GEOMETRIA DESCRITIVA A 11.º Ano Problemas Métricos Distância entre um Ponto e um Plano
GENERALIDADES A  distância de um ponto a um plano  é medida numa recta ortogonal ao plano que passa  pelo ponto, sendo o comprimento do segmento de recta que tem um extremo no ponto dado e o outro extremo no plano (no ponto de intersecção da recta com o plano). A p d I α
método geral para a determinação da distância de um ponto a um plano consiste em: 1. conduzir, pelo ponto, uma recta ortogonal ao plano;  2. determinar o ponto de intersecção dessa recta com o plano;  3. a distância do ponto ao plano é o comprimento do segmento de recta que tem extremos nos dois pontos – o ponto dado e o ponto de intersecção da recta com o plano.
Distância entre um Ponto e um Plano Projectante Pretende-se as projecções e a V.G. da distância entre o ponto  M  e o plano α. Primeiro, é conduzido uma recta ortogonal ao plano α, a recta  p , passando por  M . f α h α É obtido o ponto  I , ponto de intersecção da recta  p  com o plano α, a partir do cruzamento das projecções horizontais da recta com o plano, tendo em conta que o plano α é projectante horizontal.  p 2  p 1  V.G. x M 1 M 2 I 1 I 2 A distância de  M  a  I  é a distância do ponto  M  ao plano α. O segmento de recta [ MI ] é um segmento de recta horizontal, pelo que a  V.G.  de  MI  está na projecção horizontal de  MI ,  M 1 I 1 .
São dados um plano de topo θ e um ponto  A  (-2; 3; 2). O plano θ corta o eixo  x  num ponto com 3 cm de abcissa e faz um diedro de 60º (a.d.) com o Plano Horizontal de Projecção. Determina as projecções e a  V.G.  da distância entre o ponto  A  e o plano θ. f θ h θ p 2  p 1  Primeiro, é conduzido uma recta ortogonal ao plano θ, a recta  p , passando por  A . É obtido o ponto  I , ponto de intersecção da recta  p  com o plano θ, a partir do cruzamento das projecções frontais da recta com o plano, tendo em conta que o plano θ é projectante frontal.   V.G. x A 1 A 2 y   ≡  z A distância de  A  a  I  é a distância do ponto  A  ao plano θ. O segmento de recta [ AI ] é um segmento de recta frontal, pelo que a  V.G.  de  AI  está na projecção frontal de  AI ,  A 2 I 2 . I 1 I 2
São dados um plano horizontal υ e um ponto  A  (3; 5). O plano υ tem 2 cm de cota. Determina as projecções e a  V.G.  da distância entre o ponto  A  e o plano υ. (f υ ) Primeiro, é conduzido uma recta ortogonal ao plano υ, a recta  p , passando por  A . É obtido o ponto  I , ponto de intersecção da recta  p  com o plano υ, a partir do cruzamento das projecções frontais da recta com o plano, tendo em conta que o plano υ é projectante frontal.   p 2  ≡   (p 1 )   ≡   I 1  V.G. x A 1 A 2 A distância de  A  a  I  é a distância do ponto  A  ao plano υ. O segmento de recta [ AI ] é um segmento de recta vertical, pelo que a  V.G.  de  AI  está na projecção frontal de  AI ,  A 2 I 2 . I 2
São dados um plano frontal φ e um ponto  T  (2; 4). O plano φ tem 5 cm de afastamento. Determina as projecções e a  V.G.  da distância entre o ponto  T  e o plano φ. Primeiro, é conduzido uma recta ortogonal ao plano φ, a recta  p , passando por  T . (h φ ) p 1  ≡   (p 2 )   É obtido o ponto  I , ponto de intersecção da recta  p  com o plano φ, a partir do cruzamento das projecções horizontais da recta com o plano, tendo em conta que o plano φ é projectante horizontal.   ≡   I 2  V.G. x T 1 T 2 I 1 A distância de  T  a  I  é a distância do ponto  T  ao plano φ. O segmento de recta [ TI ] é um segmento de recta de topo, pelo que a  V.G.  de  TI  está na projecção horizontal de  TI ,  T 1 I 1 .
Distância entre um Ponto e um Plano Oblíquo Pretende-se as projecções e a V.G. da distância entre o ponto  A  e o plano α. f α h α p 2  p 1  Primeiro, é conduzido uma recta ortogonal ao plano α, a recta  p , passando por  A . É obtido o ponto  I , ponto de intersecção da recta  p  com o plano α; utilizando um plano auxiliar θ, (plano vertical neste caso, plano projectante horizontal da recta  p ), e através da recta de intersecção dos dois planos, a recta  i . f θ ≡   h θ ≡   i 1  i 2  ≡   e 2  (h φ )  ≡  e 1  ≡   I r  V.G. x A 1 A 2 F 1 F 2 H 1 H 2 I 1 I 2 A distância de  A  a  I  é a distância do ponto  A  ao plano α. O segmento de recta [ AI ] é um segmento de recta oblíquo, pelo que a  V.G.  de  MI  tem que ser obtida pelo processo de rebatimento. A r
São dados um plano oblíquo γ e um ponto  M  (0; 4; 5). O plano γ é ortogonal ao β 1,3   e corta o eixo  x  num ponto com 2 cm de abcissa e o seu traço frontal faz um ângulo de 40º (a.d.) com o eixo  x . Determina as projecções e a  V.G.  da distância entre o ponto  M  e o plano γ. f γ h γ Primeiro, é conduzido uma recta ortogonal ao plano γ, a recta  p , passando por  M . p 1  p 2  É obtido o ponto  I , ponto de intersecção da recta  p  com o plano γ; utilizando um plano auxiliar α (plano vertical neste caso, plano projectante horizontal da recta  p ), e através da recta de intersecção dos dois planos, a recta  i . ≡   h α f α i 2  ≡   i 1  (f υ )  ≡  e 2 ≡   e 1  ≡   I r  V.G. x y   ≡  z M 1 M 2 H 1 H 2 F 1 F 2 I 1 I 2 A distância de  M  a  I  é a distância do ponto  M  ao plano γ. O segmento de recta [ MI ] é um segmento de recta oblíquo, pelo que a  V.G.  de  MI  tem que ser obtida pelo processo de rebatimento. M r
São dados um plano oblíquo α e um ponto  P  (0; 5; 4). O plano α corta o eixo  x  num ponto com -2 cm de abcissa, o seu traço horizontal faz um ângulo de 30º (a.d.) com o eixo  x  e o seu traço frontal faz um ângulo de 50º (a.e.) com o eixo  x . Determina as projecções e a  V.G.  da distância entre o ponto  P  e o plano α. f α h α Primeiro, é conduzido uma recta ortogonal ao plano α, a recta  p , passando por  P . p 1  É obtido o ponto  I , ponto de intersecção da recta  p  com o plano α; utilizando um plano auxiliar α (plano de topo neste caso, plano projectante frontal da recta  p ), e através da recta de intersecção dos dois planos, a recta  i . p 2  ≡   f θ h θ ≡   i 2  i 1  (h φ )  ≡  e 1 ≡   e 2  ≡   I r  V.G. x y   ≡  z P 1 P 2 H 1 H 2 F 1 F 2 I 1 I 2 A distância de  P  a  I  é a distância do ponto  P  ao plano α. O segmento de recta [ PI ] é um segmento de recta oblíquo, pelo que a  V.G.  de  PI  tem que ser obtida pelo processo de rebatimento. P r
Distância entre um Ponto e um Plano de Rampa Pretende-se as projecções e a V.G. da distância entre o ponto  A  e o plano ρ. f ρ h ρ Primeiro, é conduzido uma recta ortogonal ao plano ρ, a recta  p  (uma recta de perfil), passando por  A . p1  ≡  p 2 ≡   f π  ≡  h π ≡   F 1 ≡   i 1  ≡  i 2  ≡   e 1 ≡   (e 2 ) ≡   h πr ≡   f πr ≡   H r i r  p r  Invertendo o rebatimento do plano π, obtêm-se as projecções do ponto  I  e do segmento de recta [ AI ]. V.G. x A 1 A 2 F 2 H 2 H 1 F r A r I r É obtido o ponto  I , ponto de intersecção da recta  p  com o plano ρ; utilizando um plano auxiliar π, (plano de perfil), e a recta de intersecção dos dois planos, a recta  i . Para se determinar a recta  i  e o ponto  I  é necessário recorrer ao processo de rebatimento.  A r I r  é a  V.G.  da distância entre  A  e  I , a distância do ponto  A  ao plano ρ. I 1 I 2
São dados um plano de rampa ρ e um ponto  A  (4; 4). O traço horizontal do plano ρ tem 5 cm de afastamento, e o traço frontal tem 3 cm de cota. Determina as projecções e a  V.G.  da distância entre o ponto  A  e o plano ρ. f ρ h ρ Primeiro, é conduzido uma recta ortogonal ao plano ρ, a recta  p  (uma recta de perfil), passando por  A . p1  ≡  p 2 ≡   f π  ≡  h π ≡   i 1  ≡  i 2  ≡   e 2 ≡   f πr ≡   h πr Invertendo o rebatimento do plano π, obtêm-se as projecções do ponto  I  e do segmento de recta [ AI ]. ≡   F 1 ≡   (e 1 ) ≡   F r i r  p r  V.G. x A 1 A 2 É obtido o ponto  I , ponto de intersecção da recta  p  com o plano ρ; utilizando um plano auxiliar π, (plano de perfil), e a recta de intersecção dos dois planos, a recta  i . Para se determinar a recta  i  e o ponto  I  é necessário recorrer ao processo de rebatimento.  A r I r  é a  V.G.  da distância entre  A  e  I , a distância do ponto  A  ao plano ρ. F 2 H 1 H 2 A r H r I r I 1 I 2

distanciapontoaumplano

  • 1.
    GEOMETRIA DESCRITIVA A11.º Ano Problemas Métricos Distância entre um Ponto e um Plano
  • 2.
    GENERALIDADES A distância de um ponto a um plano é medida numa recta ortogonal ao plano que passa pelo ponto, sendo o comprimento do segmento de recta que tem um extremo no ponto dado e o outro extremo no plano (no ponto de intersecção da recta com o plano). A p d I α
  • 3.
    método geral paraa determinação da distância de um ponto a um plano consiste em: 1. conduzir, pelo ponto, uma recta ortogonal ao plano; 2. determinar o ponto de intersecção dessa recta com o plano; 3. a distância do ponto ao plano é o comprimento do segmento de recta que tem extremos nos dois pontos – o ponto dado e o ponto de intersecção da recta com o plano.
  • 4.
    Distância entre umPonto e um Plano Projectante Pretende-se as projecções e a V.G. da distância entre o ponto M e o plano α. Primeiro, é conduzido uma recta ortogonal ao plano α, a recta p , passando por M . f α h α É obtido o ponto I , ponto de intersecção da recta p com o plano α, a partir do cruzamento das projecções horizontais da recta com o plano, tendo em conta que o plano α é projectante horizontal. p 2 p 1 V.G. x M 1 M 2 I 1 I 2 A distância de M a I é a distância do ponto M ao plano α. O segmento de recta [ MI ] é um segmento de recta horizontal, pelo que a V.G. de MI está na projecção horizontal de MI , M 1 I 1 .
  • 5.
    São dados umplano de topo θ e um ponto A (-2; 3; 2). O plano θ corta o eixo x num ponto com 3 cm de abcissa e faz um diedro de 60º (a.d.) com o Plano Horizontal de Projecção. Determina as projecções e a V.G. da distância entre o ponto A e o plano θ. f θ h θ p 2 p 1 Primeiro, é conduzido uma recta ortogonal ao plano θ, a recta p , passando por A . É obtido o ponto I , ponto de intersecção da recta p com o plano θ, a partir do cruzamento das projecções frontais da recta com o plano, tendo em conta que o plano θ é projectante frontal. V.G. x A 1 A 2 y ≡ z A distância de A a I é a distância do ponto A ao plano θ. O segmento de recta [ AI ] é um segmento de recta frontal, pelo que a V.G. de AI está na projecção frontal de AI , A 2 I 2 . I 1 I 2
  • 6.
    São dados umplano horizontal υ e um ponto A (3; 5). O plano υ tem 2 cm de cota. Determina as projecções e a V.G. da distância entre o ponto A e o plano υ. (f υ ) Primeiro, é conduzido uma recta ortogonal ao plano υ, a recta p , passando por A . É obtido o ponto I , ponto de intersecção da recta p com o plano υ, a partir do cruzamento das projecções frontais da recta com o plano, tendo em conta que o plano υ é projectante frontal. p 2 ≡ (p 1 ) ≡ I 1 V.G. x A 1 A 2 A distância de A a I é a distância do ponto A ao plano υ. O segmento de recta [ AI ] é um segmento de recta vertical, pelo que a V.G. de AI está na projecção frontal de AI , A 2 I 2 . I 2
  • 7.
    São dados umplano frontal φ e um ponto T (2; 4). O plano φ tem 5 cm de afastamento. Determina as projecções e a V.G. da distância entre o ponto T e o plano φ. Primeiro, é conduzido uma recta ortogonal ao plano φ, a recta p , passando por T . (h φ ) p 1 ≡ (p 2 ) É obtido o ponto I , ponto de intersecção da recta p com o plano φ, a partir do cruzamento das projecções horizontais da recta com o plano, tendo em conta que o plano φ é projectante horizontal. ≡ I 2 V.G. x T 1 T 2 I 1 A distância de T a I é a distância do ponto T ao plano φ. O segmento de recta [ TI ] é um segmento de recta de topo, pelo que a V.G. de TI está na projecção horizontal de TI , T 1 I 1 .
  • 8.
    Distância entre umPonto e um Plano Oblíquo Pretende-se as projecções e a V.G. da distância entre o ponto A e o plano α. f α h α p 2 p 1 Primeiro, é conduzido uma recta ortogonal ao plano α, a recta p , passando por A . É obtido o ponto I , ponto de intersecção da recta p com o plano α; utilizando um plano auxiliar θ, (plano vertical neste caso, plano projectante horizontal da recta p ), e através da recta de intersecção dos dois planos, a recta i . f θ ≡ h θ ≡ i 1 i 2 ≡ e 2 (h φ ) ≡ e 1 ≡ I r V.G. x A 1 A 2 F 1 F 2 H 1 H 2 I 1 I 2 A distância de A a I é a distância do ponto A ao plano α. O segmento de recta [ AI ] é um segmento de recta oblíquo, pelo que a V.G. de MI tem que ser obtida pelo processo de rebatimento. A r
  • 9.
    São dados umplano oblíquo γ e um ponto M (0; 4; 5). O plano γ é ortogonal ao β 1,3 e corta o eixo x num ponto com 2 cm de abcissa e o seu traço frontal faz um ângulo de 40º (a.d.) com o eixo x . Determina as projecções e a V.G. da distância entre o ponto M e o plano γ. f γ h γ Primeiro, é conduzido uma recta ortogonal ao plano γ, a recta p , passando por M . p 1 p 2 É obtido o ponto I , ponto de intersecção da recta p com o plano γ; utilizando um plano auxiliar α (plano vertical neste caso, plano projectante horizontal da recta p ), e através da recta de intersecção dos dois planos, a recta i . ≡ h α f α i 2 ≡ i 1 (f υ ) ≡ e 2 ≡ e 1 ≡ I r V.G. x y ≡ z M 1 M 2 H 1 H 2 F 1 F 2 I 1 I 2 A distância de M a I é a distância do ponto M ao plano γ. O segmento de recta [ MI ] é um segmento de recta oblíquo, pelo que a V.G. de MI tem que ser obtida pelo processo de rebatimento. M r
  • 10.
    São dados umplano oblíquo α e um ponto P (0; 5; 4). O plano α corta o eixo x num ponto com -2 cm de abcissa, o seu traço horizontal faz um ângulo de 30º (a.d.) com o eixo x e o seu traço frontal faz um ângulo de 50º (a.e.) com o eixo x . Determina as projecções e a V.G. da distância entre o ponto P e o plano α. f α h α Primeiro, é conduzido uma recta ortogonal ao plano α, a recta p , passando por P . p 1 É obtido o ponto I , ponto de intersecção da recta p com o plano α; utilizando um plano auxiliar α (plano de topo neste caso, plano projectante frontal da recta p ), e através da recta de intersecção dos dois planos, a recta i . p 2 ≡ f θ h θ ≡ i 2 i 1 (h φ ) ≡ e 1 ≡ e 2 ≡ I r V.G. x y ≡ z P 1 P 2 H 1 H 2 F 1 F 2 I 1 I 2 A distância de P a I é a distância do ponto P ao plano α. O segmento de recta [ PI ] é um segmento de recta oblíquo, pelo que a V.G. de PI tem que ser obtida pelo processo de rebatimento. P r
  • 11.
    Distância entre umPonto e um Plano de Rampa Pretende-se as projecções e a V.G. da distância entre o ponto A e o plano ρ. f ρ h ρ Primeiro, é conduzido uma recta ortogonal ao plano ρ, a recta p (uma recta de perfil), passando por A . p1 ≡ p 2 ≡ f π ≡ h π ≡ F 1 ≡ i 1 ≡ i 2 ≡ e 1 ≡ (e 2 ) ≡ h πr ≡ f πr ≡ H r i r p r Invertendo o rebatimento do plano π, obtêm-se as projecções do ponto I e do segmento de recta [ AI ]. V.G. x A 1 A 2 F 2 H 2 H 1 F r A r I r É obtido o ponto I , ponto de intersecção da recta p com o plano ρ; utilizando um plano auxiliar π, (plano de perfil), e a recta de intersecção dos dois planos, a recta i . Para se determinar a recta i e o ponto I é necessário recorrer ao processo de rebatimento. A r I r é a V.G. da distância entre A e I , a distância do ponto A ao plano ρ. I 1 I 2
  • 12.
    São dados umplano de rampa ρ e um ponto A (4; 4). O traço horizontal do plano ρ tem 5 cm de afastamento, e o traço frontal tem 3 cm de cota. Determina as projecções e a V.G. da distância entre o ponto A e o plano ρ. f ρ h ρ Primeiro, é conduzido uma recta ortogonal ao plano ρ, a recta p (uma recta de perfil), passando por A . p1 ≡ p 2 ≡ f π ≡ h π ≡ i 1 ≡ i 2 ≡ e 2 ≡ f πr ≡ h πr Invertendo o rebatimento do plano π, obtêm-se as projecções do ponto I e do segmento de recta [ AI ]. ≡ F 1 ≡ (e 1 ) ≡ F r i r p r V.G. x A 1 A 2 É obtido o ponto I , ponto de intersecção da recta p com o plano ρ; utilizando um plano auxiliar π, (plano de perfil), e a recta de intersecção dos dois planos, a recta i . Para se determinar a recta i e o ponto I é necessário recorrer ao processo de rebatimento. A r I r é a V.G. da distância entre A e I , a distância do ponto A ao plano ρ. F 2 H 1 H 2 A r H r I r I 1 I 2