CORREÇÃO DA FICHA DE AVALIAÇÃO DE MATEMÁTICA
8ºANODEESCOLARIDADE/3ºCICLODOENSINOBÁSICO 2014/2015
Grupo I
Para cada uma das questões deste grupo assinala a única opção correta. Não precisas apresentar os cálculos efetuados.
1. Dos quatro números seguintes, qual é o maior? Escolhe a opção correta
(A) 4,2 × 10−5 (B) 6,1 × 10−7
(C) 5,2 × 10−5 (D) 3,1 × 10−4
2. Num parque de diversões encontra-se um escorrega de grandes dimensões (figura ao lado).
De acordo com os dados da figura, o comprimento do escorrega é igual a:
(A) √17
(B) √149
(C) 17
(D) 15
3. Na figura seguinte, está representado o triângulo retângulo [ABC].
Os pontos A , B e D são pontos da reta real.
Sabe-se ainda que:
 𝐴𝐵̅̅̅̅ = 3
 𝐵𝐶̅̅̅̅ = 2
 𝐴𝐷̅̅̅̅ = 𝐴𝐶̅̅̅̅
 o ponto A tem abcissa 1.
Qual é a abcissa do ponto D?
(A) 1 + √13 (B) 1 + √5 (C) √13 (D) √5
4. Qual das representações gráficas seguintes traduz a função definida por 𝑓(𝑥) = −2𝑥 + 2
(A) (B) (C) (D)
CORREÇÃO DO TESTE Nº 5 – VERSÃO 1 8º ANO
FICHA DE AVALIAÇÃO DE MATEMÁTICA
Duração da prova: 90 minutos março de 2015 Versão 1 3 Páginas
5. Qual das isometrias seguintes não está patente no seguinte friso:
(A) Reflexão de eixo vertical
(B) Reflexão de eixo horizontal
(C) Translação
(D) Reflexão deslizante
Grupo II
Apresenta o teu raciocínio de forma clara, indicando todos os cálculos que tiveres de efetuar e todas as justificações necessárias.
6. Cada aula de Matemática da Mafalda tem 50 minutos de duração. Ela desafiou os colegas de outra turma
a descobrirem quantas aulas de Matemática já teve este ano, dizendo-lhes:
- Já tive 4,2 × 103
minutos de aulas de Matemática.
Quantas aulas de Matemática já teve a Mafalda este ano?
𝟒, 𝟐 × 𝟏𝟎 𝟑
𝟓𝟎
=
𝟒, 𝟐 × 𝟏𝟎 𝟑
𝟓 × 𝟏𝟎 𝟏
=
𝟒, 𝟐
𝟓
×
𝟏𝟎 𝟑
𝟏𝟎 𝟏
= 𝟎, 𝟖𝟒 × 𝟏𝟎 𝟐
= 𝟖𝟒
A Mafalda este ano já teve 84 aulas de 50 minutos de Matemática.
7. Considera a função 𝑓 de domínio 𝐴 = {0,
1
3
,
1
2
, 1} e conjunto de chegada ℝ, definida pela expressão
algébrica 𝑓(𝑥) = 3𝑥 − 1. Determina o contradomínio de 𝑓.
Sendo o contradomínio de uma função o conjunto das imagens, basta calcular as imagens dos
elementos do domínio.
𝒇(𝟎) = 𝟑 × 𝟎 − 𝟏 = 𝟎 − 𝟏 = −𝟏
𝒇 (
𝟏
𝟑
) = 𝟑 ×
𝟏
𝟑
− 𝟏 =
𝟑
𝟑
− 𝟏 = 𝟏 − 𝟏 = 𝟎
𝒇 (
𝟏
𝟐
) = 𝟑 ×
𝟏
𝟐
− 𝟏 =
𝟑
𝟐
−
𝟐
𝟐
=
𝟏
𝟐
𝒇(𝟏) = 𝟑 × 𝟏 − 𝟏 = 𝟑 − 𝟏 = 𝟐
Logo 𝑫′ 𝒇 = {−𝟏, 𝟎,
𝟏
𝟐
, 𝟐}
8. Escreve a expressão algébrica de uma função afim 𝑓, sabendo que:
8.1. O seu gráfico é uma reta paralela ao da função 𝒋(𝒙) = −𝒙 + 𝟓 e passa no ponto (0, −1).
Por um lado, se o gráfico da função 𝒇 é uma reta paralela ao da função 𝒋, então as retas têm o
mesmo declive. Por outro lado, se passa no ponto de coordenadas (𝟎, −𝟏), a ordenada na
origem é −𝟏. Logo a expressão algébrica da função 𝒇 é 𝒚 = −𝒙 − 𝟏, ou, 𝒇(𝒙) = −𝒙 − 𝟏.
8.2. O seu gráfico é uma reta que passa nos pontos (1, 4) e (0, 5)
Se a reta passa nos pontos (𝟏, 𝟒) e (𝟎, 𝟓), então o declive é dado pela expressão
𝒂 =
𝟓−𝟒
𝟎−𝟏
=
𝟏
−𝟏
= −𝟏. Por outro lado, se passa no ponto de coordenadas (𝟎, 𝟓), a ordenada na
origem é 𝟓. Logo a expressão algébrica da função 𝒇 é 𝒚 = −𝒙 + 𝟓, ou, 𝒇(𝒙) = −𝒙 + 𝟓.
8.3. 𝑓(1) = 3 e 𝑓(−1) = −1.
Se 𝒇(𝟏) = 𝟑 e 𝒇(−𝟏) = −𝟏, então significa que a reta passa nos pontos (𝟏, 𝟑) e (−𝟏, −𝟏), então
o declive é dado pela expressão 𝒂 =
−𝟏−𝟑
−𝟏−𝟏
=
−𝟒
−𝟐
= 𝟐. Para determinar o valor da ordenada na
origem basta substituir as coordenadas de um dos pontos na expressão 𝒚 = 𝟐𝒙 + 𝒃 ⟺
⟺ 𝟑 = 𝟐 × 𝟏 + 𝒃 ⟺ 𝟑 − 𝟐 = 𝒃 ⟺ 𝒃 = 𝟏
Logo a expressão algébrica da função 𝒇 é 𝒚 = 𝟐𝒙 + 𝟏 ou 𝒇(𝒙) = 𝟐𝒙 + 𝟏.
9. Considera o retângulo [ABCD] e a diagonal [BD] representado na figura
ao lado.
Sabe-se que:
 𝐴𝐵̅̅̅̅ = 12.
 𝐵𝐷̅̅̅̅ = 𝑥 + 5.
 𝐴𝐷̅̅̅̅ = 𝑥 − 3.
Atendendo aos dados do enunciado e à figura, determina o valor exato do perímetro do retângulo.
Aplicando o Teorema de Pitágoras ao triângulo retângulo [𝑨𝑩𝑫], temos:
𝑩𝑫̅̅̅̅̅ 𝟐
= 𝑨𝑩̅̅̅̅ 𝟐
+ 𝑨𝑫̅̅̅̅ 𝟐
⟺ (𝒙 + 𝟓) 𝟐
= 𝟏𝟐 𝟐
+ (𝒙 − 𝟑) 𝟐
⟺ 𝒙 𝟐
+ 𝟏𝟎𝒙 + 𝟐𝟓 = 𝟏𝟒𝟒 + 𝒙 𝟐
− 𝟔𝒙 + 𝟗 ⟺
⟺ 𝒙 𝟐
+ 𝟏𝟎𝒙 − 𝒙 𝟐
+ 𝟔𝒙 = 𝟏𝟒𝟒 + 𝟗 − 𝟐𝟓 ⟺ 𝟏𝟔𝒙 = 𝟏𝟐𝟖 ⟺ 𝒙 =
𝟏𝟐𝟖
𝟏𝟔
⟺ 𝒙 = 𝟖
Logo 𝑨𝑫̅̅̅̅ = 𝟖 − 𝟑 = 𝟓, pelo que o Perímetro do retângulo é 𝟓 + 𝟓 + 𝟏𝟐 + 𝟏𝟐 = 𝟑𝟒
10.Calcula o polinómio simplificado, aplicando sempre que possível os casos notáveis da multiplicação:
10.1. (2𝑥 + 1)2
+ 3𝑥 = (𝟐𝒙) 𝟐
+ 𝟐 × 𝟐𝒙 × 𝟏 + 𝟏 𝟐
+ 𝟑𝒙 = 𝟒𝒙 𝟐
+ 𝟒𝒙 + 𝟏 + 𝟑𝒙 = 𝟒𝒙 𝟐
+ 𝟕𝒙 + 𝟏
10.2. (𝑥 − 3)2
+ 2(𝑥 + 2)(𝑥 − 2) = 𝒙 𝟐
− 𝟐 × 𝒙 × 𝟑 + 𝟑 𝟐
+ 𝟐(𝒙 𝟐
− 𝟐 𝟐) = 𝒙 𝟐
− 𝟔𝒙 + 𝟗 + 𝟐(𝒙 𝟐
− 𝟒) =
= 𝒙 𝟐
− 𝟔𝒙 + 𝟗 + 𝟐𝒙 𝟐
− 𝟖 = 𝟑𝒙 𝟐
− 𝟔𝒙 + 𝟏
10.3. (4𝑥 + 5)2
− 3(2𝑥 − 3)2
= (𝟒𝒙) 𝟐
+ 𝟐 × 𝟒𝒙 × 𝟓 + 𝟓 𝟐
− 𝟑((𝟐𝒙) 𝟐
− 𝟐 × 𝟐𝒙 × 𝟑 + 𝟑 𝟐)) =
= 𝟏𝟔𝒙 𝟐
+ 𝟒𝟎𝒙 + 𝟐𝟓 − 𝟑(𝟒𝒙 𝟐
− 𝟏𝟐𝒙 + 𝟗) = 𝟏𝟔𝒙 𝟐
+ 𝟒𝟎𝒙 + 𝟐𝟓 − 𝟏𝟐𝒙 𝟐
+ 𝟑𝟔𝒙 − 𝟐𝟕 =
= 𝟒𝒙 𝟐
+ 𝟕𝟔𝒙 − 𝟐

8ºano mat correcao teste5 8ano_v1

  • 1.
    CORREÇÃO DA FICHADE AVALIAÇÃO DE MATEMÁTICA 8ºANODEESCOLARIDADE/3ºCICLODOENSINOBÁSICO 2014/2015 Grupo I Para cada uma das questões deste grupo assinala a única opção correta. Não precisas apresentar os cálculos efetuados. 1. Dos quatro números seguintes, qual é o maior? Escolhe a opção correta (A) 4,2 × 10−5 (B) 6,1 × 10−7 (C) 5,2 × 10−5 (D) 3,1 × 10−4 2. Num parque de diversões encontra-se um escorrega de grandes dimensões (figura ao lado). De acordo com os dados da figura, o comprimento do escorrega é igual a: (A) √17 (B) √149 (C) 17 (D) 15 3. Na figura seguinte, está representado o triângulo retângulo [ABC]. Os pontos A , B e D são pontos da reta real. Sabe-se ainda que:  𝐴𝐵̅̅̅̅ = 3  𝐵𝐶̅̅̅̅ = 2  𝐴𝐷̅̅̅̅ = 𝐴𝐶̅̅̅̅  o ponto A tem abcissa 1. Qual é a abcissa do ponto D? (A) 1 + √13 (B) 1 + √5 (C) √13 (D) √5 4. Qual das representações gráficas seguintes traduz a função definida por 𝑓(𝑥) = −2𝑥 + 2 (A) (B) (C) (D) CORREÇÃO DO TESTE Nº 5 – VERSÃO 1 8º ANO FICHA DE AVALIAÇÃO DE MATEMÁTICA Duração da prova: 90 minutos março de 2015 Versão 1 3 Páginas
  • 2.
    5. Qual dasisometrias seguintes não está patente no seguinte friso: (A) Reflexão de eixo vertical (B) Reflexão de eixo horizontal (C) Translação (D) Reflexão deslizante Grupo II Apresenta o teu raciocínio de forma clara, indicando todos os cálculos que tiveres de efetuar e todas as justificações necessárias. 6. Cada aula de Matemática da Mafalda tem 50 minutos de duração. Ela desafiou os colegas de outra turma a descobrirem quantas aulas de Matemática já teve este ano, dizendo-lhes: - Já tive 4,2 × 103 minutos de aulas de Matemática. Quantas aulas de Matemática já teve a Mafalda este ano? 𝟒, 𝟐 × 𝟏𝟎 𝟑 𝟓𝟎 = 𝟒, 𝟐 × 𝟏𝟎 𝟑 𝟓 × 𝟏𝟎 𝟏 = 𝟒, 𝟐 𝟓 × 𝟏𝟎 𝟑 𝟏𝟎 𝟏 = 𝟎, 𝟖𝟒 × 𝟏𝟎 𝟐 = 𝟖𝟒 A Mafalda este ano já teve 84 aulas de 50 minutos de Matemática. 7. Considera a função 𝑓 de domínio 𝐴 = {0, 1 3 , 1 2 , 1} e conjunto de chegada ℝ, definida pela expressão algébrica 𝑓(𝑥) = 3𝑥 − 1. Determina o contradomínio de 𝑓. Sendo o contradomínio de uma função o conjunto das imagens, basta calcular as imagens dos elementos do domínio. 𝒇(𝟎) = 𝟑 × 𝟎 − 𝟏 = 𝟎 − 𝟏 = −𝟏 𝒇 ( 𝟏 𝟑 ) = 𝟑 × 𝟏 𝟑 − 𝟏 = 𝟑 𝟑 − 𝟏 = 𝟏 − 𝟏 = 𝟎 𝒇 ( 𝟏 𝟐 ) = 𝟑 × 𝟏 𝟐 − 𝟏 = 𝟑 𝟐 − 𝟐 𝟐 = 𝟏 𝟐 𝒇(𝟏) = 𝟑 × 𝟏 − 𝟏 = 𝟑 − 𝟏 = 𝟐 Logo 𝑫′ 𝒇 = {−𝟏, 𝟎, 𝟏 𝟐 , 𝟐} 8. Escreve a expressão algébrica de uma função afim 𝑓, sabendo que: 8.1. O seu gráfico é uma reta paralela ao da função 𝒋(𝒙) = −𝒙 + 𝟓 e passa no ponto (0, −1). Por um lado, se o gráfico da função 𝒇 é uma reta paralela ao da função 𝒋, então as retas têm o mesmo declive. Por outro lado, se passa no ponto de coordenadas (𝟎, −𝟏), a ordenada na origem é −𝟏. Logo a expressão algébrica da função 𝒇 é 𝒚 = −𝒙 − 𝟏, ou, 𝒇(𝒙) = −𝒙 − 𝟏. 8.2. O seu gráfico é uma reta que passa nos pontos (1, 4) e (0, 5) Se a reta passa nos pontos (𝟏, 𝟒) e (𝟎, 𝟓), então o declive é dado pela expressão 𝒂 = 𝟓−𝟒 𝟎−𝟏 = 𝟏 −𝟏 = −𝟏. Por outro lado, se passa no ponto de coordenadas (𝟎, 𝟓), a ordenada na origem é 𝟓. Logo a expressão algébrica da função 𝒇 é 𝒚 = −𝒙 + 𝟓, ou, 𝒇(𝒙) = −𝒙 + 𝟓. 8.3. 𝑓(1) = 3 e 𝑓(−1) = −1. Se 𝒇(𝟏) = 𝟑 e 𝒇(−𝟏) = −𝟏, então significa que a reta passa nos pontos (𝟏, 𝟑) e (−𝟏, −𝟏), então o declive é dado pela expressão 𝒂 = −𝟏−𝟑 −𝟏−𝟏 = −𝟒 −𝟐 = 𝟐. Para determinar o valor da ordenada na origem basta substituir as coordenadas de um dos pontos na expressão 𝒚 = 𝟐𝒙 + 𝒃 ⟺ ⟺ 𝟑 = 𝟐 × 𝟏 + 𝒃 ⟺ 𝟑 − 𝟐 = 𝒃 ⟺ 𝒃 = 𝟏 Logo a expressão algébrica da função 𝒇 é 𝒚 = 𝟐𝒙 + 𝟏 ou 𝒇(𝒙) = 𝟐𝒙 + 𝟏.
  • 3.
    9. Considera oretângulo [ABCD] e a diagonal [BD] representado na figura ao lado. Sabe-se que:  𝐴𝐵̅̅̅̅ = 12.  𝐵𝐷̅̅̅̅ = 𝑥 + 5.  𝐴𝐷̅̅̅̅ = 𝑥 − 3. Atendendo aos dados do enunciado e à figura, determina o valor exato do perímetro do retângulo. Aplicando o Teorema de Pitágoras ao triângulo retângulo [𝑨𝑩𝑫], temos: 𝑩𝑫̅̅̅̅̅ 𝟐 = 𝑨𝑩̅̅̅̅ 𝟐 + 𝑨𝑫̅̅̅̅ 𝟐 ⟺ (𝒙 + 𝟓) 𝟐 = 𝟏𝟐 𝟐 + (𝒙 − 𝟑) 𝟐 ⟺ 𝒙 𝟐 + 𝟏𝟎𝒙 + 𝟐𝟓 = 𝟏𝟒𝟒 + 𝒙 𝟐 − 𝟔𝒙 + 𝟗 ⟺ ⟺ 𝒙 𝟐 + 𝟏𝟎𝒙 − 𝒙 𝟐 + 𝟔𝒙 = 𝟏𝟒𝟒 + 𝟗 − 𝟐𝟓 ⟺ 𝟏𝟔𝒙 = 𝟏𝟐𝟖 ⟺ 𝒙 = 𝟏𝟐𝟖 𝟏𝟔 ⟺ 𝒙 = 𝟖 Logo 𝑨𝑫̅̅̅̅ = 𝟖 − 𝟑 = 𝟓, pelo que o Perímetro do retângulo é 𝟓 + 𝟓 + 𝟏𝟐 + 𝟏𝟐 = 𝟑𝟒 10.Calcula o polinómio simplificado, aplicando sempre que possível os casos notáveis da multiplicação: 10.1. (2𝑥 + 1)2 + 3𝑥 = (𝟐𝒙) 𝟐 + 𝟐 × 𝟐𝒙 × 𝟏 + 𝟏 𝟐 + 𝟑𝒙 = 𝟒𝒙 𝟐 + 𝟒𝒙 + 𝟏 + 𝟑𝒙 = 𝟒𝒙 𝟐 + 𝟕𝒙 + 𝟏 10.2. (𝑥 − 3)2 + 2(𝑥 + 2)(𝑥 − 2) = 𝒙 𝟐 − 𝟐 × 𝒙 × 𝟑 + 𝟑 𝟐 + 𝟐(𝒙 𝟐 − 𝟐 𝟐) = 𝒙 𝟐 − 𝟔𝒙 + 𝟗 + 𝟐(𝒙 𝟐 − 𝟒) = = 𝒙 𝟐 − 𝟔𝒙 + 𝟗 + 𝟐𝒙 𝟐 − 𝟖 = 𝟑𝒙 𝟐 − 𝟔𝒙 + 𝟏 10.3. (4𝑥 + 5)2 − 3(2𝑥 − 3)2 = (𝟒𝒙) 𝟐 + 𝟐 × 𝟒𝒙 × 𝟓 + 𝟓 𝟐 − 𝟑((𝟐𝒙) 𝟐 − 𝟐 × 𝟐𝒙 × 𝟑 + 𝟑 𝟐)) = = 𝟏𝟔𝒙 𝟐 + 𝟒𝟎𝒙 + 𝟐𝟓 − 𝟑(𝟒𝒙 𝟐 − 𝟏𝟐𝒙 + 𝟗) = 𝟏𝟔𝒙 𝟐 + 𝟒𝟎𝒙 + 𝟐𝟓 − 𝟏𝟐𝒙 𝟐 + 𝟑𝟔𝒙 − 𝟐𝟕 = = 𝟒𝒙 𝟐 + 𝟕𝟔𝒙 − 𝟐