 Componentes fundamentais de todos os seres vivos,
incluindo os vírus.
 Macromoléculas de elevado peso molecular.
 Formadas pela união de dezenas a centenas de
aminoácidos.
 Proteína = polipeptídeo formado por uma cadeia de
vários aminoácidos (mais de 50).
 Unidade estrutural das proteínas.
 Composição química: C, H, O, N e S (alguns casos).
 Existem 20 tipos diferentes, todos com a mesma
estrutura química básica, se diferenciando apenas pelo
radical (R).
 Podem ser classificados como:
 Aminoácidos essenciais: não são sintetizados
 Aminoácidos não essenciais ou naturais: são sintetizados
Curiosidades:
 Nosso organismo sintetiza 11 dos 20 aminoácidos de que
necessitamos;
 A bactéria Escherichia coli sintetiza todos os aminoácidos de
que necessita.
 AMINOÁCIDOS
 ESTRUTURA DOS AMINOÁCIDOS
Grupo Amina: NH2
Carbono Central: Carbono α
Grupo Carboxila: COOH
Radical: R (Variável para cada um dos 20 tipos de aminoácidos
 ESTRUTURA DOS AMINOÁCIDOS
 LIGAÇÃO PEPTÍDICA
 Ligação entre dois aminoácidos vizinhos ao longo de
toda cadeia proteica.
 Reação de síntese por desidratação.
 Ocorre entre o grupamento amina de um aminoácido e o
grupamento carboxila do aminoácido vizinho.
 Através dela, formam-se:
Dipeptídeo: 2 aminoácidos
Tripeptídeo: 3 aminoácidos...
Polipeptídeo: mais de 20 aminoácidos
Proteína: mais de 50 aminoácidos
 CLASSIFICAÇÃO DAS PROTEÍNAS
Proteínas Simples
• Apenas cadeias de aminoácidos em sua composição.
• Ex.: albumina
Proteínas Compostas
• Cadeias de aminoácidos, ligadas a um grupo prostético*
(carboidrato, lipídio, fósforo, ferro...)
• Ex.: hemoglobina
* Componente de natureza não-proteica, presente em proteínas conjugadas,
que é essencial para a atividade biológica das proteínas. Os grupos
prostéticos podem ser orgânicos (vitamina, carboidrato, lipídio) ou
inorgânicos (íons metálicos) e encontram-se ligados de forma firme à cadeia
polipeptídica, muitas vezes através de ligações covalentes.
 EXEMPLOS DE PROTEÍNAS
Albumina
 Cadeia polipeptídica formada por
609 aminoácidos.
 Elevado valor nutricional.
 Presente principalmente na clara do
ovo, no leite e no sangue.
 Também é sintetizada no fígado
pelos hepatócitos.
 Usada como suplemento alimentar
para aumento da massa muscular.
 Usada em tratamentos relacionados
com queimaduras e hemorragias
graves.
Hemoglobina
 Formada por 4 cadeias
polipeptídicas interligadas, contendo
574 aminoácidos.
 Presente nas hemácias (glóbulos
vermelhos).
 Contém em sua estrutura química o
elemento ferro (grupamento
prostético heme)
 Ligação ao oxigênio e transporte do
mesmo pelas células sanguíneas.
 Uma mutação em um único
aminoácido da cadeia da hemoglobina
causa uma doença genética chamada
de anemia falciforme.
Hemoglobina e a Anemia Falciforme
 Indivíduo afetado possui
hemácias em forma de
foice.
 Deficiência na circulação
dessas células e no
transporte de oxigênio.
 Viscosidade sanguínea,
aglomeração celular,
coágulos, dores agudas,
necessidade constante de
transfusões sanguíneas.
 A ARQUITETURA DAS PROTEÍNAS
As proteínas podem diferir quanto:
 À quantidade de aminoácidos na cadeia
polipeptídica;
 Aos tipos de aminoácidos que compõem a cadeia
polipeptídica;
 À sequência de aminoácidos da cadeia polipeptídica;
 Ao formato da molécula (estrutura tridimensional).
 A ARQUITETURA DAS PROTEÍNAS
1) ESTRUTURA PRIMÁRIA
 Sequência linear de aminoácidos na cadeia polipeptídica.
 Determinada geneticamente.
 Definida pelo código genético presente no DNA de cada
espécie)
 É o “número de identidade” da proteína.
 A ARQUITETURA DAS PROTEÍNAS
1) ESTRUTURA PRIMÁRIA
A simples substituição de um único aminoácido na estrutura
primária de certas proteínas pode prejudicar seu
funcionamento e inclusive mudar a identidade desta proteína. A
anemia falciforme, por exemplo, deve-se ao fato de existir, na
pessoa afetada, moléculas de hemoglobina com morfologia
alterada (forma de foice), prejudicando assim as funções
biológicas dos glóbulos vermelhos no sangue.
IMPORTANTE
 A ARQUITETURA DAS PROTEÍNAS
2) ESTRUTURA SECUNDÁRIA
 Ocorre quando as cadeias
polipeptídicas enrolam-se em
forma de hélice.
 Pontes de hidrogênio ligam
os átomos de H, e de O dos
aminoácidos em intervalos
regulares.
É o “fio do telefone
enrolado”.
 A ARQUITETURA DAS PROTEÍNAS
3) ESTRUTURA TERCIÁRIA
 Os filamentos em forma de hélice da estrutura secundária
dobram-se sobre si mesmos e se mantêm unidos por pontes de
enxofre.
 Define a forma tridimensional, espacial da proteína.
 Está diretamente relacionada com as funções biológicas
exercidas pela proteína.
 Típica de proteínas globulares.
 É o “fio do telefone enrolado sobre si mesmo várias vezes”.
 A ARQUITETURA DAS PROTEÍNAS
3) ESTRUTURA TERCIÁRIA
A ESTRUTURA TERCIÁRIA E A DESNATURAÇÃO PROTEICA
 A desnaturação é uma alteração da estrutura terciária da
proteína, modificando assim a sua estrutura espacial,
tridimensional.
 Pode ser reversível ou não.
 Em alguns casos, a desnaturação provoca perda de função
da proteína.
 Obs: Não há alteração da
sequência de aminoácidos
(estrutura primária) da proteína.
Ex.: clara do ovo aquecida
AGENTES DESNATURANTES
 Aumento de temperatura (cada proteína suporta certa
temperatura máxima, se esse limite é ultrapassado, ela
desnatura);
 Extremos de pH;
 Solventes orgânicos miscíveis com a água (etanol e acetona);
 Solutos (uréia);
 Exposição a detergentes;
 Agitação vigorosa da solução proteica até formação
abundante de espuma.
A ESTRUTURA TERCIÁRIA E A DESNATURAÇÃO PROTEICA
A ESTRUTURA TERCIÁRIA E A DESNATURAÇÃO PROTEICA
 A ARQUITETURA DAS PROTEÍNAS
4) ESTRUTURA QUATERNÁRIA
 Ocorre em algumas proteínas.
 Duas ou mais cadeias polipeptídicas se unem , através de
ligações de pontes de hidrogênio.
 A IMPORTÂNCIA BIOLÓGICA DAS PROTEÍNAS
 As proteínas podem ser agrupadas em várias categorias de
acordo com a sua função. De maneira geral, as proteínas
desempenham nos seres vivos as seguintes funções:
Proteínas Estruturais: participam da estrutura das células e tecidos.
• Colágeno: proteína de alta resistência, encontrada na pele, nas
cartilagens, nos ossos e tendões.
• Actina e Miosina: proteínas contráteis, abundantes nos músculos,
onde participam do mecanismo da contração muscular.
• Queratina: proteína impermeabilizante encontrada na pele, no
cabelo e nas unhas. Evita a dessecação, o que contribui para a
adaptação do animal à vida terrestre.
• Albumina: proteína mais abundante do sangue, relacionada com a
regulação osmótica e com a viscosidade do plasma (porção líquida do
sangue).
Proteínas Hormonais: muitos hormônios de nosso organismo são de
natureza proteica. Podemos caracterizar os hormônios como
substâncias produzidas pelas glândulas endócrinas e que, uma vez
lançadas no sangue, vão estimular ou inibir a atividade de certos
órgãos. É o caso do insulina e do glucagon, hormônios produzidos no
pâncreas e que se relacionam com e manutenção da glicemia. Outros
exemplos: hormônios da tireóide, da hipófise etc.
Proteínas de Defesa: Existem células no organismo capazes de
"reconhecer" proteínas "estranhas" que são chamadas de antígenos.
Na presença dos antígenos o organismo produz proteínas de defesa,
denominados anticorpos. O anticorpo combina-se, quimicamente,
com o antígeno, de maneira a neutralizar seu efeito. A reação
antígeno-anticorpo é altamente específica, o que significa que um
determinado anticorpo neutraliza apenas o antígeno responsável
pela sua formação. Os anticorpos são produzidos por certas células
de corpo (como os linfócitos, um dos tipos de glóbulos brancos do
sangue). São proteínas denominadas gamaglobulinas.
Proteínas de Nutrição: Servem como fontes de aminoácidos,
incluindo os essenciais requeridos pelo homem e outros animais.
Esses aminoácidos podem, ainda, ser oxidados como fonte de
energia no mecanismo respiratório. Nos ovos de muitos animais
(como os das aves) o vitelo, material que se presta à nutrição do
embrião, é particularmente rico em proteínas.
Proteínas de Coagulação: vários são os fatores da coagulação que
possuem natureza proteica, como por exemplo: fibrinogênio,
globulina anti-hemofílica, protrombina, presentes no plasma.
Proteínas de Transporte: Participam do transporte de gases
respiratórios. A principal é a hemoglobina, proteína responsável
pelo transporte de oxigênio no sangue.
Proteínas Enzimáticas: As enzimas são fundamentais como moléculas
reguladoras das reações biológicas. Dentre as proteínas com função
enzimática podemos citar, as lipases, as proteases, as carboidrases
etc.
TODA ENZIMA É UMA PROTEÍNA, MAS NEM TODA PROTEÍNA É
UMA ENZIMA.
IMPORTANTE
 PROTEÍNAS DE DEFESA
ANTICORPOS ANTÍGENOS
x
VACINAS SOROS
 Imunização Ativa;
 Ação Preventiva;
 Constituídas por antígenos
que são o próprio agente
causador da doença,
normalmente atenuados ou
mortos;
 Estimulam nosso sistema
imunológico a produzir
anticorpos contra aqueles
antígenos específicos.
 Imunização Passiva;
 Ação Curativa;
 Constituídos por anticorpos
que ajudarão o sistema
imunológico do organismo a
combater um antígeno
específico.
 Ação mais rápida.
 ENZIMAS
 Tipos especiais de proteínas que atuam como catalisadores
biológicos, acelerando as reações químicas e diminuindo a
energia de ativação das reações que ocorrem no interior das
células.
 ENZIMAS
NOMENCLATURA
1) Radical do nome do substrato + sufixo ASE
Ex.: lactase, lipase, sacarase, amilase.
2) Radical do nome da reação catalisada pela enzima + sufixo ASE
Ex.: hidrolase, polimerase, oxirredutase.
3) Denominações consagradas pelo uso
Ex.: ptialina, pepsina, tripsina.
Obs: Catalase
Importância na degradação do peróxido de hidrogênio (H2O2),
produzido após o metabolismo de gorduras. É um enzima
produzida no fígado.
 ENZIMAS
PROPRIEDADES
1) São catalisadores específicos
Para cada tipo de substrato existe um tipo de enzima.
MODELO CHAVE-FECHADURA
 A enzima possui uma conformação tridimensional que se
encaixa perfeitamente ao seu substrato, na maioria dos casos.
 Essa região de encaixe é chamada de centro ativo (sítio ativo).
 Algumas vezes o centro ativo da enzima não possui a forma
idêntica de seu substrato. Isso só ocorre a enzima se liga ao
substrato. É o que chamamos de encaixe induzido.
MODELO CHAVE-FECHADURA
MODELO ENCAIXE INDUZIDO
 ENZIMAS
PROPRIEDADES
2) Não sofrem modificações durante as reações que, em geral,
são reversíveis.
 FATORES QUE INFLUENCIAM NAS REAÇÕES ENZIMÁTICAS
INIBIDORES E ATIVADORES ENZIMÁTICOS
 Ambos são capazes de se ligar ao centro ativo da enzima.
 Podem complementar a forma de encaixe da enzima ao seu
substrato (ativadores).
Ex.: COFATORES (íons, como Mg+2
, Ca+2
)
COENZIMAS (moléculas orgânicas, como vitaminas (Coenzima
A, formada pela vitamina B5)
 Podem impedir a ligação da enzima ao seu substrato
(inibidores)
Ex.: Cianeto (inibe enzimas da cadeia respiratória, antibióticos
inibem enzimas bacterianas...)
ATIVAÇÃO ENZIMÁTICA
INIBIÇÃO ENZIMÁTICA
 FATORES QUE INFLUENCIAM NAS REAÇÕES ENZIMÁTICAS
CONCENTRAÇÃO DE SUBSTRATO
 Quanto maior a concentração do substrato, maior será a
velocidade da reação enzimática, até um certo ponto.
 A partir deste ponto, as enzimas estarão todas ligadas a um
substrato e a velocidade da reação permanecerá a mesma.
 FATORES QUE INFLUENCIAM NAS REAÇÕES ENZIMÁTICAS
TEMPERATURA
 Cada enzima possui uma temperatura ótima, na qual a
velocidade da reação é máxima.
 A elevação da temperatura acelera as reações químicas porque
aumenta o movimento vibratório das moléculas.
 Para cada tipo de organismo, existe uma temperatura ótima.
 A queda na velocidade da reação após a temperatura ótima
ocorre em função da desnaturação da enzima. Quando aquecida
em excesso, a enzima (proteína) perde sua configuração
tridimensional e se desnatura.
 FATORES QUE INFLUENCIAM NAS REAÇÕES ENZIMÁTICAS
pH
 Cada enzima possui um pH ótimo, no qual a velocidade da
reação é máxima.
 O grau de acidez ou de basicidade do meio interfere na
atividade enzimática.
 Em nosso corpo, temos tecidos e órgãos com diferentes valores
de pH. As enzimas que atuam em cada um desses locais devem ter
como pH ideal o pH da região onde atuam.
Proteinas

Proteinas

  • 2.
     Componentes fundamentaisde todos os seres vivos, incluindo os vírus.  Macromoléculas de elevado peso molecular.  Formadas pela união de dezenas a centenas de aminoácidos.  Proteína = polipeptídeo formado por uma cadeia de vários aminoácidos (mais de 50).
  • 3.
     Unidade estruturaldas proteínas.  Composição química: C, H, O, N e S (alguns casos).  Existem 20 tipos diferentes, todos com a mesma estrutura química básica, se diferenciando apenas pelo radical (R).  Podem ser classificados como:  Aminoácidos essenciais: não são sintetizados  Aminoácidos não essenciais ou naturais: são sintetizados Curiosidades:  Nosso organismo sintetiza 11 dos 20 aminoácidos de que necessitamos;  A bactéria Escherichia coli sintetiza todos os aminoácidos de que necessita.  AMINOÁCIDOS
  • 4.
     ESTRUTURA DOSAMINOÁCIDOS Grupo Amina: NH2 Carbono Central: Carbono α Grupo Carboxila: COOH Radical: R (Variável para cada um dos 20 tipos de aminoácidos
  • 5.
     ESTRUTURA DOSAMINOÁCIDOS
  • 6.
     LIGAÇÃO PEPTÍDICA Ligação entre dois aminoácidos vizinhos ao longo de toda cadeia proteica.  Reação de síntese por desidratação.  Ocorre entre o grupamento amina de um aminoácido e o grupamento carboxila do aminoácido vizinho.  Através dela, formam-se: Dipeptídeo: 2 aminoácidos Tripeptídeo: 3 aminoácidos... Polipeptídeo: mais de 20 aminoácidos Proteína: mais de 50 aminoácidos
  • 8.
     CLASSIFICAÇÃO DASPROTEÍNAS Proteínas Simples • Apenas cadeias de aminoácidos em sua composição. • Ex.: albumina Proteínas Compostas • Cadeias de aminoácidos, ligadas a um grupo prostético* (carboidrato, lipídio, fósforo, ferro...) • Ex.: hemoglobina * Componente de natureza não-proteica, presente em proteínas conjugadas, que é essencial para a atividade biológica das proteínas. Os grupos prostéticos podem ser orgânicos (vitamina, carboidrato, lipídio) ou inorgânicos (íons metálicos) e encontram-se ligados de forma firme à cadeia polipeptídica, muitas vezes através de ligações covalentes.
  • 10.
     EXEMPLOS DEPROTEÍNAS Albumina  Cadeia polipeptídica formada por 609 aminoácidos.  Elevado valor nutricional.  Presente principalmente na clara do ovo, no leite e no sangue.  Também é sintetizada no fígado pelos hepatócitos.  Usada como suplemento alimentar para aumento da massa muscular.  Usada em tratamentos relacionados com queimaduras e hemorragias graves.
  • 11.
    Hemoglobina  Formada por4 cadeias polipeptídicas interligadas, contendo 574 aminoácidos.  Presente nas hemácias (glóbulos vermelhos).  Contém em sua estrutura química o elemento ferro (grupamento prostético heme)  Ligação ao oxigênio e transporte do mesmo pelas células sanguíneas.  Uma mutação em um único aminoácido da cadeia da hemoglobina causa uma doença genética chamada de anemia falciforme.
  • 12.
    Hemoglobina e aAnemia Falciforme  Indivíduo afetado possui hemácias em forma de foice.  Deficiência na circulação dessas células e no transporte de oxigênio.  Viscosidade sanguínea, aglomeração celular, coágulos, dores agudas, necessidade constante de transfusões sanguíneas.
  • 13.
     A ARQUITETURADAS PROTEÍNAS As proteínas podem diferir quanto:  À quantidade de aminoácidos na cadeia polipeptídica;  Aos tipos de aminoácidos que compõem a cadeia polipeptídica;  À sequência de aminoácidos da cadeia polipeptídica;  Ao formato da molécula (estrutura tridimensional).
  • 14.
     A ARQUITETURADAS PROTEÍNAS 1) ESTRUTURA PRIMÁRIA  Sequência linear de aminoácidos na cadeia polipeptídica.  Determinada geneticamente.  Definida pelo código genético presente no DNA de cada espécie)  É o “número de identidade” da proteína.
  • 15.
     A ARQUITETURADAS PROTEÍNAS 1) ESTRUTURA PRIMÁRIA A simples substituição de um único aminoácido na estrutura primária de certas proteínas pode prejudicar seu funcionamento e inclusive mudar a identidade desta proteína. A anemia falciforme, por exemplo, deve-se ao fato de existir, na pessoa afetada, moléculas de hemoglobina com morfologia alterada (forma de foice), prejudicando assim as funções biológicas dos glóbulos vermelhos no sangue. IMPORTANTE
  • 16.
     A ARQUITETURADAS PROTEÍNAS 2) ESTRUTURA SECUNDÁRIA  Ocorre quando as cadeias polipeptídicas enrolam-se em forma de hélice.  Pontes de hidrogênio ligam os átomos de H, e de O dos aminoácidos em intervalos regulares. É o “fio do telefone enrolado”.
  • 17.
     A ARQUITETURADAS PROTEÍNAS 3) ESTRUTURA TERCIÁRIA  Os filamentos em forma de hélice da estrutura secundária dobram-se sobre si mesmos e se mantêm unidos por pontes de enxofre.  Define a forma tridimensional, espacial da proteína.  Está diretamente relacionada com as funções biológicas exercidas pela proteína.  Típica de proteínas globulares.  É o “fio do telefone enrolado sobre si mesmo várias vezes”.
  • 18.
     A ARQUITETURADAS PROTEÍNAS 3) ESTRUTURA TERCIÁRIA
  • 19.
    A ESTRUTURA TERCIÁRIAE A DESNATURAÇÃO PROTEICA  A desnaturação é uma alteração da estrutura terciária da proteína, modificando assim a sua estrutura espacial, tridimensional.  Pode ser reversível ou não.  Em alguns casos, a desnaturação provoca perda de função da proteína.  Obs: Não há alteração da sequência de aminoácidos (estrutura primária) da proteína. Ex.: clara do ovo aquecida
  • 20.
    AGENTES DESNATURANTES  Aumentode temperatura (cada proteína suporta certa temperatura máxima, se esse limite é ultrapassado, ela desnatura);  Extremos de pH;  Solventes orgânicos miscíveis com a água (etanol e acetona);  Solutos (uréia);  Exposição a detergentes;  Agitação vigorosa da solução proteica até formação abundante de espuma.
  • 21.
    A ESTRUTURA TERCIÁRIAE A DESNATURAÇÃO PROTEICA
  • 22.
    A ESTRUTURA TERCIÁRIAE A DESNATURAÇÃO PROTEICA
  • 23.
     A ARQUITETURADAS PROTEÍNAS 4) ESTRUTURA QUATERNÁRIA  Ocorre em algumas proteínas.  Duas ou mais cadeias polipeptídicas se unem , através de ligações de pontes de hidrogênio.
  • 24.
     A IMPORTÂNCIABIOLÓGICA DAS PROTEÍNAS  As proteínas podem ser agrupadas em várias categorias de acordo com a sua função. De maneira geral, as proteínas desempenham nos seres vivos as seguintes funções: Proteínas Estruturais: participam da estrutura das células e tecidos. • Colágeno: proteína de alta resistência, encontrada na pele, nas cartilagens, nos ossos e tendões. • Actina e Miosina: proteínas contráteis, abundantes nos músculos, onde participam do mecanismo da contração muscular. • Queratina: proteína impermeabilizante encontrada na pele, no cabelo e nas unhas. Evita a dessecação, o que contribui para a adaptação do animal à vida terrestre. • Albumina: proteína mais abundante do sangue, relacionada com a regulação osmótica e com a viscosidade do plasma (porção líquida do sangue).
  • 25.
    Proteínas Hormonais: muitoshormônios de nosso organismo são de natureza proteica. Podemos caracterizar os hormônios como substâncias produzidas pelas glândulas endócrinas e que, uma vez lançadas no sangue, vão estimular ou inibir a atividade de certos órgãos. É o caso do insulina e do glucagon, hormônios produzidos no pâncreas e que se relacionam com e manutenção da glicemia. Outros exemplos: hormônios da tireóide, da hipófise etc. Proteínas de Defesa: Existem células no organismo capazes de "reconhecer" proteínas "estranhas" que são chamadas de antígenos. Na presença dos antígenos o organismo produz proteínas de defesa, denominados anticorpos. O anticorpo combina-se, quimicamente, com o antígeno, de maneira a neutralizar seu efeito. A reação antígeno-anticorpo é altamente específica, o que significa que um determinado anticorpo neutraliza apenas o antígeno responsável pela sua formação. Os anticorpos são produzidos por certas células de corpo (como os linfócitos, um dos tipos de glóbulos brancos do sangue). São proteínas denominadas gamaglobulinas.
  • 26.
    Proteínas de Nutrição:Servem como fontes de aminoácidos, incluindo os essenciais requeridos pelo homem e outros animais. Esses aminoácidos podem, ainda, ser oxidados como fonte de energia no mecanismo respiratório. Nos ovos de muitos animais (como os das aves) o vitelo, material que se presta à nutrição do embrião, é particularmente rico em proteínas. Proteínas de Coagulação: vários são os fatores da coagulação que possuem natureza proteica, como por exemplo: fibrinogênio, globulina anti-hemofílica, protrombina, presentes no plasma. Proteínas de Transporte: Participam do transporte de gases respiratórios. A principal é a hemoglobina, proteína responsável pelo transporte de oxigênio no sangue.
  • 27.
    Proteínas Enzimáticas: Asenzimas são fundamentais como moléculas reguladoras das reações biológicas. Dentre as proteínas com função enzimática podemos citar, as lipases, as proteases, as carboidrases etc. TODA ENZIMA É UMA PROTEÍNA, MAS NEM TODA PROTEÍNA É UMA ENZIMA. IMPORTANTE
  • 28.
     PROTEÍNAS DEDEFESA ANTICORPOS ANTÍGENOS x VACINAS SOROS  Imunização Ativa;  Ação Preventiva;  Constituídas por antígenos que são o próprio agente causador da doença, normalmente atenuados ou mortos;  Estimulam nosso sistema imunológico a produzir anticorpos contra aqueles antígenos específicos.  Imunização Passiva;  Ação Curativa;  Constituídos por anticorpos que ajudarão o sistema imunológico do organismo a combater um antígeno específico.  Ação mais rápida.
  • 29.
     ENZIMAS  Tiposespeciais de proteínas que atuam como catalisadores biológicos, acelerando as reações químicas e diminuindo a energia de ativação das reações que ocorrem no interior das células.
  • 30.
     ENZIMAS NOMENCLATURA 1) Radicaldo nome do substrato + sufixo ASE Ex.: lactase, lipase, sacarase, amilase. 2) Radical do nome da reação catalisada pela enzima + sufixo ASE Ex.: hidrolase, polimerase, oxirredutase. 3) Denominações consagradas pelo uso Ex.: ptialina, pepsina, tripsina. Obs: Catalase Importância na degradação do peróxido de hidrogênio (H2O2), produzido após o metabolismo de gorduras. É um enzima produzida no fígado.
  • 31.
     ENZIMAS PROPRIEDADES 1) Sãocatalisadores específicos Para cada tipo de substrato existe um tipo de enzima. MODELO CHAVE-FECHADURA  A enzima possui uma conformação tridimensional que se encaixa perfeitamente ao seu substrato, na maioria dos casos.  Essa região de encaixe é chamada de centro ativo (sítio ativo).  Algumas vezes o centro ativo da enzima não possui a forma idêntica de seu substrato. Isso só ocorre a enzima se liga ao substrato. É o que chamamos de encaixe induzido.
  • 32.
  • 33.
  • 34.
     ENZIMAS PROPRIEDADES 2) Nãosofrem modificações durante as reações que, em geral, são reversíveis.
  • 35.
     FATORES QUEINFLUENCIAM NAS REAÇÕES ENZIMÁTICAS INIBIDORES E ATIVADORES ENZIMÁTICOS  Ambos são capazes de se ligar ao centro ativo da enzima.  Podem complementar a forma de encaixe da enzima ao seu substrato (ativadores). Ex.: COFATORES (íons, como Mg+2 , Ca+2 ) COENZIMAS (moléculas orgânicas, como vitaminas (Coenzima A, formada pela vitamina B5)  Podem impedir a ligação da enzima ao seu substrato (inibidores) Ex.: Cianeto (inibe enzimas da cadeia respiratória, antibióticos inibem enzimas bacterianas...)
  • 36.
  • 37.
  • 38.
     FATORES QUEINFLUENCIAM NAS REAÇÕES ENZIMÁTICAS CONCENTRAÇÃO DE SUBSTRATO  Quanto maior a concentração do substrato, maior será a velocidade da reação enzimática, até um certo ponto.  A partir deste ponto, as enzimas estarão todas ligadas a um substrato e a velocidade da reação permanecerá a mesma.
  • 39.
     FATORES QUEINFLUENCIAM NAS REAÇÕES ENZIMÁTICAS TEMPERATURA  Cada enzima possui uma temperatura ótima, na qual a velocidade da reação é máxima.  A elevação da temperatura acelera as reações químicas porque aumenta o movimento vibratório das moléculas.  Para cada tipo de organismo, existe uma temperatura ótima.
  • 40.
     A quedana velocidade da reação após a temperatura ótima ocorre em função da desnaturação da enzima. Quando aquecida em excesso, a enzima (proteína) perde sua configuração tridimensional e se desnatura.
  • 41.
     FATORES QUEINFLUENCIAM NAS REAÇÕES ENZIMÁTICAS pH  Cada enzima possui um pH ótimo, no qual a velocidade da reação é máxima.  O grau de acidez ou de basicidade do meio interfere na atividade enzimática.  Em nosso corpo, temos tecidos e órgãos com diferentes valores de pH. As enzimas que atuam em cada um desses locais devem ter como pH ideal o pH da região onde atuam.