SlideShare uma empresa Scribd logo
1 de 16
Baixar para ler offline
• Dois triângulos são semelhantes quando têm os
  ângulos correspondentes congruentes e os lados
  homólogos proporcionais.
• Considere os triângulos ABC e A’B’C’ a seguir:




        12                     15
• os ângulos correspondentes são congruentes.


      ˆ
      A     ˆ   ˆ ˆ   ˆ ˆ
            A , B B , C C
• a razão entre os lados correspondentes é 4 .
                                           5
         AB        BC       AC       4
         AB        BC       AC       5
• Podemos concluir que os triângulos ABC e A’B’C’
  são semelhantes e indicamos:

            ABC~ A B C
Denominamos:
• ângulos homólogos − os ângulos congruentes de
  dois triângulos semelhantes.

       ˆ ˆ     ˆ ˆ    ˆ ˆ
       A e A , B eB , C eC
Denominamos:
• lados homólogos: os lados determinados
   por vértices homólogos.


   AB e A B , BC e B C , AC e A C
Se uma reta é paralela a um dos lados de um
triângulo e intercepta os outros dois em pontos
distintos, então o triângulo que ela determina é
semelhante ao primeiro.



                                       ABC~        DEC
Podemos medir um terreno plano com um
obstáculo no meio com a ajuda de semelhança de
triângulos.
Como do ponto A não podemos avistar o ponto
B. Precisamos marcar um ponto C em que
avistamos os pontos A e B.

                     Morro




                              Terreno visto de cima
Fixamos então um marco em C e medimos com
a trena as distâncias AC e BC. Vamos supor que
os valores encontrados foram os seguintes:
  • AC = 112 m
  • BC = 64 m
 Agora, vamos dividir essas distâncias por um
número fixo.
Por exemplo:
         112             64
               14 e            8
          8               8
 Sobre o segmento AC coloca-se um marco no
ponto D onde CD = 14 e no segmento AB coloca-
se um marco no ponto E onde CE = 8.
O triângulo CDE criado é semelhante e oito
vezes menor que o triângulo CAB.

                   Morro




                                Terreno visto de cima
Agora, através da trena o segmento DE pode ser
medido.
 Se encontrarmos DE = 16 m, como sabemos que
AB é oito vezes maior, podemos concluir que AB
= 128 m.
 E assim, o problema está concluído.
Através desse exemplo, podemos perceber que muitos
problemas envolvendo medição, seja de um terreno,
largura de um rio, altura de um prédio, podem ser
resolvidos por intermédio de semelhança de triângulos.
• IEZZI, Gelson et al. Matemática: volume único. São
  Paulo: Atual, 1997.
• DOLCE, Osvaldo, POMPEO, José Nicolau.
  Fundamentos de Matemática Elementar 9:
  Geometria plana. São Paulo: Atual, 2005.

Mais conteúdo relacionado

Mais procurados

Grandezas diretamente e inversamente proporcionais
Grandezas diretamente e inversamente proporcionaisGrandezas diretamente e inversamente proporcionais
Grandezas diretamente e inversamente proporcionaisHomailson Lopes
 
www.aulasapoio.com - Matemática - Semelhança de Triângulos
www.aulasapoio.com  - Matemática -  Semelhança de Triânguloswww.aulasapoio.com  - Matemática -  Semelhança de Triângulos
www.aulasapoio.com - Matemática - Semelhança de TriângulosAulas Apoio
 
Função do 2º grau
Função do 2º grauFunção do 2º grau
Função do 2º grauleilamaluf
 
Relações Métricas No Triângulo Retângulo
Relações Métricas No Triângulo RetânguloRelações Métricas No Triângulo Retângulo
Relações Métricas No Triângulo RetânguloLilene Alvarenga
 
Trigonometria no triângulo retângulo
Trigonometria no triângulo retânguloTrigonometria no triângulo retângulo
Trigonometria no triângulo retânguloUbirajara Neves
 
Relações Métricas no Triângulo Retângulo
Relações Métricas no Triângulo Retângulo Relações Métricas no Triângulo Retângulo
Relações Métricas no Triângulo Retângulo Gabriela Maretti
 
Círculo e circunferência
Círculo e circunferênciaCírculo e circunferência
Círculo e circunferênciamariacferreira
 
Grandezas Proporcionais
Grandezas ProporcionaisGrandezas Proporcionais
Grandezas ProporcionaisCarlos Airton
 
AULA DE TRIGONOMETRIA
AULA DE TRIGONOMETRIAAULA DE TRIGONOMETRIA
AULA DE TRIGONOMETRIACECIERJ
 
Aula sobre triângulos
Aula sobre triângulosAula sobre triângulos
Aula sobre triângulosandreilson18
 
Ângulos e poligonos
Ângulos e poligonosÂngulos e poligonos
Ângulos e poligonosEliane
 

Mais procurados (20)

Grandezas diretamente e inversamente proporcionais
Grandezas diretamente e inversamente proporcionaisGrandezas diretamente e inversamente proporcionais
Grandezas diretamente e inversamente proporcionais
 
Numeros racionais
Numeros racionaisNumeros racionais
Numeros racionais
 
Quadriláteros
Quadriláteros Quadriláteros
Quadriláteros
 
Porcentagem
PorcentagemPorcentagem
Porcentagem
 
www.aulasapoio.com - Matemática - Semelhança de Triângulos
www.aulasapoio.com  - Matemática -  Semelhança de Triânguloswww.aulasapoio.com  - Matemática -  Semelhança de Triângulos
www.aulasapoio.com - Matemática - Semelhança de Triângulos
 
Função do 2º grau
Função do 2º grauFunção do 2º grau
Função do 2º grau
 
Relações Métricas No Triângulo Retângulo
Relações Métricas No Triângulo RetânguloRelações Métricas No Triângulo Retângulo
Relações Métricas No Triângulo Retângulo
 
Trigonometria no triângulo retângulo
Trigonometria no triângulo retânguloTrigonometria no triângulo retângulo
Trigonometria no triângulo retângulo
 
Relações Métricas no Triângulo Retângulo
Relações Métricas no Triângulo Retângulo Relações Métricas no Triângulo Retângulo
Relações Métricas no Triângulo Retângulo
 
Números inteiros
Números inteirosNúmeros inteiros
Números inteiros
 
Círculo e Circunferência
Círculo e Circunferência Círculo e Circunferência
Círculo e Circunferência
 
Círculo e circunferência
Círculo e circunferênciaCírculo e circunferência
Círculo e circunferência
 
Homotetia.pptx
Homotetia.pptxHomotetia.pptx
Homotetia.pptx
 
Plano cartesiano ppt
Plano cartesiano pptPlano cartesiano ppt
Plano cartesiano ppt
 
Grandezas Proporcionais
Grandezas ProporcionaisGrandezas Proporcionais
Grandezas Proporcionais
 
Áreas de Figuras Planas
Áreas de Figuras PlanasÁreas de Figuras Planas
Áreas de Figuras Planas
 
AULA DE TRIGONOMETRIA
AULA DE TRIGONOMETRIAAULA DE TRIGONOMETRIA
AULA DE TRIGONOMETRIA
 
Polígonos..
Polígonos..Polígonos..
Polígonos..
 
Aula sobre triângulos
Aula sobre triângulosAula sobre triângulos
Aula sobre triângulos
 
Ângulos e poligonos
Ângulos e poligonosÂngulos e poligonos
Ângulos e poligonos
 

Semelhante a Semelhança de triângulos e medição de terrenos

Semelhança de Triângulos, conceito com exemplos
Semelhança de Triângulos, conceito com exemplosSemelhança de Triângulos, conceito com exemplos
Semelhança de Triângulos, conceito com exemplosAndersonSilva984142
 
Relações métricas no triângulo retângulo
Relações métricas no triângulo retânguloRelações métricas no triângulo retângulo
Relações métricas no triângulo retânguloNeil Azevedo
 
Tales Semelhanca
Tales SemelhancaTales Semelhanca
Tales SemelhancaISJ
 
8 ano - Congruência e Semelhança e Angulos em Triangulos.ppt
8 ano - Congruência e Semelhança e  Angulos em Triangulos.ppt8 ano - Congruência e Semelhança e  Angulos em Triangulos.ppt
8 ano - Congruência e Semelhança e Angulos em Triangulos.pptDaniloConceiodaSilva
 
Rela‡äEs M‚Tricas No Tri.RetƒNgulo Exelente
Rela‡äEs M‚Tricas No Tri.RetƒNgulo ExelenteRela‡äEs M‚Tricas No Tri.RetƒNgulo Exelente
Rela‡äEs M‚Tricas No Tri.RetƒNgulo ExelenteAntonio Carneiro
 
Semelhança em figuras planas
Semelhança em figuras planasSemelhança em figuras planas
Semelhança em figuras planasSilvana Santos
 
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Semelhança de Triângulos
 www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Semelhança de Triângulos www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Semelhança de Triângulos
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Semelhança de TriângulosClarice Leclaire
 
www.AulasDeMatematicaApoio.com.br - Matemática - Semelhança de Triângulos
 www.AulasDeMatematicaApoio.com.br  - Matemática -  Semelhança de Triângulos www.AulasDeMatematicaApoio.com.br  - Matemática -  Semelhança de Triângulos
www.AulasDeMatematicaApoio.com.br - Matemática - Semelhança de TriângulosBeatriz Góes
 
Outras aplicações com seno, cosseno e tangente 2
Outras aplicações com seno, cosseno e tangente 2Outras aplicações com seno, cosseno e tangente 2
Outras aplicações com seno, cosseno e tangente 2grpoliart
 
Relações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retânguloRelações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retângulogrpoliart
 
Relações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retânguloRelações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retângulogrpoliart
 
Relações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retânguloRelações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retângulogrpoliart
 
Gaal vetores aplicaçoes e demostraçoes de algumas propriedades.
Gaal  vetores aplicaçoes e demostraçoes de algumas propriedades.Gaal  vetores aplicaçoes e demostraçoes de algumas propriedades.
Gaal vetores aplicaçoes e demostraçoes de algumas propriedades.Ruan Yvis Brito
 
Tales semelhanca 12
Tales semelhanca 12Tales semelhanca 12
Tales semelhanca 12Edenize
 
Tales semelhanca 12
Tales semelhanca 12Tales semelhanca 12
Tales semelhanca 12Edenize
 

Semelhante a Semelhança de triângulos e medição de terrenos (20)

Semelhança de Triângulos, conceito com exemplos
Semelhança de Triângulos, conceito com exemplosSemelhança de Triângulos, conceito com exemplos
Semelhança de Triângulos, conceito com exemplos
 
Mat semelhanca
Mat semelhancaMat semelhanca
Mat semelhanca
 
Relações métricas no triângulo retângulo
Relações métricas no triângulo retânguloRelações métricas no triângulo retângulo
Relações métricas no triângulo retângulo
 
Relações métricas no triângulo retângulo
Relações métricas no triângulo retânguloRelações métricas no triângulo retângulo
Relações métricas no triângulo retângulo
 
Tales Semelhanca
Tales SemelhancaTales Semelhanca
Tales Semelhanca
 
8 ano - Congruência e Semelhança e Angulos em Triangulos.ppt
8 ano - Congruência e Semelhança e  Angulos em Triangulos.ppt8 ano - Congruência e Semelhança e  Angulos em Triangulos.ppt
8 ano - Congruência e Semelhança e Angulos em Triangulos.ppt
 
Rela‡äEs M‚Tricas No Tri.RetƒNgulo Exelente
Rela‡äEs M‚Tricas No Tri.RetƒNgulo ExelenteRela‡äEs M‚Tricas No Tri.RetƒNgulo Exelente
Rela‡äEs M‚Tricas No Tri.RetƒNgulo Exelente
 
Semelhança em figuras planas
Semelhança em figuras planasSemelhança em figuras planas
Semelhança em figuras planas
 
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Semelhança de Triângulos
 www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Semelhança de Triângulos www.AulasDeMatematicanoRJ.Com,Br  - Matemática -  Semelhança de Triângulos
www.AulasDeMatematicanoRJ.Com,Br - Matemática - Semelhança de Triângulos
 
www.AulasDeMatematicaApoio.com.br - Matemática - Semelhança de Triângulos
 www.AulasDeMatematicaApoio.com.br  - Matemática -  Semelhança de Triângulos www.AulasDeMatematicaApoio.com.br  - Matemática -  Semelhança de Triângulos
www.AulasDeMatematicaApoio.com.br - Matemática - Semelhança de Triângulos
 
Outras aplicações com seno, cosseno e tangente 2
Outras aplicações com seno, cosseno e tangente 2Outras aplicações com seno, cosseno e tangente 2
Outras aplicações com seno, cosseno e tangente 2
 
Relações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retânguloRelações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retângulo
 
Relações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retânguloRelações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retângulo
 
Relações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retânguloRelações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retângulo
 
Ef constucoes geometricas
Ef constucoes geometricasEf constucoes geometricas
Ef constucoes geometricas
 
Gaal vetores aplicaçoes e demostraçoes de algumas propriedades.
Gaal  vetores aplicaçoes e demostraçoes de algumas propriedades.Gaal  vetores aplicaçoes e demostraçoes de algumas propriedades.
Gaal vetores aplicaçoes e demostraçoes de algumas propriedades.
 
Tales semelhanca 12
Tales semelhanca 12Tales semelhanca 12
Tales semelhanca 12
 
Tales semelhanca 12
Tales semelhanca 12Tales semelhanca 12
Tales semelhanca 12
 
Volumes e áreas
Volumes e áreasVolumes e áreas
Volumes e áreas
 
Polígonos semelhantes 2014 9 ano gabarito do 2
Polígonos semelhantes 2014 9 ano gabarito do 2Polígonos semelhantes 2014 9 ano gabarito do 2
Polígonos semelhantes 2014 9 ano gabarito do 2
 

Último

AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptxAULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptxGislaineDuresCruz
 
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptxSlides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptxLuizHenriquedeAlmeid6
 
CAMINHOS PARA A PROMOÇÃO DA INLUSÃO E VIDA INDEPENDENTE
CAMINHOS PARA  A PROMOÇÃO DA INLUSÃO E VIDA INDEPENDENTECAMINHOS PARA  A PROMOÇÃO DA INLUSÃO E VIDA INDEPENDENTE
CAMINHOS PARA A PROMOÇÃO DA INLUSÃO E VIDA INDEPENDENTEJoaquim Colôa
 
Jogo de Revisão Terceira Série (Primeiro Trimestre)
Jogo de Revisão Terceira Série (Primeiro Trimestre)Jogo de Revisão Terceira Série (Primeiro Trimestre)
Jogo de Revisão Terceira Série (Primeiro Trimestre)Paula Meyer Piagentini
 
PROPUESTA DE LOGO PARA EL DISTRITO DE MOCHUMI, LLENO DE HISTORIA 200 AÑOS DE ...
PROPUESTA DE LOGO PARA EL DISTRITO DE MOCHUMI, LLENO DE HISTORIA 200 AÑOS DE ...PROPUESTA DE LOGO PARA EL DISTRITO DE MOCHUMI, LLENO DE HISTORIA 200 AÑOS DE ...
PROPUESTA DE LOGO PARA EL DISTRITO DE MOCHUMI, LLENO DE HISTORIA 200 AÑOS DE ...MANUELJESUSVENTURASA
 
PARC 2024 Cadastro de estudante, turma e enturmação - BAHIA (2).pdf
PARC 2024 Cadastro de estudante, turma e enturmação - BAHIA (2).pdfPARC 2024 Cadastro de estudante, turma e enturmação - BAHIA (2).pdf
PARC 2024 Cadastro de estudante, turma e enturmação - BAHIA (2).pdfceajajacu
 
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbv19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbyasminlarissa371
 
EVANGELISMO É MISSÕES ATUALIZADO 2024.pptx
EVANGELISMO É MISSÕES ATUALIZADO 2024.pptxEVANGELISMO É MISSÕES ATUALIZADO 2024.pptx
EVANGELISMO É MISSÕES ATUALIZADO 2024.pptxHenriqueLuciano2
 
Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.
Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.
Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.Mary Alvarenga
 
HORA DO CONTO_BECRE D. CARLOS I_2023_2024
HORA DO CONTO_BECRE D. CARLOS I_2023_2024HORA DO CONTO_BECRE D. CARLOS I_2023_2024
HORA DO CONTO_BECRE D. CARLOS I_2023_2024Sandra Pratas
 
Jogo de Revisão Primeira Série (Primeiro Trimestre)
Jogo de Revisão Primeira  Série (Primeiro Trimestre)Jogo de Revisão Primeira  Série (Primeiro Trimestre)
Jogo de Revisão Primeira Série (Primeiro Trimestre)Paula Meyer Piagentini
 
Ler e compreender 7º ano - Aula 7 - 1º Bimestre
Ler e compreender 7º ano -  Aula 7 - 1º BimestreLer e compreender 7º ano -  Aula 7 - 1º Bimestre
Ler e compreender 7º ano - Aula 7 - 1º BimestreProfaCintiaDosSantos
 
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptxSlides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptxLuizHenriquedeAlmeid6
 
As teorias de Lamarck e Darwin. Evolução
As teorias de Lamarck e Darwin. EvoluçãoAs teorias de Lamarck e Darwin. Evolução
As teorias de Lamarck e Darwin. Evoluçãoprofleticiasantosbio
 
Modernidade perspectiva sobre a África e América
Modernidade perspectiva sobre a África e AméricaModernidade perspectiva sobre a África e América
Modernidade perspectiva sobre a África e Américawilson778875
 
A alimentação na Idade Média era um mosaico de contrastes. Para a elite, banq...
A alimentação na Idade Média era um mosaico de contrastes. Para a elite, banq...A alimentação na Idade Média era um mosaico de contrastes. Para a elite, banq...
A alimentação na Idade Média era um mosaico de contrastes. Para a elite, banq...azulassessoria9
 
Ser Mãe Atípica, uma jornada de amor e aceitação
Ser Mãe Atípica, uma jornada de amor e aceitaçãoSer Mãe Atípica, uma jornada de amor e aceitação
Ser Mãe Atípica, uma jornada de amor e aceitaçãoJayaneSales1
 
Estudo Dirigido de Literatura / Primeira Série do E.M.
Estudo Dirigido de Literatura / Primeira Série do E.M.Estudo Dirigido de Literatura / Primeira Série do E.M.
Estudo Dirigido de Literatura / Primeira Série do E.M.Paula Meyer Piagentini
 
Algumas Curiosidades do uso da Matemática na escrita Phyton
Algumas Curiosidades do uso da Matemática na escrita PhytonAlgumas Curiosidades do uso da Matemática na escrita Phyton
Algumas Curiosidades do uso da Matemática na escrita PhytonRosiniaGonalves
 

Último (20)

AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptxAULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
AULA-06---DIZIMA-PERIODICA_9fdc896dbd1d4cce85a9fbd2e670e62f.pptx
 
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptxSlides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
Slides Lição 3, CPAD, O Céu - o Destino do Cristão, 2Tr24,.pptx
 
CAMINHOS PARA A PROMOÇÃO DA INLUSÃO E VIDA INDEPENDENTE
CAMINHOS PARA  A PROMOÇÃO DA INLUSÃO E VIDA INDEPENDENTECAMINHOS PARA  A PROMOÇÃO DA INLUSÃO E VIDA INDEPENDENTE
CAMINHOS PARA A PROMOÇÃO DA INLUSÃO E VIDA INDEPENDENTE
 
Jogo de Revisão Terceira Série (Primeiro Trimestre)
Jogo de Revisão Terceira Série (Primeiro Trimestre)Jogo de Revisão Terceira Série (Primeiro Trimestre)
Jogo de Revisão Terceira Série (Primeiro Trimestre)
 
PROPUESTA DE LOGO PARA EL DISTRITO DE MOCHUMI, LLENO DE HISTORIA 200 AÑOS DE ...
PROPUESTA DE LOGO PARA EL DISTRITO DE MOCHUMI, LLENO DE HISTORIA 200 AÑOS DE ...PROPUESTA DE LOGO PARA EL DISTRITO DE MOCHUMI, LLENO DE HISTORIA 200 AÑOS DE ...
PROPUESTA DE LOGO PARA EL DISTRITO DE MOCHUMI, LLENO DE HISTORIA 200 AÑOS DE ...
 
PARC 2024 Cadastro de estudante, turma e enturmação - BAHIA (2).pdf
PARC 2024 Cadastro de estudante, turma e enturmação - BAHIA (2).pdfPARC 2024 Cadastro de estudante, turma e enturmação - BAHIA (2).pdf
PARC 2024 Cadastro de estudante, turma e enturmação - BAHIA (2).pdf
 
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbv19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
v19n2s3a25.pdfgcbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb
 
EVANGELISMO É MISSÕES ATUALIZADO 2024.pptx
EVANGELISMO É MISSÕES ATUALIZADO 2024.pptxEVANGELISMO É MISSÕES ATUALIZADO 2024.pptx
EVANGELISMO É MISSÕES ATUALIZADO 2024.pptx
 
Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.
Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.
Poema em homenagem a Escola Santa Maria, pelos seus 37 anos.
 
HORA DO CONTO_BECRE D. CARLOS I_2023_2024
HORA DO CONTO_BECRE D. CARLOS I_2023_2024HORA DO CONTO_BECRE D. CARLOS I_2023_2024
HORA DO CONTO_BECRE D. CARLOS I_2023_2024
 
Jogo de Revisão Primeira Série (Primeiro Trimestre)
Jogo de Revisão Primeira  Série (Primeiro Trimestre)Jogo de Revisão Primeira  Série (Primeiro Trimestre)
Jogo de Revisão Primeira Série (Primeiro Trimestre)
 
“O AMANHÃ EXIGE O MELHOR DE HOJE” _
“O AMANHÃ EXIGE O MELHOR DE HOJE”       _“O AMANHÃ EXIGE O MELHOR DE HOJE”       _
“O AMANHÃ EXIGE O MELHOR DE HOJE” _
 
Ler e compreender 7º ano - Aula 7 - 1º Bimestre
Ler e compreender 7º ano -  Aula 7 - 1º BimestreLer e compreender 7º ano -  Aula 7 - 1º Bimestre
Ler e compreender 7º ano - Aula 7 - 1º Bimestre
 
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptxSlides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
Slides Lição 01, Central Gospel, Os Sinais do Fim dos Tempos 2Tr24.pptx
 
As teorias de Lamarck e Darwin. Evolução
As teorias de Lamarck e Darwin. EvoluçãoAs teorias de Lamarck e Darwin. Evolução
As teorias de Lamarck e Darwin. Evolução
 
Modernidade perspectiva sobre a África e América
Modernidade perspectiva sobre a África e AméricaModernidade perspectiva sobre a África e América
Modernidade perspectiva sobre a África e América
 
A alimentação na Idade Média era um mosaico de contrastes. Para a elite, banq...
A alimentação na Idade Média era um mosaico de contrastes. Para a elite, banq...A alimentação na Idade Média era um mosaico de contrastes. Para a elite, banq...
A alimentação na Idade Média era um mosaico de contrastes. Para a elite, banq...
 
Ser Mãe Atípica, uma jornada de amor e aceitação
Ser Mãe Atípica, uma jornada de amor e aceitaçãoSer Mãe Atípica, uma jornada de amor e aceitação
Ser Mãe Atípica, uma jornada de amor e aceitação
 
Estudo Dirigido de Literatura / Primeira Série do E.M.
Estudo Dirigido de Literatura / Primeira Série do E.M.Estudo Dirigido de Literatura / Primeira Série do E.M.
Estudo Dirigido de Literatura / Primeira Série do E.M.
 
Algumas Curiosidades do uso da Matemática na escrita Phyton
Algumas Curiosidades do uso da Matemática na escrita PhytonAlgumas Curiosidades do uso da Matemática na escrita Phyton
Algumas Curiosidades do uso da Matemática na escrita Phyton
 

Semelhança de triângulos e medição de terrenos

  • 1.
  • 2. • Dois triângulos são semelhantes quando têm os ângulos correspondentes congruentes e os lados homólogos proporcionais.
  • 3. • Considere os triângulos ABC e A’B’C’ a seguir: 12 15
  • 4. • os ângulos correspondentes são congruentes. ˆ A ˆ ˆ ˆ ˆ ˆ A , B B , C C
  • 5. • a razão entre os lados correspondentes é 4 . 5 AB BC AC 4 AB BC AC 5 • Podemos concluir que os triângulos ABC e A’B’C’ são semelhantes e indicamos: ABC~ A B C
  • 6. Denominamos: • ângulos homólogos − os ângulos congruentes de dois triângulos semelhantes. ˆ ˆ ˆ ˆ ˆ ˆ A e A , B eB , C eC
  • 7. Denominamos: • lados homólogos: os lados determinados por vértices homólogos. AB e A B , BC e B C , AC e A C
  • 8. Se uma reta é paralela a um dos lados de um triângulo e intercepta os outros dois em pontos distintos, então o triângulo que ela determina é semelhante ao primeiro. ABC~ DEC
  • 9. Podemos medir um terreno plano com um obstáculo no meio com a ajuda de semelhança de triângulos.
  • 10. Como do ponto A não podemos avistar o ponto B. Precisamos marcar um ponto C em que avistamos os pontos A e B. Morro Terreno visto de cima
  • 11. Fixamos então um marco em C e medimos com a trena as distâncias AC e BC. Vamos supor que os valores encontrados foram os seguintes: • AC = 112 m • BC = 64 m Agora, vamos dividir essas distâncias por um número fixo.
  • 12. Por exemplo: 112 64 14 e 8 8 8 Sobre o segmento AC coloca-se um marco no ponto D onde CD = 14 e no segmento AB coloca- se um marco no ponto E onde CE = 8.
  • 13. O triângulo CDE criado é semelhante e oito vezes menor que o triângulo CAB. Morro Terreno visto de cima
  • 14. Agora, através da trena o segmento DE pode ser medido. Se encontrarmos DE = 16 m, como sabemos que AB é oito vezes maior, podemos concluir que AB = 128 m. E assim, o problema está concluído.
  • 15. Através desse exemplo, podemos perceber que muitos problemas envolvendo medição, seja de um terreno, largura de um rio, altura de um prédio, podem ser resolvidos por intermédio de semelhança de triângulos.
  • 16. • IEZZI, Gelson et al. Matemática: volume único. São Paulo: Atual, 1997. • DOLCE, Osvaldo, POMPEO, José Nicolau. Fundamentos de Matemática Elementar 9: Geometria plana. São Paulo: Atual, 2005.