SlideShare uma empresa Scribd logo
1 de 6
COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III
1ª SÉRIE – MATEMÁTICA I – PROFESSOR ROBSON TADEU
ALUNO(A): ___________________________________________
Lista de Exercícios – Equação do 2º Grau
1)Quais das equações abaixo são do 2º grau?
( ) x – 5x + 6 = 0 ( ) 2x³ - 8x² - 2 = 0
( ) x² - 7x + 10 = 0 ( ) 4x² - 1 = 0
( ) 0x² + 4x – 3 = 0 ( ) x² - 7x
2)Classifique as equações do 2º grau em completas ou incompletas e determine os coeficientes a,
b, c.
a) x² - 7x + 10 = 0
b) 4x² - 4x +1 = 0
c) –x² - 7x = 0
d) x² - 16 = 0
e) x² + 0x + 0 = 0
3)Resolva as equações do 2º grau:
a) 4x² - 36 = 0
b) 7x² - 21 = 0
c) x² + 9 = 0
d) x² - 49 = 0
e) 5x² - 20 = 0
04. (FUVEST) A soma dos valores de m para os quais x=1 é raiz da equação:
x² + (1 + 5m - 3m²)x + (m² + 1) = 0 ; é igual a
5) Sabe-se que a equação 5x2
- 4x + 2m = 0 tem duas raízes reais e diferente. Nessas condições,
determine o valor de ‘m’.
6) Determine o valor de ‘p’ na equação x2
– px + 9 = 0 para que essa equação tenha um única raiz
real.
7) Determine o valor de ‘m’ na equação 12x2
– mx – 1 = 0 , de modo que a soma das raízes seja 5/6
8) O produto das raízes da equação 8x2
– 9x + c = 0 é igual a a 3/4. Calcular o valor do coeficiente
c.
9) Podemos afirmar que 4 é raiz para a equação 8x2
– 9x + 8 = 64? Justifique a sua resposta,
apresentando o cálculo.
10) Em um retângulo, a área pode ser obtida multiplicando-se o comprimento pela largura. Em
determinado retângulo que tem 54 cm² de área, o comprimento é expresso por (x – 1) cm, enquanto
a largura é expressa por (x – 4) cm. Nessas condições, determine o valor de x.
11) A soma de um número com o seu quadrado é 90. Calcule esses números.
12) O quadrado de um número aumentado de 25 é igual a dez vezes esse número. Calcule esse
número.
13) O triplo de um número, diferente de zero, é igual ao seu quadrado. Qual é esse número?
14) A equação (x – 2)(x + 2) = 2x – 9:
a) admite duas raízes reais e iguais.
b) admite duas raízes reais e opostas.
c) admite apenas uma raiz.
d) não admite raízes reais.
15) monte uma equação do 2º que tenha como raízes 8 e -1
Lista de Exercícios - Gabarito
1)Quais das equações abaixo são do 2º grau?
( ) x – 5x + 6 = 0 ( ) 2x³ - 8x² - 2 = 0
( x ) x² - 7x + 10 = 0 ( x ) 4x² - 1 = 0
( ) 0x² + 4x – 3 = 0 ( x ) x² - 7x
2)Classifique as equações do 2º grau em completas ou incompletas e determine os coeficientes a, b, c.
a) x² - 7x + 10 = 0 completa a = 1 b= -7 e c = 10
b) 4x² - 4x +1 = 0 completa a = 4 b= -4 e c = 1
c) –x² - 7x = 0 incompleta a = - 1 b= -7 e c = 0
d) x² - 16 = 0 incompleta a = 1 b= 0 e c = - 16
e) x² + 0x + 0 = 0 incompleta a = 1 b= 0 e c = 10
3)Resolva as equações do 2º grau:
a) 4x² - 36 = 0 b) 7x² - 21 = 0 c) x² + 9 = 0
4x² = 36 7x² = 21 x² = -9
x² = 9 x² = 3 x = R∉−± 9
x = 9± x = 3±
x = 3±
S= { }3;3− S = { }3± S = }{
• Equações do 2º grau do tipo ax² + c = 0, com b = 0, você encontra duas raízes opostas.
d) x² - 49 = 0 e) 5x² - 20 = 0 f) 5.(x² - 1) = 4.(x² + 1)
x = 49± x² = 20/5 5x² - 5 = 4 x² + 4
x = ± 7 x² = 4 5 x² - 4 x² = 4 + 5
S = {-7, 7} x = ± 2 x² = 9
S = {-2 , 2} x = ± 3
S = {- 3, 3}
g) x² - 7x = 0 h) 3x² - 4x = 0 i) x² - 3 x = 0
x.(x – 7) = 0 x.(3x – 4) = 0 x.(x - 3 ) = 0
x = 0 ou x – 7 = 0 x = 0 ou 3x – 4 = 0 x = 0 ou x - 3 = 0
x = 7 x =
3
4
x = 3
S = { }7;0 S =






3
4
;0 S = { }3;0
• Equações do 2º grau incompletas do tipo ax² + bx = 0, com c = 0, você deve colocar x em evidência e
aplicar a propriedade: se um produto é nulo,ou seja zero, pelo menos um dos fatores é zero.
4) 1² + (1 + 5m - 3m²).1 + (m² + 1) = 0
1 + 1 + 5m - 3m² + m² + 1 = 0
- 2m² + 5m + 3 = 0
Aplicando Bháskara
22
1
2
1 2
5 5 4( 2).34 5 25 24 5 1 5 1
2 2.( 2) 4 4 4
5 1 4
1
4 4
5 1 6 3
4 4 2
:
3 2 3 5
1
2 2 2 2
b b ac
x
a
x
x
soma
x x
− ± − −− ± − − ± − − ± − ±
= = = = =
− − − −
− + −
= = =
− −
− ± −
= = =
− −
+ = + = + =
5) condição: que delta seja maior que zero:
a= 5; b= - 4; c = 2m
2
0
4
16 4.5.2 0
40 16
16 2
40 5
b ac o
m
m
m
<
− <
− <
− < −
> =
<
m < 2/5.
6) condição: que delta seja igual a zero:
a= 1; b= p; c = 9
ao multiplicar por (-1) trocar todos
os sinais, inclusive da desigualdade
2
0
4 0
² 4.1.9 0
² 36
6
b ac
p
p
p
=
− =
− =
=
= ±
<
7) m = 10.
8) c = 6.
9) não, pois se substituirmos o valor da raiz, x = 4, obtermos:
8x
2
– 9x + 8 = 64
8 . 4
2
– 9 . 4 + 8 = 64
8 . 16 – 9 . 4 + 8 = 64
108 – 36 + 8 = 64
80 ≠ 64
Logo 4 não é solução para a equação 8x
2
– 9x + 8 = 64
10) 10
11) -10 e 9
12) 5
13) 3
14) d
15) x² - 7x -8 = 0
2
0
4 0
² 4.1.9 0
² 36
6
b ac
p
p
p
=
− =
− =
=
= ±
<
7) m = 10.
8) c = 6.
9) não, pois se substituirmos o valor da raiz, x = 4, obtermos:
8x
2
– 9x + 8 = 64
8 . 4
2
– 9 . 4 + 8 = 64
8 . 16 – 9 . 4 + 8 = 64
108 – 36 + 8 = 64
80 ≠ 64
Logo 4 não é solução para a equação 8x
2
– 9x + 8 = 64
10) 10
11) -10 e 9
12) 5
13) 3
14) d
15) x² - 7x -8 = 0

Mais conteúdo relacionado

Mais procurados

Funcao Exponencial 1
Funcao Exponencial 1Funcao Exponencial 1
Funcao Exponencial 1tioheraclito
 
Exercícios função de 2° grau 2p
Exercícios função de 2° grau 2pExercícios função de 2° grau 2p
Exercícios função de 2° grau 2pJean Silveira
 
Power point equacao do 2 grau por fatoracao
Power point equacao do 2 grau por fatoracaoPower point equacao do 2 grau por fatoracao
Power point equacao do 2 grau por fatoracaodebyrivoiro
 
Prova de matemática 9 ano prof thiago versao 1 8 copias
Prova de matemática 9 ano  prof thiago versao 1   8 copiasProva de matemática 9 ano  prof thiago versao 1   8 copias
Prova de matemática 9 ano prof thiago versao 1 8 copiasabbeg
 
Listão 9º ano - Função de 1º e 2º grau e Probabilidade
Listão 9º ano - Função de 1º e 2º grau e ProbabilidadeListão 9º ano - Função de 1º e 2º grau e Probabilidade
Listão 9º ano - Função de 1º e 2º grau e ProbabilidadeAndréia Rodrigues
 
Exercícios de equação do primeiro grau
Exercícios de equação do primeiro grauExercícios de equação do primeiro grau
Exercícios de equação do primeiro grauAriosvaldo Carvalho
 
Resolucao dos exercicios_integrais
Resolucao dos exercicios_integraisResolucao dos exercicios_integrais
Resolucao dos exercicios_integraisWilson Kushima
 
Equacao do 2 grau
Equacao do 2 grauEquacao do 2 grau
Equacao do 2 graucon_seguir
 
Exercícios de Função 2 grau.doc
Exercícios de Função 2 grau.docExercícios de Função 2 grau.doc
Exercícios de Função 2 grau.docalenumeros
 

Mais procurados (19)

Equaçao do 2 grau
Equaçao do 2 grauEquaçao do 2 grau
Equaçao do 2 grau
 
Funcao Exponencial 1
Funcao Exponencial 1Funcao Exponencial 1
Funcao Exponencial 1
 
lista-de-exercicios-funcao-exponencial
lista-de-exercicios-funcao-exponenciallista-de-exercicios-funcao-exponencial
lista-de-exercicios-funcao-exponencial
 
Exercícios função de 2° grau 2p
Exercícios função de 2° grau 2pExercícios função de 2° grau 2p
Exercícios função de 2° grau 2p
 
Power point equacao do 2 grau por fatoracao
Power point equacao do 2 grau por fatoracaoPower point equacao do 2 grau por fatoracao
Power point equacao do 2 grau por fatoracao
 
Ft eq do 2º grau
Ft eq do 2º grauFt eq do 2º grau
Ft eq do 2º grau
 
Prova de matemática 9 ano prof thiago versao 1 8 copias
Prova de matemática 9 ano  prof thiago versao 1   8 copiasProva de matemática 9 ano  prof thiago versao 1   8 copias
Prova de matemática 9 ano prof thiago versao 1 8 copias
 
Listão 9º ano - Função de 1º e 2º grau e Probabilidade
Listão 9º ano - Função de 1º e 2º grau e ProbabilidadeListão 9º ano - Função de 1º e 2º grau e Probabilidade
Listão 9º ano - Função de 1º e 2º grau e Probabilidade
 
Exercício sobre Pré-Imagem
Exercício sobre Pré-ImagemExercício sobre Pré-Imagem
Exercício sobre Pré-Imagem
 
88 equação do 1º grau
88 equação do 1º grau88 equação do 1º grau
88 equação do 1º grau
 
Exercícios de equação do primeiro grau
Exercícios de equação do primeiro grauExercícios de equação do primeiro grau
Exercícios de equação do primeiro grau
 
Equação do 2° grau ii
Equação do 2° grau iiEquação do 2° grau ii
Equação do 2° grau ii
 
Resolucao dos exercicios_integrais
Resolucao dos exercicios_integraisResolucao dos exercicios_integrais
Resolucao dos exercicios_integrais
 
Função quadrática - definições e exercícios - AP 12
Função quadrática - definições e exercícios - AP 12Função quadrática - definições e exercícios - AP 12
Função quadrática - definições e exercícios - AP 12
 
Equacao do 2 grau
Equacao do 2 grauEquacao do 2 grau
Equacao do 2 grau
 
Exercícios de Função 2 grau.doc
Exercícios de Função 2 grau.docExercícios de Função 2 grau.doc
Exercícios de Função 2 grau.doc
 
Revisao udesc
Revisao udescRevisao udesc
Revisao udesc
 
Exercicios equação de 2º grau
Exercicios   equação de 2º grauExercicios   equação de 2º grau
Exercicios equação de 2º grau
 
PROVAS EMEF
PROVAS EMEFPROVAS EMEF
PROVAS EMEF
 

Semelhante a Prof robsonlistaeq2graurevprova2012

Exercicios basicos conjuntos numéricos
Exercicios basicos   conjuntos numéricosExercicios basicos   conjuntos numéricos
Exercicios basicos conjuntos numéricosAndré Luís Nogueira
 
Matemática 6 9 apresent
Matemática 6 9 apresentMatemática 6 9 apresent
Matemática 6 9 apresentRoseny90
 
2317 equacao-do-2c2ba-grau-8c2aa-ef
2317 equacao-do-2c2ba-grau-8c2aa-ef2317 equacao-do-2c2ba-grau-8c2aa-ef
2317 equacao-do-2c2ba-grau-8c2aa-efelainepalasio
 
Simulado 9 ano veritas 19 04 atual
Simulado 9 ano veritas 19 04 atualSimulado 9 ano veritas 19 04 atual
Simulado 9 ano veritas 19 04 atualAllan Filgueira
 
Módulo 01 - 9 ano- Matemática / Ens.Fundamental
Módulo 01 - 9 ano- Matemática  / Ens.FundamentalMódulo 01 - 9 ano- Matemática  / Ens.Fundamental
Módulo 01 - 9 ano- Matemática / Ens.FundamentalAdriana De Moraes
 
Doc matematica _687904612
Doc matematica _687904612Doc matematica _687904612
Doc matematica _687904612Manuel Lucrecio
 
2 lista 1 tri - 9 ano - cópia
2 lista   1 tri - 9 ano - cópia2 lista   1 tri - 9 ano - cópia
2 lista 1 tri - 9 ano - cópiaAdriano Capilupe
 
Equação do primeiro e segundo grau1
Equação do primeiro e segundo grau1Equação do primeiro e segundo grau1
Equação do primeiro e segundo grau1Alexandre Bonifácio
 
EquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
EquaçãO Do 2º Grau Autor Antonio Carlos C BarrosoEquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
EquaçãO Do 2º Grau Autor Antonio Carlos C BarrosoAntonio Carneiro
 
Exercicios resolvidos
Exercicios resolvidosExercicios resolvidos
Exercicios resolvidostexa0111
 
Apostila bastante completa de matematica
Apostila bastante completa de matematicaApostila bastante completa de matematica
Apostila bastante completa de matematicaRoberio Figueiredo
 

Semelhante a Prof robsonlistaeq2graurevprova2012 (20)

Exercicios basicos conjuntos numéricos
Exercicios basicos   conjuntos numéricosExercicios basicos   conjuntos numéricos
Exercicios basicos conjuntos numéricos
 
Equacoes grau
Equacoes  grauEquacoes  grau
Equacoes grau
 
Matemática 6 9 apresent
Matemática 6 9 apresentMatemática 6 9 apresent
Matemática 6 9 apresent
 
Provas
ProvasProvas
Provas
 
2317 equacao-do-2c2ba-grau-8c2aa-ef
2317 equacao-do-2c2ba-grau-8c2aa-ef2317 equacao-do-2c2ba-grau-8c2aa-ef
2317 equacao-do-2c2ba-grau-8c2aa-ef
 
Simulado 9 ano veritas 19 04 atual
Simulado 9 ano veritas 19 04 atualSimulado 9 ano veritas 19 04 atual
Simulado 9 ano veritas 19 04 atual
 
Equação do segundo grau parte 1
Equação do segundo grau parte 1Equação do segundo grau parte 1
Equação do segundo grau parte 1
 
1 lista 2 bim 9ano
1 lista 2 bim 9ano1 lista 2 bim 9ano
1 lista 2 bim 9ano
 
Módulo 01 - 9 ano- Matemática / Ens.Fundamental
Módulo 01 - 9 ano- Matemática  / Ens.FundamentalMódulo 01 - 9 ano- Matemática  / Ens.Fundamental
Módulo 01 - 9 ano- Matemática / Ens.Fundamental
 
Doc matematica _687904612
Doc matematica _687904612Doc matematica _687904612
Doc matematica _687904612
 
2 lista 1 tri - 9 ano
2 lista   1 tri - 9 ano2 lista   1 tri - 9 ano
2 lista 1 tri - 9 ano
 
1 lista 1 tri - 9 ano
1 lista   1 tri - 9 ano1 lista   1 tri - 9 ano
1 lista 1 tri - 9 ano
 
1 lista 1 tri - 9 ano
1 lista   1 tri - 9 ano1 lista   1 tri - 9 ano
1 lista 1 tri - 9 ano
 
2 lista 1 tri - 9 ano - cópia
2 lista   1 tri - 9 ano - cópia2 lista   1 tri - 9 ano - cópia
2 lista 1 tri - 9 ano - cópia
 
matematica
matematica matematica
matematica
 
Equação do primeiro e segundo grau1
Equação do primeiro e segundo grau1Equação do primeiro e segundo grau1
Equação do primeiro e segundo grau1
 
EquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
EquaçãO Do 2º Grau Autor Antonio Carlos C BarrosoEquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
EquaçãO Do 2º Grau Autor Antonio Carlos C Barroso
 
Exercicios resolvidos
Exercicios resolvidosExercicios resolvidos
Exercicios resolvidos
 
Solução de equaes de 2º grau
Solução de equaes de 2º grauSolução de equaes de 2º grau
Solução de equaes de 2º grau
 
Apostila bastante completa de matematica
Apostila bastante completa de matematicaApostila bastante completa de matematica
Apostila bastante completa de matematica
 

Último

A Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das MãesA Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das MãesMary Alvarenga
 
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptxSlide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptxconcelhovdragons
 
Sociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autoresSociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autoresaulasgege
 
geografia 7 ano - relevo, altitude, topos do mundo
geografia 7 ano - relevo, altitude, topos do mundogeografia 7 ano - relevo, altitude, topos do mundo
geografia 7 ano - relevo, altitude, topos do mundonialb
 
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024Sandra Pratas
 
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptxApostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptxIsabelaRafael2
 
Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...
Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...
Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...LizanSantos1
 
Educação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SPEducação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SPanandatss1
 
Currículo escolar na perspectiva da educação inclusiva.pdf
Currículo escolar na perspectiva da educação inclusiva.pdfCurrículo escolar na perspectiva da educação inclusiva.pdf
Currículo escolar na perspectiva da educação inclusiva.pdfIedaGoethe
 
02. Informática - Windows 10 apostila completa.pdf
02. Informática - Windows 10 apostila completa.pdf02. Informática - Windows 10 apostila completa.pdf
02. Informática - Windows 10 apostila completa.pdfJorge Andrade
 
cartilha-pdi-plano-de-desenvolvimento-individual-do-estudante.pdf
cartilha-pdi-plano-de-desenvolvimento-individual-do-estudante.pdfcartilha-pdi-plano-de-desenvolvimento-individual-do-estudante.pdf
cartilha-pdi-plano-de-desenvolvimento-individual-do-estudante.pdfIedaGoethe
 
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chaveAula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chaveaulasgege
 
Habilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasHabilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasCassio Meira Jr.
 
PPT _ Módulo 3_Direito Comercial_2023_2024.pdf
PPT _ Módulo 3_Direito Comercial_2023_2024.pdfPPT _ Módulo 3_Direito Comercial_2023_2024.pdf
PPT _ Módulo 3_Direito Comercial_2023_2024.pdfAnaGonalves804156
 
Prática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGISPrática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGISVitor Vieira Vasconcelos
 
Atividade com a letra da música Meu Abrigo
Atividade com a letra da música Meu AbrigoAtividade com a letra da música Meu Abrigo
Atividade com a letra da música Meu AbrigoMary Alvarenga
 
UFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfUFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfManuais Formação
 
Mesoamérica.Astecas,inca,maias , olmecas
Mesoamérica.Astecas,inca,maias , olmecasMesoamérica.Astecas,inca,maias , olmecas
Mesoamérica.Astecas,inca,maias , olmecasRicardo Diniz campos
 
Aula 13 8º Ano Cap.04 Revolução Francesa.pptx
Aula 13 8º Ano Cap.04 Revolução Francesa.pptxAula 13 8º Ano Cap.04 Revolução Francesa.pptx
Aula 13 8º Ano Cap.04 Revolução Francesa.pptxBiancaNogueira42
 
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdfDIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdfIedaGoethe
 

Último (20)

A Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das MãesA Arte de Escrever Poemas - Dia das Mães
A Arte de Escrever Poemas - Dia das Mães
 
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptxSlide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
Slide de exemplo sobre o Sítio do Pica Pau Amarelo.pptx
 
Sociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autoresSociologia Contemporânea - Uma Abordagem dos principais autores
Sociologia Contemporânea - Uma Abordagem dos principais autores
 
geografia 7 ano - relevo, altitude, topos do mundo
geografia 7 ano - relevo, altitude, topos do mundogeografia 7 ano - relevo, altitude, topos do mundo
geografia 7 ano - relevo, altitude, topos do mundo
 
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
HORA DO CONTO3_BECRE D. CARLOS I_2023_2024
 
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptxApostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
Apostila da CONQUISTA_ para o 6ANO_LP_UNI1.pptx
 
Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...
Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...
Intolerância religiosa. Trata-se de uma apresentação sobre o respeito a diver...
 
Educação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SPEducação São Paulo centro de mídias da SP
Educação São Paulo centro de mídias da SP
 
Currículo escolar na perspectiva da educação inclusiva.pdf
Currículo escolar na perspectiva da educação inclusiva.pdfCurrículo escolar na perspectiva da educação inclusiva.pdf
Currículo escolar na perspectiva da educação inclusiva.pdf
 
02. Informática - Windows 10 apostila completa.pdf
02. Informática - Windows 10 apostila completa.pdf02. Informática - Windows 10 apostila completa.pdf
02. Informática - Windows 10 apostila completa.pdf
 
cartilha-pdi-plano-de-desenvolvimento-individual-do-estudante.pdf
cartilha-pdi-plano-de-desenvolvimento-individual-do-estudante.pdfcartilha-pdi-plano-de-desenvolvimento-individual-do-estudante.pdf
cartilha-pdi-plano-de-desenvolvimento-individual-do-estudante.pdf
 
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chaveAula - 2º Ano - Cultura e Sociedade - Conceitos-chave
Aula - 2º Ano - Cultura e Sociedade - Conceitos-chave
 
Habilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e EspecíficasHabilidades Motoras Básicas e Específicas
Habilidades Motoras Básicas e Específicas
 
PPT _ Módulo 3_Direito Comercial_2023_2024.pdf
PPT _ Módulo 3_Direito Comercial_2023_2024.pdfPPT _ Módulo 3_Direito Comercial_2023_2024.pdf
PPT _ Módulo 3_Direito Comercial_2023_2024.pdf
 
Prática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGISPrática de interpretação de imagens de satélite no QGIS
Prática de interpretação de imagens de satélite no QGIS
 
Atividade com a letra da música Meu Abrigo
Atividade com a letra da música Meu AbrigoAtividade com a letra da música Meu Abrigo
Atividade com a letra da música Meu Abrigo
 
UFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdfUFCD_10392_Intervenção em populações de risco_índice .pdf
UFCD_10392_Intervenção em populações de risco_índice .pdf
 
Mesoamérica.Astecas,inca,maias , olmecas
Mesoamérica.Astecas,inca,maias , olmecasMesoamérica.Astecas,inca,maias , olmecas
Mesoamérica.Astecas,inca,maias , olmecas
 
Aula 13 8º Ano Cap.04 Revolução Francesa.pptx
Aula 13 8º Ano Cap.04 Revolução Francesa.pptxAula 13 8º Ano Cap.04 Revolução Francesa.pptx
Aula 13 8º Ano Cap.04 Revolução Francesa.pptx
 
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdfDIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
DIA DO INDIO - FLIPBOOK PARA IMPRIMIR.pdf
 

Prof robsonlistaeq2graurevprova2012

  • 1. COLÉGIO PEDRO II - CAMPUS SÃO CRISTÓVÃO III 1ª SÉRIE – MATEMÁTICA I – PROFESSOR ROBSON TADEU ALUNO(A): ___________________________________________ Lista de Exercícios – Equação do 2º Grau 1)Quais das equações abaixo são do 2º grau? ( ) x – 5x + 6 = 0 ( ) 2x³ - 8x² - 2 = 0 ( ) x² - 7x + 10 = 0 ( ) 4x² - 1 = 0 ( ) 0x² + 4x – 3 = 0 ( ) x² - 7x 2)Classifique as equações do 2º grau em completas ou incompletas e determine os coeficientes a, b, c. a) x² - 7x + 10 = 0 b) 4x² - 4x +1 = 0 c) –x² - 7x = 0 d) x² - 16 = 0 e) x² + 0x + 0 = 0 3)Resolva as equações do 2º grau: a) 4x² - 36 = 0 b) 7x² - 21 = 0 c) x² + 9 = 0 d) x² - 49 = 0 e) 5x² - 20 = 0 04. (FUVEST) A soma dos valores de m para os quais x=1 é raiz da equação: x² + (1 + 5m - 3m²)x + (m² + 1) = 0 ; é igual a 5) Sabe-se que a equação 5x2 - 4x + 2m = 0 tem duas raízes reais e diferente. Nessas condições, determine o valor de ‘m’. 6) Determine o valor de ‘p’ na equação x2 – px + 9 = 0 para que essa equação tenha um única raiz real. 7) Determine o valor de ‘m’ na equação 12x2 – mx – 1 = 0 , de modo que a soma das raízes seja 5/6 8) O produto das raízes da equação 8x2 – 9x + c = 0 é igual a a 3/4. Calcular o valor do coeficiente c. 9) Podemos afirmar que 4 é raiz para a equação 8x2 – 9x + 8 = 64? Justifique a sua resposta, apresentando o cálculo. 10) Em um retângulo, a área pode ser obtida multiplicando-se o comprimento pela largura. Em determinado retângulo que tem 54 cm² de área, o comprimento é expresso por (x – 1) cm, enquanto a largura é expressa por (x – 4) cm. Nessas condições, determine o valor de x. 11) A soma de um número com o seu quadrado é 90. Calcule esses números. 12) O quadrado de um número aumentado de 25 é igual a dez vezes esse número. Calcule esse número.
  • 2. 13) O triplo de um número, diferente de zero, é igual ao seu quadrado. Qual é esse número? 14) A equação (x – 2)(x + 2) = 2x – 9: a) admite duas raízes reais e iguais. b) admite duas raízes reais e opostas. c) admite apenas uma raiz. d) não admite raízes reais. 15) monte uma equação do 2º que tenha como raízes 8 e -1
  • 3. Lista de Exercícios - Gabarito 1)Quais das equações abaixo são do 2º grau? ( ) x – 5x + 6 = 0 ( ) 2x³ - 8x² - 2 = 0 ( x ) x² - 7x + 10 = 0 ( x ) 4x² - 1 = 0 ( ) 0x² + 4x – 3 = 0 ( x ) x² - 7x 2)Classifique as equações do 2º grau em completas ou incompletas e determine os coeficientes a, b, c. a) x² - 7x + 10 = 0 completa a = 1 b= -7 e c = 10 b) 4x² - 4x +1 = 0 completa a = 4 b= -4 e c = 1 c) –x² - 7x = 0 incompleta a = - 1 b= -7 e c = 0 d) x² - 16 = 0 incompleta a = 1 b= 0 e c = - 16 e) x² + 0x + 0 = 0 incompleta a = 1 b= 0 e c = 10 3)Resolva as equações do 2º grau: a) 4x² - 36 = 0 b) 7x² - 21 = 0 c) x² + 9 = 0 4x² = 36 7x² = 21 x² = -9 x² = 9 x² = 3 x = R∉−± 9 x = 9± x = 3± x = 3± S= { }3;3− S = { }3± S = }{ • Equações do 2º grau do tipo ax² + c = 0, com b = 0, você encontra duas raízes opostas. d) x² - 49 = 0 e) 5x² - 20 = 0 f) 5.(x² - 1) = 4.(x² + 1) x = 49± x² = 20/5 5x² - 5 = 4 x² + 4 x = ± 7 x² = 4 5 x² - 4 x² = 4 + 5 S = {-7, 7} x = ± 2 x² = 9 S = {-2 , 2} x = ± 3 S = {- 3, 3} g) x² - 7x = 0 h) 3x² - 4x = 0 i) x² - 3 x = 0 x.(x – 7) = 0 x.(3x – 4) = 0 x.(x - 3 ) = 0
  • 4. x = 0 ou x – 7 = 0 x = 0 ou 3x – 4 = 0 x = 0 ou x - 3 = 0 x = 7 x = 3 4 x = 3 S = { }7;0 S =       3 4 ;0 S = { }3;0 • Equações do 2º grau incompletas do tipo ax² + bx = 0, com c = 0, você deve colocar x em evidência e aplicar a propriedade: se um produto é nulo,ou seja zero, pelo menos um dos fatores é zero. 4) 1² + (1 + 5m - 3m²).1 + (m² + 1) = 0 1 + 1 + 5m - 3m² + m² + 1 = 0 - 2m² + 5m + 3 = 0 Aplicando Bháskara 22 1 2 1 2 5 5 4( 2).34 5 25 24 5 1 5 1 2 2.( 2) 4 4 4 5 1 4 1 4 4 5 1 6 3 4 4 2 : 3 2 3 5 1 2 2 2 2 b b ac x a x x soma x x − ± − −− ± − − ± − − ± − ± = = = = = − − − − − + − = = = − − − ± − = = = − − + = + = + = 5) condição: que delta seja maior que zero: a= 5; b= - 4; c = 2m 2 0 4 16 4.5.2 0 40 16 16 2 40 5 b ac o m m m < − < − < − < − > = < m < 2/5. 6) condição: que delta seja igual a zero: a= 1; b= p; c = 9 ao multiplicar por (-1) trocar todos os sinais, inclusive da desigualdade
  • 5. 2 0 4 0 ² 4.1.9 0 ² 36 6 b ac p p p = − = − = = = ± < 7) m = 10. 8) c = 6. 9) não, pois se substituirmos o valor da raiz, x = 4, obtermos: 8x 2 – 9x + 8 = 64 8 . 4 2 – 9 . 4 + 8 = 64 8 . 16 – 9 . 4 + 8 = 64 108 – 36 + 8 = 64 80 ≠ 64 Logo 4 não é solução para a equação 8x 2 – 9x + 8 = 64 10) 10 11) -10 e 9 12) 5 13) 3 14) d 15) x² - 7x -8 = 0
  • 6. 2 0 4 0 ² 4.1.9 0 ² 36 6 b ac p p p = − = − = = = ± < 7) m = 10. 8) c = 6. 9) não, pois se substituirmos o valor da raiz, x = 4, obtermos: 8x 2 – 9x + 8 = 64 8 . 4 2 – 9 . 4 + 8 = 64 8 . 16 – 9 . 4 + 8 = 64 108 – 36 + 8 = 64 80 ≠ 64 Logo 4 não é solução para a equação 8x 2 – 9x + 8 = 64 10) 10 11) -10 e 9 12) 5 13) 3 14) d 15) x² - 7x -8 = 0