunto IN*:
    IN*={1, 2, 3, 4, 5,...}  o zero foi excluído do conjunto IN.
    Podemos considerar o conjunto dos números naturais ordenados sobre uma
reta, como mostra o gráfico abaixo:




• Conjunto dos números inteiros (Z)

         Z={..., -3, -2, -1, 0, 1, 2, 3,...}

    O conjunto IN é subconjunto de Z.
    Temos também outros subconjuntos de Z:
    Z* = Z-{0}
    Z+ = conjunto dos inteiros não negativos = {0,1,2,3,4,5,...}
    Z_ = conjunto dos inteiros não positivos = {0,-1,-2,-3,-4,-5,...}

   Observe que Z+=IN.
   Podemos considerar os números inteiros ordenados sobre uma reta,
conforme mostra o gráfico abaixo:
SABER DIREITO
                                     www.itbsite.blogspot.com


• Conjunto dos números racionais (Q)

   Os números racionais são todos aqueles que podem ser colocados na
forma de fração (com o numerador e denominador ∈ Z). Ou seja, o conjunto
dos números racionais é a união do conjunto dos números inteiros com as
frações positivas e negativas.

             5      3 3
Então : -2, − , − 1, , 1, , por exemplo, são números racionais.
             4      5 2

Exemplos:

        −3 −6 −9
 a) − 3 =  =   =
         1   2   3
       1 2 3
 b) 1 = = =
       1 2 3


Assim, podemos escrever:

                                  a
                   Q = {x | x =     , com a ∈ Z , b ∈ Z e b ≠ 0}
                                  b


       É interessante considerar a representação decimal de um número
           a racional , que se obtém dividindo a por b.
               b
       Exemplos referentes às decimais exatas ou finitas:
             1                    5                75
               = 0,5          −     = −1,25           = 3,75
             2                    4                20

       Exemplos referentes às decimais periódicas ou infinitas:

            1                      6                            7
              = 0,333...             = 0,857142857142...          = 1,1666...
            3                      7                            6
SABER DIREITO
                            www.itbsite.blogspot.com

     Toda decimal exata ou periódica pode ser representada na forma de
número racional.

• Conjunto dos números irracionais

    Os números irracionais são decimais infinitas não periódicas, ou seja, os
números que não podem ser escrito na forma de fração (divisão de dois
inteiros). Como exemplo de números irracionais, temos a raiz quadrada de 2 e
a raiz quadrada de 3:
                          2 = 1,4142135...
                          3 = 1,7320508...

    Um número irracional bastante conhecido é o número π=3,1415926535...




•   Conjunto dos números reais (IR)

   Dados os conjuntos dos números racionais (Q) e dos irracionais, definimos
o conjunto dos números reais como:

     IR=Q ∪ {irracionais} = {x|x é racional ou x é irracional}

    O diagrama abaixo mostra a relação entre os conjuntos numéricos:




      Portanto, os números naturais, inteiros, racionais e irracionais são
todos números reais. Como subconjuntos importantes de IR temos:
      IR* = IR-{0}
      IR+ = conjunto dos números reais não negativos
      IR_ = conjunto dos números reais não positivos
SABER DIREITO
                             www.itbsite.blogspot.com




      Obs: entre dois números inteiros existem infinitos números reais. Por
exemplo:
• Entre os números 1 e 2 existem infinitos números reais:
   1,01 ; 1,001 ; 1,0001 ; 1,1 ; 1,2 ; 1,5 ; 1,99 ; 1,999 ; 1,9999 ...

• Entre os números 5 e 6 existem infinitos números reais:
  5,01 ; 5,02 ; 5,05 ; 5,1 ; 5,2 ; 5,5 ; 5,99 ; 5,999 ; 5,9999 ...

Mais conteúdo relacionado

Mais procurados

Conjuntos numericos - Números Racionais
Conjuntos numericos - Números RacionaisConjuntos numericos - Números Racionais
Conjuntos numericos - Números Racionais
PROFESSOR GLEDSON GUIMARÃES
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
jorgehenriqueangelim
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
Alexandre Cirqueira
 
Matematica aplicada
Matematica aplicadaMatematica aplicada
Matematica aplicada
Waleska Alencar
 
Conjuntos numéricos e intervalos na reta real
Conjuntos numéricos e intervalos na reta realConjuntos numéricos e intervalos na reta real
Conjuntos numéricos e intervalos na reta real
Antonio Carlos Luguetti
 
Conjuntos numericos 6
Conjuntos numericos 6Conjuntos numericos 6
Conjuntos numericos 6
gendersonkaio
 
Aulas de matemática(soares)números inteiros (2)
Aulas de matemática(soares)números inteiros (2)Aulas de matemática(soares)números inteiros (2)
Aulas de matemática(soares)números inteiros (2)
Antonio Filho
 
NÚMEROS NATURAIS - ENSINO FUNDAMENTAL 1 - 4º OU 5º ANO
NÚMEROS NATURAIS - ENSINO FUNDAMENTAL 1 - 4º OU 5º ANONÚMEROS NATURAIS - ENSINO FUNDAMENTAL 1 - 4º OU 5º ANO
NÚMEROS NATURAIS - ENSINO FUNDAMENTAL 1 - 4º OU 5º ANO
Secretaria de Estado de Educação e Qualidade do Ensino
 
Introdução a números inteiros
Introdução a números inteirosIntrodução a números inteiros
Introdução a números inteiros
JSC125
 
Conjunto dos números naturais
Conjunto dos números naturaisConjunto dos números naturais
Conjunto dos números naturais
Grácia Rodrigues
 
www.CentroApoio.com - Matemática - Expressões Algébricas e Numéricas
www.CentroApoio.com - Matemática - Expressões Algébricas e Numéricaswww.CentroApoio.com - Matemática - Expressões Algébricas e Numéricas
www.CentroApoio.com - Matemática - Expressões Algébricas e Numéricas
Vídeo Aulas Apoio
 
3º ano conjuntos numéricos
3º ano   conjuntos numéricos3º ano   conjuntos numéricos
3º ano conjuntos numéricos
proffelipemat
 
A história dos números
A história dos númerosA história dos números
A história dos números
Victor Martins
 
www.ensinofundamental.net.br - Matemática - Conjunto de Números Inteiros
www.ensinofundamental.net.br - Matemática -  Conjunto de Números Inteiroswww.ensinofundamental.net.br - Matemática -  Conjunto de Números Inteiros
www.ensinofundamental.net.br - Matemática - Conjunto de Números Inteiros
EnsinoFundamental
 
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiroswww.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros
Aulas De Matemática Apoio
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Conjuntos Numéricos
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Conjuntos Numéricoswww.AulasDeMatematicanoRJ.Com.Br - Matemática - Conjuntos Numéricos
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Conjuntos Numéricos
Clarice Leclaire
 
www.aulaparticularonline.net.br - Matemática - Conjunto de Números Inteiros
www.aulaparticularonline.net.br - Matemática -  Conjunto de Números Inteiroswww.aulaparticularonline.net.br - Matemática -  Conjunto de Números Inteiros
www.aulaparticularonline.net.br - Matemática - Conjunto de Números Inteiros
Lucia Silveira
 
Painel 63 - Números Inteiros I
Painel 63 - Números Inteiros IPainel 63 - Números Inteiros I
Painel 63 - Números Inteiros I
Prof. Materaldo
 
Numeros inteiros
Numeros inteirosNumeros inteiros
Numeros inteiros
con_seguir
 
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 3
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 3MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 3
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 3
Alexander Mayer
 

Mais procurados (20)

Conjuntos numericos - Números Racionais
Conjuntos numericos - Números RacionaisConjuntos numericos - Números Racionais
Conjuntos numericos - Números Racionais
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
 
Matematica aplicada
Matematica aplicadaMatematica aplicada
Matematica aplicada
 
Conjuntos numéricos e intervalos na reta real
Conjuntos numéricos e intervalos na reta realConjuntos numéricos e intervalos na reta real
Conjuntos numéricos e intervalos na reta real
 
Conjuntos numericos 6
Conjuntos numericos 6Conjuntos numericos 6
Conjuntos numericos 6
 
Aulas de matemática(soares)números inteiros (2)
Aulas de matemática(soares)números inteiros (2)Aulas de matemática(soares)números inteiros (2)
Aulas de matemática(soares)números inteiros (2)
 
NÚMEROS NATURAIS - ENSINO FUNDAMENTAL 1 - 4º OU 5º ANO
NÚMEROS NATURAIS - ENSINO FUNDAMENTAL 1 - 4º OU 5º ANONÚMEROS NATURAIS - ENSINO FUNDAMENTAL 1 - 4º OU 5º ANO
NÚMEROS NATURAIS - ENSINO FUNDAMENTAL 1 - 4º OU 5º ANO
 
Introdução a números inteiros
Introdução a números inteirosIntrodução a números inteiros
Introdução a números inteiros
 
Conjunto dos números naturais
Conjunto dos números naturaisConjunto dos números naturais
Conjunto dos números naturais
 
www.CentroApoio.com - Matemática - Expressões Algébricas e Numéricas
www.CentroApoio.com - Matemática - Expressões Algébricas e Numéricaswww.CentroApoio.com - Matemática - Expressões Algébricas e Numéricas
www.CentroApoio.com - Matemática - Expressões Algébricas e Numéricas
 
3º ano conjuntos numéricos
3º ano   conjuntos numéricos3º ano   conjuntos numéricos
3º ano conjuntos numéricos
 
A história dos números
A história dos númerosA história dos números
A história dos números
 
www.ensinofundamental.net.br - Matemática - Conjunto de Números Inteiros
www.ensinofundamental.net.br - Matemática -  Conjunto de Números Inteiroswww.ensinofundamental.net.br - Matemática -  Conjunto de Números Inteiros
www.ensinofundamental.net.br - Matemática - Conjunto de Números Inteiros
 
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiroswww.AulasDeMatematicaApoio.com  - Matemática -  Conjunto dos Números Inteiros
www.AulasDeMatematicaApoio.com - Matemática - Conjunto dos Números Inteiros
 
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Conjuntos Numéricos
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Conjuntos Numéricoswww.AulasDeMatematicanoRJ.Com.Br - Matemática - Conjuntos Numéricos
www.AulasDeMatematicanoRJ.Com.Br - Matemática - Conjuntos Numéricos
 
www.aulaparticularonline.net.br - Matemática - Conjunto de Números Inteiros
www.aulaparticularonline.net.br - Matemática -  Conjunto de Números Inteiroswww.aulaparticularonline.net.br - Matemática -  Conjunto de Números Inteiros
www.aulaparticularonline.net.br - Matemática - Conjunto de Números Inteiros
 
Painel 63 - Números Inteiros I
Painel 63 - Números Inteiros IPainel 63 - Números Inteiros I
Painel 63 - Números Inteiros I
 
Numeros inteiros
Numeros inteirosNumeros inteiros
Numeros inteiros
 
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 3
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 3MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 3
MATEMÁTICA - CONJUNTOS NUMÉRICOS - AULA 3
 

Semelhante a Conjuntos

Lista de exercícios extra campos numéricos (1)
Lista de exercícios extra campos numéricos (1)Lista de exercícios extra campos numéricos (1)
Lista de exercícios extra campos numéricos (1)
Jcraujonunes
 
Mat numeros racionais
Mat numeros racionaisMat numeros racionais
Mat numeros racionais
trigono_metria
 
aulas_9º-Ano.ppt
aulas_9º-Ano.pptaulas_9º-Ano.ppt
aulas_9º-Ano.ppt
MoreiraMonteiro
 
Apostila Matemática Básica Parte 1
Apostila Matemática Básica Parte 1Apostila Matemática Básica Parte 1
Apostila Matemática Básica Parte 1
gustavoniedermayerwagner
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
andreilson18
 
Apostila CBTU-Raciocínio Lógico-Part#3
Apostila CBTU-Raciocínio Lógico-Part#3Apostila CBTU-Raciocínio Lógico-Part#3
Apostila CBTU-Raciocínio Lógico-Part#3
Thomas Willams
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
Robson Nascimento
 
M4 60 vb
M4 60 vbM4 60 vb
M4 60 vb
Angela Pereira
 
Matemática bom! 2008
Matemática bom! 2008Matemática bom! 2008
Matemática bom! 2008
maria edineuma marreira
 
Matemática bom!
Matemática bom! Matemática bom!
Matemática bom!
maria edineuma marreira
 
Revisão para a prova
Revisão para a provaRevisão para a prova
Revisão para a prova
CristhianeGuimaraes
 
CONJUNTOS E FUNÇÕES.pdf
CONJUNTOS E FUNÇÕES.pdfCONJUNTOS E FUNÇÕES.pdf
CONJUNTOS E FUNÇÕES.pdf
NicolasMoraisSilva
 
Conjuntos numéricos, mdc e mmc
Conjuntos numéricos, mdc e mmcConjuntos numéricos, mdc e mmc
Conjuntos numéricos, mdc e mmc
Romulo Garcia
 
9ANO CONJUNTOS NUMÉRICOS.pptx
9ANO CONJUNTOS NUMÉRICOS.pptx9ANO CONJUNTOS NUMÉRICOS.pptx
9ANO CONJUNTOS NUMÉRICOS.pptx
RosangelaBraatz1
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
Herlan Ribeiro de Souza
 
Matemática básica
Matemática básicaMatemática básica
Matemática básica
Claudia Sá de Moura
 
Curso Grátis Concurso dos Correios Matemática
Curso Grátis Concurso dos Correios MatemáticaCurso Grátis Concurso dos Correios Matemática
Curso Grátis Concurso dos Correios Matemática
Cris Marini
 
Curso dos Correios Matemática
Curso dos Correios  MatemáticaCurso dos Correios  Matemática
Curso dos Correios Matemática
Cris Marini
 
M4 59 vb
M4 59 vbM4 59 vb
M4 59 vb
Angela Pereira
 
1 numeros reais1.ppt
1 numeros reais1.ppt1 numeros reais1.ppt
1 numeros reais1.ppt
CristinaMaia25
 

Semelhante a Conjuntos (20)

Lista de exercícios extra campos numéricos (1)
Lista de exercícios extra campos numéricos (1)Lista de exercícios extra campos numéricos (1)
Lista de exercícios extra campos numéricos (1)
 
Mat numeros racionais
Mat numeros racionaisMat numeros racionais
Mat numeros racionais
 
aulas_9º-Ano.ppt
aulas_9º-Ano.pptaulas_9º-Ano.ppt
aulas_9º-Ano.ppt
 
Apostila Matemática Básica Parte 1
Apostila Matemática Básica Parte 1Apostila Matemática Básica Parte 1
Apostila Matemática Básica Parte 1
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
 
Apostila CBTU-Raciocínio Lógico-Part#3
Apostila CBTU-Raciocínio Lógico-Part#3Apostila CBTU-Raciocínio Lógico-Part#3
Apostila CBTU-Raciocínio Lógico-Part#3
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
 
M4 60 vb
M4 60 vbM4 60 vb
M4 60 vb
 
Matemática bom! 2008
Matemática bom! 2008Matemática bom! 2008
Matemática bom! 2008
 
Matemática bom!
Matemática bom! Matemática bom!
Matemática bom!
 
Revisão para a prova
Revisão para a provaRevisão para a prova
Revisão para a prova
 
CONJUNTOS E FUNÇÕES.pdf
CONJUNTOS E FUNÇÕES.pdfCONJUNTOS E FUNÇÕES.pdf
CONJUNTOS E FUNÇÕES.pdf
 
Conjuntos numéricos, mdc e mmc
Conjuntos numéricos, mdc e mmcConjuntos numéricos, mdc e mmc
Conjuntos numéricos, mdc e mmc
 
9ANO CONJUNTOS NUMÉRICOS.pptx
9ANO CONJUNTOS NUMÉRICOS.pptx9ANO CONJUNTOS NUMÉRICOS.pptx
9ANO CONJUNTOS NUMÉRICOS.pptx
 
Conjuntos numéricos
Conjuntos numéricosConjuntos numéricos
Conjuntos numéricos
 
Matemática básica
Matemática básicaMatemática básica
Matemática básica
 
Curso Grátis Concurso dos Correios Matemática
Curso Grátis Concurso dos Correios MatemáticaCurso Grátis Concurso dos Correios Matemática
Curso Grátis Concurso dos Correios Matemática
 
Curso dos Correios Matemática
Curso dos Correios  MatemáticaCurso dos Correios  Matemática
Curso dos Correios Matemática
 
M4 59 vb
M4 59 vbM4 59 vb
M4 59 vb
 
1 numeros reais1.ppt
1 numeros reais1.ppt1 numeros reais1.ppt
1 numeros reais1.ppt
 

Mais de Dinho Paulo Clakly

Música traduzida
Música traduzidaMúsica traduzida
Música traduzida
Dinho Paulo Clakly
 
3ª aula
3ª aula3ª aula
Inglês fácil 2
Inglês fácil 2Inglês fácil 2
Inglês fácil 2
Dinho Paulo Clakly
 
Música e tradução
Música e traduçãoMúsica e tradução
Música e tradução
Dinho Paulo Clakly
 
Aula 1
Aula 1Aula 1
Equações trigonométricas
Equações trigonométricasEquações trigonométricas
Equações trigonométricas
Dinho Paulo Clakly
 
Sistemas lineares
Sistemas linearesSistemas lineares
Sistemas lineares
Dinho Paulo Clakly
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
Dinho Paulo Clakly
 
Função de 1º grau
Função de 1º grauFunção de 1º grau
Função de 1º grau
Dinho Paulo Clakly
 
Binômio de newton
Binômio de newtonBinômio de newton
Binômio de newton
Dinho Paulo Clakly
 
Binômio de newton
Binômio de newtonBinômio de newton
Binômio de newton
Dinho Paulo Clakly
 
Binômio de newton
Binômio de newtonBinômio de newton
Binômio de newton
Dinho Paulo Clakly
 
Binômio de newton
Binômio de newtonBinômio de newton
Binômio de newton
Dinho Paulo Clakly
 
Func mod
Func modFunc mod
Func log
Func logFunc log
Func log
Func logFunc log
Func exp
Func expFunc exp
Identidades trigonométricas
Identidades trigonométricasIdentidades trigonométricas
Identidades trigonométricas
Dinho Paulo Clakly
 
Progressões geométricas
Progressões geométricasProgressões geométricas
Progressões geométricas
Dinho Paulo Clakly
 
Pa
PaPa

Mais de Dinho Paulo Clakly (20)

Música traduzida
Música traduzidaMúsica traduzida
Música traduzida
 
3ª aula
3ª aula3ª aula
3ª aula
 
Inglês fácil 2
Inglês fácil 2Inglês fácil 2
Inglês fácil 2
 
Música e tradução
Música e traduçãoMúsica e tradução
Música e tradução
 
Aula 1
Aula 1Aula 1
Aula 1
 
Equações trigonométricas
Equações trigonométricasEquações trigonométricas
Equações trigonométricas
 
Sistemas lineares
Sistemas linearesSistemas lineares
Sistemas lineares
 
Função quadrática
Função quadráticaFunção quadrática
Função quadrática
 
Função de 1º grau
Função de 1º grauFunção de 1º grau
Função de 1º grau
 
Binômio de newton
Binômio de newtonBinômio de newton
Binômio de newton
 
Binômio de newton
Binômio de newtonBinômio de newton
Binômio de newton
 
Binômio de newton
Binômio de newtonBinômio de newton
Binômio de newton
 
Binômio de newton
Binômio de newtonBinômio de newton
Binômio de newton
 
Func mod
Func modFunc mod
Func mod
 
Func log
Func logFunc log
Func log
 
Func log
Func logFunc log
Func log
 
Func exp
Func expFunc exp
Func exp
 
Identidades trigonométricas
Identidades trigonométricasIdentidades trigonométricas
Identidades trigonométricas
 
Progressões geométricas
Progressões geométricasProgressões geométricas
Progressões geométricas
 
Pa
PaPa
Pa
 

Último

P0107 do aluno da educação municipal.pdf
P0107 do aluno da educação municipal.pdfP0107 do aluno da educação municipal.pdf
P0107 do aluno da educação municipal.pdf
Ceiça Martins Vital
 
Uma Breve História da Origem, Formação e Evolução da Terra
Uma Breve História da Origem, Formação e Evolução da TerraUma Breve História da Origem, Formação e Evolução da Terra
Uma Breve História da Origem, Formação e Evolução da Terra
Luiz C. da Silva
 
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptxSlides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
LuizHenriquedeAlmeid6
 
A GEOPOLÍTICA ATUAL E A INTEGRAÇÃO ECONÔMICA E SOCIAL
A GEOPOLÍTICA ATUAL E A INTEGRAÇÃO ECONÔMICA E SOCIALA GEOPOLÍTICA ATUAL E A INTEGRAÇÃO ECONÔMICA E SOCIAL
A GEOPOLÍTICA ATUAL E A INTEGRAÇÃO ECONÔMICA E SOCIAL
ArapiracaNoticiasFat
 
O que é o programa nacional de alimentação escolar (PNAE)?
O que é  o programa nacional de alimentação escolar (PNAE)?O que é  o programa nacional de alimentação escolar (PNAE)?
O que é o programa nacional de alimentação escolar (PNAE)?
Marcelo Botura
 
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdfA Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
Falcão Brasil
 
Intendência da Aeronáutica. Somos um, sou você Intendência!.pdf
Intendência da Aeronáutica. Somos um, sou você Intendência!.pdfIntendência da Aeronáutica. Somos um, sou você Intendência!.pdf
Intendência da Aeronáutica. Somos um, sou você Intendência!.pdf
Falcão Brasil
 
UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...
UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...
UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...
Manuais Formação
 
A Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdf
A Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdfA Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdf
A Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdf
Falcão Brasil
 
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Centro Jacques Delors
 
Oceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsx
Oceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsxOceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsx
Oceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsx
Luzia Gabriele
 
O Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdf
O Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdfO Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdf
O Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdf
Falcão Brasil
 
A Guerra do Presente - Ministério da Defesa.pdf
A Guerra do Presente - Ministério da Defesa.pdfA Guerra do Presente - Ministério da Defesa.pdf
A Guerra do Presente - Ministério da Defesa.pdf
Falcão Brasil
 
Geotecnologias Aplicadas na Gestão de Riscos e Desastres Hidrológicos.pdf
Geotecnologias Aplicadas na Gestão de Riscos e Desastres Hidrológicos.pdfGeotecnologias Aplicadas na Gestão de Riscos e Desastres Hidrológicos.pdf
Geotecnologias Aplicadas na Gestão de Riscos e Desastres Hidrológicos.pdf
Falcão Brasil
 
Endereços — Centro Gestor e Operacional do Sistema de Proteção da Amazônia - ...
Endereços — Centro Gestor e Operacional do Sistema de Proteção da Amazônia - ...Endereços — Centro Gestor e Operacional do Sistema de Proteção da Amazônia - ...
Endereços — Centro Gestor e Operacional do Sistema de Proteção da Amazônia - ...
Falcão Brasil
 
Aula 3 CURSO LETRANDO (classes gramaticais).pdf
Aula 3 CURSO LETRANDO (classes gramaticais).pdfAula 3 CURSO LETRANDO (classes gramaticais).pdf
Aula 3 CURSO LETRANDO (classes gramaticais).pdf
ProfessoraSilmaraArg
 
Caça-palavras - multiplicação
Caça-palavras  -  multiplicaçãoCaça-palavras  -  multiplicação
Caça-palavras - multiplicação
Mary Alvarenga
 
Escola Preparatória de Cadetes do Ar (EPCAR).pdf
Escola Preparatória de Cadetes do Ar (EPCAR).pdfEscola Preparatória de Cadetes do Ar (EPCAR).pdf
Escola Preparatória de Cadetes do Ar (EPCAR).pdf
Falcão Brasil
 

Último (20)

Festa dos Finalistas .
Festa dos Finalistas                    .Festa dos Finalistas                    .
Festa dos Finalistas .
 
P0107 do aluno da educação municipal.pdf
P0107 do aluno da educação municipal.pdfP0107 do aluno da educação municipal.pdf
P0107 do aluno da educação municipal.pdf
 
Uma Breve História da Origem, Formação e Evolução da Terra
Uma Breve História da Origem, Formação e Evolução da TerraUma Breve História da Origem, Formação e Evolução da Terra
Uma Breve História da Origem, Formação e Evolução da Terra
 
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptxSlides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
Slides Lição 3, CPAD, Rute e Noemi, Entrelaçadas pelo Amor.pptx
 
A GEOPOLÍTICA ATUAL E A INTEGRAÇÃO ECONÔMICA E SOCIAL
A GEOPOLÍTICA ATUAL E A INTEGRAÇÃO ECONÔMICA E SOCIALA GEOPOLÍTICA ATUAL E A INTEGRAÇÃO ECONÔMICA E SOCIAL
A GEOPOLÍTICA ATUAL E A INTEGRAÇÃO ECONÔMICA E SOCIAL
 
O que é o programa nacional de alimentação escolar (PNAE)?
O que é  o programa nacional de alimentação escolar (PNAE)?O que é  o programa nacional de alimentação escolar (PNAE)?
O que é o programa nacional de alimentação escolar (PNAE)?
 
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdfA Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
A Atuação das Forças Armadas na Garantia da Lei e da Ordem (GLO).pdf
 
Intendência da Aeronáutica. Somos um, sou você Intendência!.pdf
Intendência da Aeronáutica. Somos um, sou você Intendência!.pdfIntendência da Aeronáutica. Somos um, sou você Intendência!.pdf
Intendência da Aeronáutica. Somos um, sou você Intendência!.pdf
 
UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...
UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...
UFCD_7224_Prevenção de acidentes em contexto domiciliário e institucional_índ...
 
A Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdf
A Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdfA Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdf
A Industria Brasileira de Defesa - Situação Atual e Perspectivas de Evolução.pdf
 
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
Slide | Eurodeputados Portugueses (2024-2029) - Parlamento Europeu (atualiz. ...
 
Oceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsx
Oceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsxOceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsx
Oceano, Fonte de Vida e Beleza Maria Inês Aroeira Braga.ppsx
 
O Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdf
O Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdfO Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdf
O Ministério da Defesa e a Sociedade no Tema de Defesa Nacional.pdf
 
VIAGEM AO PASSADO -
VIAGEM AO PASSADO                        -VIAGEM AO PASSADO                        -
VIAGEM AO PASSADO -
 
A Guerra do Presente - Ministério da Defesa.pdf
A Guerra do Presente - Ministério da Defesa.pdfA Guerra do Presente - Ministério da Defesa.pdf
A Guerra do Presente - Ministério da Defesa.pdf
 
Geotecnologias Aplicadas na Gestão de Riscos e Desastres Hidrológicos.pdf
Geotecnologias Aplicadas na Gestão de Riscos e Desastres Hidrológicos.pdfGeotecnologias Aplicadas na Gestão de Riscos e Desastres Hidrológicos.pdf
Geotecnologias Aplicadas na Gestão de Riscos e Desastres Hidrológicos.pdf
 
Endereços — Centro Gestor e Operacional do Sistema de Proteção da Amazônia - ...
Endereços — Centro Gestor e Operacional do Sistema de Proteção da Amazônia - ...Endereços — Centro Gestor e Operacional do Sistema de Proteção da Amazônia - ...
Endereços — Centro Gestor e Operacional do Sistema de Proteção da Amazônia - ...
 
Aula 3 CURSO LETRANDO (classes gramaticais).pdf
Aula 3 CURSO LETRANDO (classes gramaticais).pdfAula 3 CURSO LETRANDO (classes gramaticais).pdf
Aula 3 CURSO LETRANDO (classes gramaticais).pdf
 
Caça-palavras - multiplicação
Caça-palavras  -  multiplicaçãoCaça-palavras  -  multiplicação
Caça-palavras - multiplicação
 
Escola Preparatória de Cadetes do Ar (EPCAR).pdf
Escola Preparatória de Cadetes do Ar (EPCAR).pdfEscola Preparatória de Cadetes do Ar (EPCAR).pdf
Escola Preparatória de Cadetes do Ar (EPCAR).pdf
 

Conjuntos

  • 1. SABER DIREITO www.itbsite.blogspot.com CONJUNTOS NUMÉRICOS • Conjunto dos números naturais (IN) IN={0, 1, 2, 3, 4, 5,...} Um subconjunto importante de IN é o conjunto IN*: IN*={1, 2, 3, 4, 5,...}  o zero foi excluído do conjunto IN. Podemos considerar o conjunto dos números naturais ordenados sobre uma reta, como mostra o gráfico abaixo: • Conjunto dos números inteiros (Z) Z={..., -3, -2, -1, 0, 1, 2, 3,...} O conjunto IN é subconjunto de Z. Temos também outros subconjuntos de Z: Z* = Z-{0} Z+ = conjunto dos inteiros não negativos = {0,1,2,3,4,5,...} Z_ = conjunto dos inteiros não positivos = {0,-1,-2,-3,-4,-5,...} Observe que Z+=IN. Podemos considerar os números inteiros ordenados sobre uma reta, conforme mostra o gráfico abaixo:
  • 2. SABER DIREITO www.itbsite.blogspot.com • Conjunto dos números racionais (Q) Os números racionais são todos aqueles que podem ser colocados na forma de fração (com o numerador e denominador ∈ Z). Ou seja, o conjunto dos números racionais é a união do conjunto dos números inteiros com as frações positivas e negativas. 5 3 3 Então : -2, − , − 1, , 1, , por exemplo, são números racionais. 4 5 2 Exemplos: −3 −6 −9 a) − 3 = = = 1 2 3 1 2 3 b) 1 = = = 1 2 3 Assim, podemos escrever: a Q = {x | x = , com a ∈ Z , b ∈ Z e b ≠ 0} b É interessante considerar a representação decimal de um número a racional , que se obtém dividindo a por b. b Exemplos referentes às decimais exatas ou finitas: 1 5 75 = 0,5 − = −1,25 = 3,75 2 4 20 Exemplos referentes às decimais periódicas ou infinitas: 1 6 7 = 0,333... = 0,857142857142... = 1,1666... 3 7 6
  • 3. SABER DIREITO www.itbsite.blogspot.com Toda decimal exata ou periódica pode ser representada na forma de número racional. • Conjunto dos números irracionais Os números irracionais são decimais infinitas não periódicas, ou seja, os números que não podem ser escrito na forma de fração (divisão de dois inteiros). Como exemplo de números irracionais, temos a raiz quadrada de 2 e a raiz quadrada de 3: 2 = 1,4142135... 3 = 1,7320508... Um número irracional bastante conhecido é o número π=3,1415926535... • Conjunto dos números reais (IR) Dados os conjuntos dos números racionais (Q) e dos irracionais, definimos o conjunto dos números reais como: IR=Q ∪ {irracionais} = {x|x é racional ou x é irracional} O diagrama abaixo mostra a relação entre os conjuntos numéricos: Portanto, os números naturais, inteiros, racionais e irracionais são todos números reais. Como subconjuntos importantes de IR temos: IR* = IR-{0} IR+ = conjunto dos números reais não negativos IR_ = conjunto dos números reais não positivos
  • 4. SABER DIREITO www.itbsite.blogspot.com Obs: entre dois números inteiros existem infinitos números reais. Por exemplo: • Entre os números 1 e 2 existem infinitos números reais: 1,01 ; 1,001 ; 1,0001 ; 1,1 ; 1,2 ; 1,5 ; 1,99 ; 1,999 ; 1,9999 ... • Entre os números 5 e 6 existem infinitos números reais: 5,01 ; 5,02 ; 5,05 ; 5,1 ; 5,2 ; 5,5 ; 5,99 ; 5,999 ; 5,9999 ...