SlideShare uma empresa Scribd logo
1 de 24
Baixar para ler offline
1
Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética
As mutações cromossômicas seguem quase os mesmos princípios das mutações gênicas,
diferindo somente em escala e na possibilidade de detectá-las (assim como nas maneiras que são utilizadas para
esse fim). Essas mutações são caracteristicamente maiores, ou seja, acometem um número elevado de
nucleotídeos. Todas elas se baseiam em modificações nos cromossomos, sendo que estes devem ter uma
explicação mais detalhada.
Cromossomos
Estas estruturas estão presentes em todos os seres vivos, desde procariontes até eucariontes, diferindo
somente em características estruturais. Pode-se dizer que os cromossomos virais são compostos por DNA ou RNA
(ou seja, podem ser compostos por estruturas unifilamentares ou não), podem ser circulares ou lineares e estão
compactados e reservados na cabeça do vírus. Já os cromossomos bacterianos são compostos por uma molécula de
DNA dupla fita compactada associada a algumas proteínas (nucleóide), apresentam poucas informações genéticas.
Outra característica das bactérias é que boa parte delas apresenta o plasmídeo, que é uma dupla fita de DNA auto
replicante.
Os cromossomos humanos são muito maiores em comparação com os procariontes, carregando um
subconjunto de genes que são arranjados linearmente ao longo do DNA. Macroscopicamente ele é formado por
braços (de tamanhos variáveis), um centrômero (que liga esses braços), telômeros (pontas do cromossomo) e, por
vezes, constrições secundárias e regiões chamadas de satélites. Ele é formado pela junção de duas cromátides
irmãs, sendo estas a junção de dois braços adjacentes.
Figura 1 – Representação de um cromossomo típico, juntamente com suas regiões principais.
O centrômero é a maior constrição de um cromossomo, sendo chamada de primária, e é onde se ligam fibras
do fuso. Ele é formado por milhares de bases de DNA que são repetições de uma sequência de 171 bases chamadas
de alfa satélites. Além disso, ele inclui proteínas associadas ao centrômero, sendo que quando a mitose é iminente
uma série delas forma o cinetócoro, o qual sai dessa estrutura e faz contato com as fibras do fuso. Esse cinetócoro
aparece na prófase e desaparece na telófase. Também existem certas proteínas regulatórias de sua expressão,
chamadas de CENP-A, que são transmitidas para células filhas.
O centrômero divide os braços cromossômicos e, de acordo com essa divisão, ocorre a classificação dsse
cromossomo em quatro grupos:
 Metacêntrico: quando ocorrem dois conjuntos de braços de iguais tamanhos;
 Submetacêntrico: ocorrem braços de diferentes tamanhos, sendo o conjunto maior chamado de “q” e
o menor de “p”;
 Acrocêntrico: cromossomo apresenta pequena quantidade de material genético em uma ponta e
grande quantidade em outra;
 Telocêntrico: apresenta somente dois braços (centrômero na ponta do cromossomo).
2
Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética
Figura 2 – Divisão dos diversos tipos de cromossomos de acordo com a posição de seu centrômero, além de sua divisão na anáfase.
Os telômeros são as “pontas” dos cromossomos, cada um consistindo de muitas repetições da sequência
TTAGG que são encurtadas a cada divisão mitótica da célula. Eles estão relacionados com o envelhecimento e a
geração de cromossomos circulares em algumas mutações cromossômicas.
Os satélites podem ser identificados em cinco cromossomos humanos (13, 14, 15, 21 e 22) que se
prolongam por meio de um fino pedículo do restante do cromossomo. Esses pedículos possuem muitas repetições de
genes codificantes de RNA ribossômicos e proteínas ribossômicas, chamadas de regiões de organização nucleolar.
Essas regiões coalescem para formar o nucléolo dentro do núcleo celular.
Do ponto de vista microscópico os cromossomos são
formados essencialmente por duas substâncias: proteínas (1/3
de histonas e 1/3 de outras proteínas) e DNA (terço restante). A
esse grupo de compostos dá-se o nome de cromatina (que pode
ser dividida em dois tipos, a eucromatina que se cora menos e
apresenta a informação genica; e a heterocromatina, se cora
mais e não apresenta expressividade genica).
A molécula de
DNA é extremamente
grande, mas deve ser
compactada a fim de se localizar em uma região tão pequena como o núcleo
da célula. Isso se faz através de um complexo sistema de compactação que
se baseia em diversas proteínas e níveis hierárquicos. O primeiro nível de
compactação, que diminui em 1/3 o tamanho do DNA é a compactação pelos
complexos de histonas. As histonas são proteínas que se organizam em um
octâmero (formado pelos subtipos H1 -H2A -H2B -H3 -H4), apresentando
grande quantidade de aminoácidos de carga positiva (lisina e arginina) e
sendo assim forte ligação aos grupos fosfato (negativo) dos nucleotídeos.
Esses aminoácidos se localizam somente em regiões específicas das
histonas, fazendo com que o DNA se envolva duas vezes nesse complexo.
Isso cria regiões espaçadas entre os octâmeros, resultando em uma
aparência de colar de contas (ou contas de um rosário). Cada complexo de
octâmeros de histonas mais as duas voltas de DNA formam o chamado
nucleossomo.
Figura 3 – Representação microscópica dos tipos de cromatina
existentes na célula.
Figura 4 – Aparência de Contas de Rosário do DNA
envolvendo complexos de histonas.
3
Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética
A seguir ocorre a helicoidização de todos esses complexos, formando uma estrutura muito mais
complexa. Isso faz com que ocorra a organização do DNA + proteínas em solenoides por meio da ação de diversas
proteínas juncionais que auxiliam na aderência entre os octâmeros de histonas. Pode-se dizer que é criado dessa
maneira uma “corda” mais grossa que por sua vez se enrola continuamente ao redor de proteína central, formando
outra “corda” ainda mais grossa. Com essa nova organização a cromatina pode se enrolar mais uma vez, formando
assim o cromossomo.
Figura 5 – Formação estrutural de um cromossomo, iniciando com os octâmeros de histonas e finalizando com a forte compactação do DNA
sobre si mesmo (formando quase que um arcabouço). Todo esse processo é auxiliado por proteínas chamadas de topoisomerases.
O DNA contido na cromatina fica inacessível à interação com outras proteínas, inibindo transitoriamente sua
replicação e expressão gênica. No entanto as ligações realizadas com as histonas apresentam a possibilidade de
serem desfeitas com o propósito de interação proteica com DNA ou para remodelamento das ligações com as
histonas. Isso é realizado por meio de modificações histônicas, que podem ser de dois tipos:
 Acetilação: adição de um grupo acetil ao grupo amino carregado positivamente do aminoácidoa lisina
das histonas (neutraliza a carga positiva) levando a abertura das fibras de cromatina (para ativação
gênica, por exemplo, como ocorre na inativação do cromossomo X em mamíferos (corpúsculo de
Barr) onde a histona H4 esta insuficientemente acetilada);
 Metilação: adição de grupos metila a arginina e lisina das histonas (também para ativação genica).
Cromossomos homólogos são os membros de um par de cromossomos que
carregam informações genéticas equivalentes (mesmos genes na mesma sequência), sendo
que um foi herdado do pai e outro da mãe.
Uma das funções mais importantes dos cromossomos é carregar e distribuir os genes
entre os organismos parentais e filhos. Organismos diploides contem duas cópias de cada
gene, sendo que se definem como genes alelos aqueles que ocupam o mesmo lócus em
cromossomos homólogos. Estes alelos podem ser de três tipos distintos:
 Homozigotos, quando o par de alelos for idêntico para um determinado gene;
 Heterozigotos, quando esses alelos forem diferentes;
Figura 6 – Cromossomos
homólogos realizando
recombinação.
4
Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética
 Hemizigotos, no caso dos homens que possuem somente uma cópia de genes do
cromossomo X sendo hemizigotos para determinados alelos (não apresentam correspondência em
outro cromossomo homólgo).
Figura 7 – Representação de alguns tipos de combinações de alelos. O primeiro é dito dominante, pois seu fenótipo (A) prevalece sobre o
recessivo (a). O último é chamado de recessivo. Quando há a combinação dos dois resulta-se em heterozigose.
As células de nosso corpo podem ser dividas, de acordo com os números e tipos cromossômicos, em dois
grandes grupos: células germinativas, células que desenvolvem os gametas (ovulo e espermatozoides),
apresentando um total de 23 cromossomos; e células somáticas, todas as outras células do corpo, apresentando 46
cromossomos (23pares). Os cromossomos também podem ser divididos em dois grupos, os somáticos (que foram
descritos até o momento) e os sexuais.
Os cromossomos sexuais desempenham um papel determinante na
especificação sexual primária (formação das gônadas). Isso é realizado por meio
de genes localizados em ambos os cromossomos sexuais e autossomos estão
envolvidos na determinação e diferenciação sexual.
Os cromossomos X e Y são bem diferentes e, portanto, não são
homólogos. No entanto, eles têm pequenas regiões homólogas
(pseudoautossômicas) e permitem o emparelhamento correto durante a meiose.
Os genes encontrados nas regiões pseudoautossômicas apresentam o mesmo
padrão de herança dos genes situados nos cromossomos autossômicos. Os genes
das demais regiões, chamadas regiões diferenciais, apresentam um padrão
característico de herança, relacionado ao cromossomo X ou ao Y. Por isso, o
mecanismo de determinação
do sexo está diretamente relacionado à herança das
características ligadas ao sexo. Nos seres humanos, a
determinação do sexo masculino depende mais especificamente
do gene SRY, sigla para região do Y determinante do sexo (do
inglês, Sex-determining Region Y). Embora o SRY seja
determinante para constituição do sexo masculino, outros genes
– ligados ao X, ao Y e até mesmo aos autossomos – também
desempenham um papel na fertilidade e no desenvolvimento
das diferenças entre os fenótipos sexuais, entre eles o fator de
azoospermia, AZF (azoospermia factor), está localizado no
braço longo deste cromossomo, posição Yq11, estando
relacionado com o processo espermatogênico.
Figura 8 – Cromossomos sexuais XY em
micrografia.
Figura 9 - Os cromossomos X e Y são homólogos apenas nas regiões
pseudoautossômicas. Nos seres humanos, essas regiões estão
presentes em ambas as extremidades dos cromossomos sexuais
5
Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética
Citogenética Clínica
Citogenética é a subdisciplina dentro da genética que liga variações cromossômicas a características
específicas, inclusive doenças. Ela se baseia na observação cromossômica e posterior montagem de um mapa
cromossômico, chamado de cariótipo. São indicações para essa análise:
 Problemas precoces de crescimento e desenvolvimento: retardo no desenvolvimento, malformações,
baixa estatura, genitália ambígua, retardo mental;
 Natimortos e morte neonatal: incidência de anomalias cromossômicas muito elevada em natimortos
deve ser seguida de uma análise cromossômica em natimortos e óbitos neonatais a fim de identificar
uma causa (mais de 50% dos embriões que são abortados espontaneamente no 1º trimestre tem
alguma alteração cromossômica);
 Problemas de fertilidade: proporção grande de anomalias cromossômicas em casais com estórias de
infertilidade;
 História familiar: anomalia cromossômica em parente de 1° grau é uma indicação para análise
cromossômica;
 Neoplasia: praticamente todos os cânceres estão associados a uma ou mais anomalias
cromossômicas;
 Gestação em idade avançada: risco aumentado de anomalias em fetos concebidos em mulheres com
mais de 35 anos.
Existem muitas fontes de cromossomos, sendo que diferem entre indivíduos
adultos e crianças. No primeiro grupo os glóbulos brancos separados de uma amostra
de sangue ou células da pele coletadas no interior das bochechas em geral são a base
para essas análises. Já em bebês/fetos pode ocorrer a retirada de uma das seguintes
fontes:
 Amniocentese: retirada do líquido amniótico por volta da 14ª semana de
gestação;
 Punção de vilosidades coriônicas: diagnóstico pré-natal precoce (10-12
semanas gestação), por via transvaginal ou transabdominal. Ocorre maior incidência de
aborto;
 Separação de células fetais: nova técnica que permite a identificação
de células do feto na corrente sanguínea da mãe (em 70% das gestações, sendo a
técnica menos invasiva).
As metáfases das preparações citológicas são analisadas e fotografadas ao
microscópio. Posteriormente, as cópias fotográficas são destinadas à montagem de um
cariograma. Para a construção do cariograma humano ou de qualquer outro organismo,
os cromossomos são recortados e dispostos de forma ordenada, de acordo com a sua
morfologia e em ordem decrescente de tamanho, a menos que tenham sido
diferenciado longitudinalmente, caso em que se deve também levar em conta o padrão
de bandas de cada elemento. Nos laboratórios de citogenética humana, as análises
cromossômicas de rotina para fins de diagnóstico têm sido realizadas, em geral, com
base em cromossomos que tenham sido diferenciados em bandas G ou alguma outra banda equivalente, que
permitem a separação inequívoca de cada par de homólogos. Alguns laboratórios dispõem do recurso de se fazer a
montagem do cariograma humano no computador, com o uso de programas desenvolvidos para esta finalidade.
Os 46 cromossomos humanos formam 23 pares, sendo 22 pares de autossomos e um par sexual. Os pares
de autossomos são numerados de 1 a 22 em ordem decrescente de tamanho e os cromossomos sexuais recebem a
notação X e Y. Os pares cromossômicos, incluindo os sexuais, são reunidos em 7 grupos designados pelas letras A
até G. Dentro de cada grupo, a identificação individual dos cromossomos nem sempre é possível quando se emprega
determinadas técnicas. Isso pode ser feito com segurança apenas para alguns elementos do cariótipo, de modo que
durante a montagem do cariograma com coloração convencional, a maioria dos pares cromossomos são
tentativamente emparelhados. Para a distribuição nos diferentes grupos, deve-se obedecer os seguintes critérios:
Figura 10 – As três fontes utilizadas para
análise cromossômica fetal.
6
Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética
 Grupo A: compreende os seis maiores cromossomos. O par 1 é metacêntrico, o 2 é
submetacêntrico e o 3 é também metacêntrico, porém de tamanho menor que o par 1;
 Grupo B: inclui os pares 4 e 5 que são submetacêntricos. O tamanho de seus braços curtos equivale
a 1/3 de seus braços longos. Os dois pares de homólogos não são distinguíveis morfologicamente
entre si;
 Grupo C: compreende 15 cromossomos no homem e 16 na mulher, pois o cromossomo X é incluído
nesse grupo. São metacêntricos ou submetacêntricos, sendo difícil a identificação individual dos
mesmos. Contudo, por serem os maiores do grupo, os pares 6 e 7 são frequentemente identificados,
assim como o X, cujo tamanho está entre o 7º. e 8º. par. Algumas vezes, um dos elementos do par 9
(raramente ambos) ode ser reconhecido, devido a uma constrição secundária proximal nos braços
longos;
 Grupo D: compreende três pares de acrocêntricos de tamanho médio. São cromossomos portadores
de constrição secundária e satélite nos braços curtos, porém nem sempre visíveis. Os pares 13, 14 e
15 não são distinguíveis morfologicamente entre si;
 Grupo E; inclui três pares de cromossomos dos quais o 16 é metacêntrico enquanto o 17 e 18 são
submetacêntricos. O par 16 é identificado morfologicamente, o que nem sempre acontece com os
demais, embora o par 17 tenha os braços curtos ligeiramente maiores que os do par 18;
 Grupo F: inclui os pares 19 e 20, os menores metacêntricos, não distinguíveis morfologicamenteentre
si;
 Grupo G: compreende 4 cromossomos na mulher e 5 no homem, pois o cromossomo Y está incluído
neste grupo. Os pares 21 e 22 e o Y são os menores acrocêntricos. Os pares 21 e 22 apresentam
constrição secundária e satélite, nem sempre visíveis, nos braços curtos. Não é possível a distinção
morfológica desses dois pares. O Y é identificável em muitos casos pelo tamanho maior ou menor
que o dos outros autossomos, bem como pela posição paralela dos braços longos. O cromossomo Y
se caracteriza também pela ausência de constrição secundaria e satélite, não participando da
associação de acrocêntricos.
Figura 11 – Cariótipos normais de um homem (46, XY), à esquerda, e de uma mulher normal (46, XX), à esquerda.
A nomenclatura utilizada na descrição de um cariótipo é a seguinte: o número de cromossomos,
cromossomos sexuais, alteração. Por exemplo:
 46,XX – mulher normal;
 47,XY,+21 – homem com trissomia do 21;
 46,XX, t(1;22)(q25;q13) – mulher com translocação entre os cromossomos 1 e 22, com pontos de
quebra em 1q25 e 22q13;
 46,XY,del(2)(q34,q36.2) – homem com deleção no braço longo do cromossomo 2, que retira o
material localizado entre 2q34 e 2q36.2.
Alterações Cromossômicas
As mutações cromossômicas podem ocorrer de duas maneiras: no número de cromossomos (chamadas de
numéricas), em que ocorrem erros durante a divisão celular; e na estrutura dos cromossomos (chamadas de
7
Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética
estruturais), resultam de quebras cromossômicas, maioria constituída de eventos esporádicos causados
por quebras aleatórias. As modificações do primeiro grupo podem ser de dois tipos: as euploidias (subdividindo-se
em haploidias, triploidias ou poliploidias), e aneuploidias (subdividindo-se em nulissomia, trissomia e monossomia). O
segundo grupo também pode ser divido em dois subgrupos: decorrentes de alterações no número de genes
(deleções, duplicações, cromossomos em anel e isocrossomos), e mudanças na localização do gene (inversões e
translocações).
Tabela 1 – Todos os tipos de mutações de acordo com seus respectivos grupos.
Euploidias
Nessas alterações cromossômicas ocorrem alterações que envolvem todo genoma originando células cujo
número de cromossomos é um múltiplo exato do número haploide. Todas essas condições estão relacionadas a
abortos espontâneos ou morte muito prematura do bebê por lesões e disfunções múltiplas em todos os órgãos. São
divididas de acordo com o número de cromossomos homólogos, em três tipos.
Haploidias
Ocorre apenas um cromossomo ao invés de um par de homólogos. É representado por “n”. Todos os fetos
são precocemente abortados.
Triploidias
Ocorre um cromossomo a mais no par de homólogos. É representado por “3n”. Geralmente ocorre por
dispermia (fertilização por 2 espermatozóides), ou pelo insucesso na meiose (resulta óvulo/espermatozóide 2n).
Figura 12 – Exemplo de triploidia, com o feto à esquerda e seu cariótipo confirmando o diagnóstico patológico, à direita.
8
Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética
Poliploidias
Ocorre mais de três cromossomos ao invés do par de homólogos característico. Geralmente se apresenta
como uma tetraploidia (representado por “4n”, tendo cariótipo de 92, XXXX ou 92, XXYY). É representado pelo
número de cromossomos homólogos seguido de “n”. Todos os fetos são abortados. Ocorre por insucesso na
clivagem inicial do zigoto.
Figura 13 – Cariótipo de tetraploidia (92, XXXX).
Aneuploidias
São alterações que envolvem um ou mais cromossomos de cada par, originando múltiplos não exatos de
cada par. São causadas pela não disjunção de um ou mais cromossomos durante a anáfase na meiose I e/ou II
(maior parte) ou na anáfase da mitose (melhor representante é uma alteração chamada de mosaico).
Figura 14 – Representação esquemática das principais causas de aneuploidias.
Essas alterações podem ser dividas de acordo com os cromossomos que afeta em autossômicas (ocorrem
do par 1 ao 21 de cromossomos) ou sexuais (ocorrem no par 23). No entanto elas são mais comumente divididas de
acordo com a alteração no número cromossômico em trissomias (geralmente autossômica), monossomia
(geralmente sexuais) e nulissomia.
Trissomia
Como já comentado são mais atreladas a aneuploidias autossômicas, sendo que o indivíduo apresenta vida
viável somente quando ocorre nos pares 13, 18 ou 21 (pois estes cromossomos apresentam menor número de
genes). Geralmente estão atreladas a retardo mental e no desenvolvimento, além de anomalias congênitas múltiplas,
em decorrência da dose extra de genes específicos do cromossomo adicional. No entanto é importante frisar que
podem ocorrer trissomias em quaisquer cromossomos só que estas alterações estão atreladas a abortos
espontâneos.
9
Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética
Figura 15 – Número de genes aproximado de cada cromossomo. Região destacada representa os cromossomos que apresentam menos
genes e que, justamente, são os que apresentam sobrevida viável em trissomias.
A trissomia do par 21, chamada de síndrome de Down (47, XY ou XX, +21), é o distúrbio cromossômico mais
recorrente e conhecido.
Figura 16 – Cariótipo com trissomia do par 21, destacado em azul (47, XY, +21).
Ocorre um caso a cada ~800 nascidos vivos e é a única trissomia compatível com a vida adulta. Sua incidência é
maior em filhos de mulheres com mais de 35 anos, em decorrência de dois fatores principais:
 Alta porcentagem de casos em que gameta anormal surge na meiose I materna;
 Modelo “ovócito velho”: quanto mais velho o ovócito, maior a chance de ocorrer erro na disjunção dos
cromossomos.
Todos os sinais presentes nessa síndrome são decorrentes do efeito direto do gene extra no inicio do
desenvolvimento do indivíduo, sendo os mais recorrentes:
 Debilidade mental;
 Orelhas de baixa implantação;
 Testa inclinada;
 Língua protraída, boca aberta;
 Estrabismo;
 Eritema (vermelhidão);
 Defeitos cardíacos, sendo que ¼ dos nascidos morrem por isso antes de completar 1 ano de idade;
 Prega simiesca (palma da mão com prega única), mãos curtas e largas e o quinto dedo encurvado;
10
Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética
 Ponte nasal achatada, Pálpebras “mongóis”;
 Esterilidade comum nos meninos;
 Pescoço curto com frouxidão na pele da nuca;
 Pés com separação entre dedão e segundo dedo.
A trissomia do 18, chamada de Síndrome de Edwards (47, XY ou XX, +18) é incompatível com a vida adulta,
mas a criança ainda nasce e vive por um curto período de tempo. Ocorre na frequência de 1 para 7500 nascimentos.
Figura 19 – Trissomia do par 18, destacado em azul (47, XY, +18).
Geralmente apresenta aparência externa quase que normal, mas tem um grave
retardo mental assim como alterações internas profundas. O bebê é caracterizado por:
 Deformidade facial
 Hipertonia (aumento da rigidez dos músculos)
 Retardo mental e do desenvolvimento
 Anomalias de extremidades (dedos cerrados, encurvados)
 Malformações cardíacas, renais, genitais e respiratórias
 Lábio leporino e palato fendido
 Óbito em 90% dos casos antes do primeiro ano de vida
 Maxilar retraído ou ausente
 Cabeça com occipúcio proeminente
Figura 17 – Principais características externas da Síndrome de
Down.
Figura 18 – Fácies mongol,
característica dessa síndrome.
Figura 20 – Feto com síndrome de
Edwards. Perceber mandíbula retraída e
posição dos dedos.
11
Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética
 Mãos fechadas com sobreposição do 2° e 5° dedos sobre o 3° e 4° dedos
 Pés em cadeira de balanço com calcanhar proeminente, unhas hipoplásicas
 Orelhas grandes, malformadas e de baixa implantação
 95% dos fetos com trissomia são abortados naturalmente
 Sobrevida por poucos meses.
Figura 21 – Características da síndrome de Edwards. Deformidades na cabeça e no mandíbula (A), nas mãos (B) e nos pés (C).
A trissomia do 13, chamada de síndrome de Patau (47, XX ou XY, +13), também é incompatível com a vida
em decorrência de graves deformidades na região externa do bebê (como o não desenvolvimento correto dos olhos e
da fenda palatina). Ocorre com frequência de 1 para 15000 a 25000 nascimentos.
Figura 22 – Trissomia do par 13, destacada em azul (47, XY, +13).
As características dessa síndrome são as seguintes:
 Retardo do crescimento e retardo mental grave
 Microcefalia e face deformada
 Olhos pequenos, ausentes ou cíclopes (no meio da testa)
 Orelhas deformadas
 Pescoço alado
 Lábio leporino e fenda platina
 Malformações cardíacas, renais, digestivas e do sistema nervoso central
 Polidactilia, Mãos fechadas com sobreposição do 2° e 5° dedos sobre o 3° e 4° dedos
 Pés em cadeira de balanço com calcanhar proeminente
 Morte rápida, abortos espontâneos ou sobrevida até o segundo ano.
12
Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética
Figura 23 – Principais características da síndrome de Patau nos bebês recém-nascidos.
Nulissomia
Decorre da perda dos dois cromossomos de um par homólogo. São geralmente letais, associadas a abortos
espontâneos.
Monossomias
Como já comentado geralmente está atrelado a aneuploidias sexuais. Esses distúrbios decorrem de um
processo chamado inativação de X. A inativação do cromossomo X é um processo que ocorre em todos os
mamíferos, resultando na inativação seletiva de alelos em um dos dois cromossomos X, nas fêmeas. Sabe-se que as
mulheres possuem dois cromossomos X, enquanto os homens possuem apenas um, sendo eles considerados
hemizigóticos para os genes deste cromossomo, mas as fêmeas tornam-se funcionalmente hemizigóticas pela
inativação de um dos alelos cromossômicos X parentais.
O cromossomo Y contém
pouquíssimos genes que, em sua
maioria, governam a função sexual do
macho, de modo que as fêmeas podem
passar perfeitamente bem sem este
cromossomo. O cromossomo X,
entretanto, contém muitos genes que
desempenham papéis vitais em ambos
os sexos, e, assim, algum método de
compensação de dose é necessário
para assegurar que as células
funcionem normalmente tanto com um
como com dois cromossomos X. Essa
compensação de dose se dá pelo
mecanismo de inativação do X,
frequentemente chamado de
lyonização, por ter sido a Dra. Mary
Lyon quem primeiro sugeriu esse
mecanismo.
Figura 24 – Representação do mecanismo de compensação de dose.
13
Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética
Cedo no desenvolvimento embrionário no estágio tardio da blástula (por volta do 13º ao 16º dias
de vida embrionária – blastocisto com menos de 100 células), a célula, de alguma maneira, conta seus cromossomos
X e inativa todos eles, menos um (por exemplo uma célula 47,XXX inativaria dois X). No entanto, quando os
cromossomos de uma célula feminina são observados na metáfase da mitose, o X ativo e o X inativo têm o mesmo
aspecto – mas isso é porque na metáfase mitótica todos os cromossomos estão condensados e inativos. Terminada
a divisão celular, o X inativo continua condensado, enquanto os demais cromossomos se descondensam e
reassumem as suas atividades de transcrição. Em algumas células, o X
inativo pode ser visto como um corpúsculo de Baar ou corpúsculo de
cromatina sexual, próximo à membrana do núcleo interfásico.
A escolha do X inativado na célula feminina 46,XX é aleatória
(com poucas exceções), de modo que algumas células inativarão o X
paterno e outras, o X materno. Feita a escolha, ela é memorizada, ou
seja, as células filhas inativam o mesmo X que a célula mãe. Uma
fêmea adulta é um mosaico de clones derivados de diferentes células
embrionárias, ou seja, compreendem misturas de linhagens celulares
nas quais o X paterno é inativado e linhagens em que o X materno é
inativado. Em um clone todas as células inativam o mesmo X, porém
entre clones, a escolha é aleatória.
Nem todos os genes do cromossomo X estão sujeitos à
inativação; os genes que escapam à inativação incluem aqueles em que
existe um homólogo funcional no cromossomo Y e alguns em que a
compensação de dose não parece ser importante.
Cerca de 25% dos genes do cromossomo X inativo escapam à
inativação e expressam-se tanto pelo cromossomo X ativo, como pelo
inativo. A maioria desses genes encontra-se no braço curto do
cromossomo X (Xp). Uma conseqüência desse processo é a clínica de
pacientes com Síndrome de Turner (45,X). Se todos os genes do cromossomo X inativo estivessem metilados, essas
pacientes não teriam nenhuma característica clínica diferente da população normal. Porém, a falta dos genes que
escapam à metilação do X inativo gera os sinas e sintomas característicos dessa síndrome.
Os genes que escapam à metilação são os das seguintes regiões:
 Região pseudoautossômica: homologia e crossing over com cromossomo Y.
 Região com cópia correlata no Y, mas sem crossing over.
 Região sem cópia correlata e sem crossing over com o Y. Ex: gene para esteroide sulfatase.
Cerca de 16 genes do cromossomo X inativo escapam à inativação, 12 deles têm homólogos no cromossomo
Y. Além disso, alguns genes apresentam inativação variável entre diferentes indivíduos e, desta forma, podemos
inferir que existam outros mecanismos envolvidos na compensação de dosagem entre homens e mulheres em
relação a genes ligados ao X.
O gene XIST determina o padrão de inativação
e inicia o silenciamento dos genes do cromossomo X.
Para que esse processo seja mantido, é preciso que os
genes inativados pelo XIST sejam metilados. A
metilação é um processo primariamente normal de
inativação de diversos tipos de genes. É o processo
mais importante na manutenção da inativação iniciada
pelo gene XIST. É feita nas citosinas do DNA pela
enzima DNA metiltransferase, sendo restrita ao
dinucleotídeo CpG. A metilação também está
relacionada à expressão do XIST. No cromossomo X
ativo o gene XIST encontra-se hipermetilado, o que
determina a ausência de sua expressão neste
cromossomo. Algumas proteínas histonas também
Figura 25 - Devido à inativação do X, toda mulher é um
mosaico de linhagens celulares com diferentes
cromossomos X ativos.
Figura 26 – Representação esquemática da localização do gene XIST
regulatório.
14
Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética
participam no processo de manutenção da inativação associadas à metilação.
Há algumas situações em que a inativação do X não é aleatória, sendo as principais:
 Lyonização seletiva: em situações onde há uma mutação presente em um dos cromossomos X, a
inativação ocorre preferencialmente no X onde há defeito, permitindo a seleção de X ativos sem
mutação e tendo, portanto, um efeito benéfico. Assim, as anomalias do X são melhores toleradas que
as anomalias similares dos autossomos;
 Lyonização negativa: neste caso também há uma mutação presente em um dos cromossomos X,
mas há uma inativação preferencial do cromossomo X normal, permanecendo o X mutado na maioria
dos cromossomos X ativos. Esta forma de inativação não aleatória tem conseqüências negativas,
podendo heterozigotas desenvolverem doenças ligadas ao X como Hemofilia, Distrofia Muscular de
Duchenne, Daltonismo, Síndrome de Wiskott-Aldrich e distúrbios oculares ligados ao X;
 Mutação em XIST: que proporciona alteração no processo aleatório;
 Células de tecido extra-embrionário: nas quais somente o X de
origem paterna é inativado.
A inativação não-aleatória gera expressividade variável de doenças
ligadas ao cromossomo X em mulheres heterozigotas. As mesmas podem ter
fenótipo desde normal até plenamente afetado, dependendo da porcentagem
de X ativo alterado e de X ativo não alterado por mutação, translocação ou
doença recessiva ligada ao X.
Além desses tipos de aneuploidias pode ocorrer modificações nos
cromossomos sexuais, chamadas de aneuploidias sexuais.
Aneuploidias Sexuais
Primeiramente podem ocorrer recombinações fora das regiões
pseudoautossômicas dos cromossomos sexuais gerando duas possíveis
mutações ( que ocorrem em 1 a cada 20000 nascimentos):
 Homens XX (46,XX): fenótipo masculino com alguma
sequência do Y (SRY) translocado para o braço X. Suas
características são: infertilidade, geralmente com genitália
externa normal, 10-20% com ambiguidade genital;
 Mulheres XY (46, XY): fenótipo feminino com perda do SRY.
Suas características são: infertilidade, gônada indiferenciada
(não forma ovário ou testículo).
Porém as aneuploidias sexuais clássicas levam a uma deleção ou
adição de cromossomo sexual, trazendo malefícios muito maiores do que em
modificações autossômicas.
A monossomia do X, chamada de síndrome de Turner (45, X), ocorre em mulheres (1 em cada 5000
nascimentos).
Figura 28 – Cariótipo da monossomia do X, destacada em azul.
Figura 27- Representação de mutações
decorrentes de recombinações erradas entre os
cromossomos sexuais.
15
Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética
A infertilidade depende da depleção do X que apresenta o locus para desenvolvimento de
ovários e fertilidade. No entanto são características comuns dessa síndrome:
 Normalmente de ocorrência esporádica
 Acomete o sexo feminino
 Ausência de corpúsculo de Barr
 Baixa estatura
 Ausência de mamas
 Genitália infantil
 Ausência de menstruação
 Esterilidade
 Pescoço alado
 Hipoplasia do lado esquerdo do coração
 Geralmente, função intelectual preservada (leve deficiência)
 Alto índice de abortos
 econhecidas ao nascimento por suas características fenotípicas distintas
 Pescoço alado
 Linfedema de mãos e pés (acúmulo de fluído linfático)
 Tórax amplo (mamas espaçadas)
 Hipoplasia de unhas (Unhas hiperconvexas)
 Implantação baixa cabelos
 Complicações posteriores: osteoporose, Deficiência auditiva, Hipertensão,
Estrabismo.
Seu tratamento consiste em administração de hormônios do crescimento, estrogênio e
progesterona.
Figura 30 - `Principais características externas da síndrome de Turner.
Figura 29 – Características da
síndrome de Turner em fetos
nascimortos.
16
Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética
A trissomia do 23, chamada de síndrome de Klinefelter (44A + XXY), ocorre 1 em cada 2000
nascidos vivos.
Figura 31 – Cariótipo da síndrome de Klinefelter, destacada a trissomia no quadrado.
Ela ocorre somente em indivíduos masculinos, sendo caracterizada pelos seguintes itens:
 Presença de 1 corpúsculo de Barr
 Altos, magros com membros alongados
 Leve debilidade mental
 Testículos pequenos e atrofiados: características sexuais secundárias não se desenvolvem
 Ginecomastia: risco grande de câncer de mama nestes pacientes
 Dorso e tórax estreitos
 Esterilidade (devido ao não desenvolvimento correto das células germinativas)
 Genitália infantil
 Distribuição feminina de gordura corporal.
Figura 32 – Principais características da síndrome de Klinefelter.
A trissomia do X, chamada de síndrome do triplo X (47, XXX), ocorre em 1 a cada 1000 nascimentos
femininos, mas não apresenta modificações fenotípicas.
17
Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética
Figura 33 – Cariótipo de uma trissomia do X, indicado em azul.
São características dessa síndrome:
 Dois cromossomos X inativados
 Estatura maior que Turner
 Fenotipicamente normais, muitas vezes não são diagnosticadas
 Geralmente férteis (algumas apresentam problemas)
 70% apresentam problemas de aprendizagem
 Sofre influência da idade materna avançada.
A pentassomia do X (49, XXXXX) é um distúrbio muito raro (1000 casos descritos) em que a gravidade da
doença se relaciona com o número de cromossomos adicionais. O fenótipo é semelhante a trissomia do par 21,
sendo que as meninas apresentam retardo mental grave. Além desses pontos são características variantes dessa
síndrome:
 Baixo peso ao nascer (55%)
 Deficit de crescimento e desenvolvimento (35%)
 Atraso da idade óssea (30%)
 Microcefalia (55%)
 Retardo mental (80%)
 Fissuras palpebrais inclinadas para cima (60%)
 Ponte nasal baixa (55%)
 Anomalia auricular (65%)
 Anomalias dentárias (50%)
 Fissura palatina (10%)
 Pescoço curto (45%)
 Baixa implantação cabelos (20%)
 Hipermobilidade articular (35%)
 Camptodactilia/clinodactilia (75%)
 Cardiopatia congênita (40%)
 Hipoplasia renal (10%)
 Hipoplasia de útero e ovários.
Figura 34 – Fenótipo típico de uma
pentassomia do X.
18
Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética
A síndrome do duplo Y (47, XYY) ocorre em 1 a cada 1000 meninos nascidos. Ela foi muito
associada a uma tendência assassina e mais viril no indivíduo, porém sem nenhuma confirmação científica desses
fatos.
Figura 35 – Cariótipo de um duplo Y, destacado em azul.
Mais de 1% do esperma de homens normais contém espermatozoides contendo dois Y. As características
clínicas dessa enfermidade são:
 Alta estatura
 Distúrbio de linguagem e/ou coordenação
 Geralmente, com inteligência normal, alguns com retardo mental leve
 Desenvolvimento gonadal normal
 Fenótipo normal
 Problemas comportamentais maiores do que os normais.
Figura 36 – Comparação entre um fenótipo masculino normal (à direita) e um com duplo Y (à esquerda, mais alto).
19
Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética
Alterações Estruturais Cromossômicas
Deleções
As deleções ocorrem por perda de segmentos cromossômicos. Esses defeitos
podem passar despercebidos, principalmente porque esses tipos de mutações
cromossômicas são altamente dependentes do número de genes perdidos. Geralmente
quando essas alterações conseguem gerar um fenótipo expressivo causam síndromes
graves. Existem dois tipos de deleções: intersticiais (quando ocorrem dentro do
cromossomo) e terminais (quando ocorrem em suas pontas).
Ocorre geralmente em uma frequência de 1 para 7000 nascidos vivos. São
identificadas duas síndromes, envolvendo o par 5 e par 4 cromossômico.
A síndrome de Cri Du Chat (também chamada de síndrome do miado de gato)
ocorre por uma deleção no cromossomo 5, Na realidade ocorre extensa deleção de
vários locais desse cromossomo, sendo que são variáveis entre os pacientes, mas
nenhum apresenta a banda 5p15 do mesmo.
Figura 38 – Cariótipo da síndrome de Cri Du Chat, sendo destacado a deleção característica.
São características fenotípicas dela:
 Choro semelhante ao miado de gato
 Retardo mental, motor
 Microcefalia, epicanto
 Hipotonia muscular
 Orelhas de baixa implantação
 Defeitos cardíacos.
Figura 37 – Tipos de deleções, ocorrendo
por excisão de genes cromossômicos.
Figura 39 – Característica fenotípica da
síndrome do miado de gato.
20
Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética
A síndrome de Wolf-Hirschhorn também é causada por uma deleção, só que no par cromossômico 4.
Figura 40 – Cariótipo da síndrome de Wolf, com deleção indicada pela seta.
São características dessa síndrome:
 Retardo no desenvolvimento psicomotor
 Peso baixo ao nascer
 Convulsões
 Microcefalia
 Estrabismo
 Lábio leporino
 Palato fendido
 Defeitos cardíacos congênitos
 Face atípica.
Duplicações
Ocorre repetições de segmentos cromossômicos. Da mesma maneira está relacionada com o número de
repetições que ocorrem. A principal síndrome que origina é a síndrome de Pallister-Killian. Nela ocorre duplicação de
parte do 12º par cromossômico ocorrendo trissomia ou tetrassomia de genes específicos da região duplicada.
Ocorrem traços cranio-faciais característicos, retardo mental, etc.
Figura 42 – Traços fenotípicos da síndrome de Killian.
Figura 41 – Fenótipo típico da síndrome de
Wolf.
21
Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética
Cromossomo em Anel
Essa mutação ocorre quando um cromossomo apresenta deleção em dois telômeros, expondo as regiões
chamadas de adesivas culminando na fusão das duas. Um pequeno cromossomo anel no par 22 causa a chamada
síndrome do Olho do Gato. As crianças afetadas por essa síndrome tem pupilas verticais, anomalias cardíacas e
urinárias e um crescimento anormal de pele no ânus.
Figura 43 – Fenótipos característicos da doença (à esquerda) e suas modificações a nível de cariótipo (à esquerda).
Isocrossomo
Ocorre quando a divisão do centrômero durante a divisão celular se dá transversalmente e não
longitudinalmente. Geralmente associada a uma síndrome com o mesmo fenótipo de Turner, mas que ocorre por
mecanismos distintos.
Figura 44 – Isocrossomo representado pelo esquema em B.
22
Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética
Inversões
Regiões específicas dos cromossomos se encontram dispostas de inverso, quebrando alguns genes e
modificando o pareamento dos cromossomos homólogos. Essas condições raramente estão associadas a
síndromes, somente o fazendo quando atingem um gene importante. Para o pareamento de cromossomos
homólogos deve ocorrer a formação de uma alça, que ,em decorrência dos compostos que estão nessa alça,divide
as inversões em dois tipos:
 Pericêntrica: um crossing-over dentro da alça de inversão (com a presença do centrômero) resulta em
formações de cromossomos recombinantes com duplicações e deleções do material genético;
 Paracêntrica: um crossing-over dentro da alça de inversão, sem a presença do centrômero, resulta em
formações de cromossomos recombinantes acêntricos e dicêntricos.
Figura 45 – Representação dos dois tipos de inversões.
Translocações
Nessas mutações ocorrem trnasferências de segmentos de um cromossomo para outro (não homólogo),
ocasionando a quebra em dois cromossomos e uma troca de genes quebrados. Pode ser dividida em três tipos:
 Recíprocas: troca de segmentos entre cromossomos que sofreram quebras;
 Não-recíprocas: um segmento de um cromossomo liga-se a outro (sem trocas);
 Robertsonianas (fusão cêntrica): 2 cromossomos acrocêntricos sofrem quebras nos centrômeros e se
unem (cariótipo = 45 cromossomos).
Figura 46 – Representações dos diversos tipos de translocações. Geralmente estão associadas a maneiras distintas de adquiri as trissomias
do 21 e do 18.
23
Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética
Imprinting Genômico
Com exceção dos cromossomos sexuais, X e Y, para a totalidade dos genes restantes dos cromossomos
autossômicos, existem dois alelos ativos, cujas manifestações fenotípicas dependem da sua dominância ou
recessividade. No entanto, vários estudos recentes, mostraram que, para alguns genes, o postulado da contribuição
eqüitativa dos progenitores não se aplica. Nesses casos excepcionais, observa-se que apenas um dos alelos,
paterno ou materno, é normalmente expresso. O alelo herdado de um dos progenitores comporta-se de forma distinta
do alelo herdado do outro progenitor. Este fenômeno denomina-se imprinting genômico, já que se admite que um dos
alelos parentais adquiriu, presumivelmente, uma marca (imprint) de natureza supostamente bioquímica.
O imprint deverá levar, direta ou indiretamente, à expressão diferencial de um dos alelos parentais. O
imprinting poderá assim ser o responsável pelo fato de algumas doenças genéticas apenas ocorrerem quando o gene
responsável é herdado por via materna, e outras quando o alelo em causa é de origem paterna, como é o caso das
síndromes de Prader-Willi e Angelman. Geralmente, se refere ao somatório das diferenças entre alelos como
epigenético, e elas incluem modificações covalentes do DNA (metilação), alteração da estrutura da cromatina e
acetilação das histonas.
O mecanismo de imprinting não é exclusivo da classe dos mamíferos, sendo observado também em fungos,
nematódios, insetos e protozoários, que apresentam elegantes processos de marcação genética, que resultam na
expessão diferenciada de genes.
Os genes imprintados raramente são encontrados em regiões isoladas. Em torno de 80% estão fisicamente
ligados em um agrupamento (cluster) com outros genes imprintados. A organização em agrupamentos deve refletir a
regulação coordenada dos genes em um domínio cromossômico. Há elementos controladores do imprinting (IC’S) em
alguns agrupamentos que são necessários para seu controle ou para a expressão dos genes imprintados.
Não existe uma tendência no padrão de metilação dos genes. Isto significa que a metilação pode estar
associada com a atividade e inatividade do gene. Existem inúmeras propriedades que permitem a distinção entre
genes expressos e não expressos e é razoável esperar que os dois alelos parentais mostrem tal diferença.
Geralmente, se refere ao somatório das diferenças entre alelos como epigenético, e elas incluem modificações
covalentes do DNA (metilação), alteração da estrutura da cromatina e acetilação das histonas.
O imprinting é, assim como outros mecanismos genéticos, passível de erros. Alterações no imprinting tem
sido relatadas como causa de diversas doenças humanas. Entre elas estão a síndrome de Prader-Willi e de
Algeman. A primeira ocorre em 1 a cada 10000 a 15000 nascidos vivos. Ocorre perda da expressão de genes do
cromossomo 15 de origem paterna: del(15q11-13). São características dessa síndrome:
 Ausência saciedade: hábitos alimentares excessivos
 Obesidade
 Período de lactância: dificuldade
de alimentação, hipotonia
 Estrabismo
 Retardo mental
 Mãos, pés e pênis pequenos
 Inférteis.
Figura 47 – Fenótipo típico da síndrome de Prader-Wili.
24
Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética
A segunda síndrome causada por defeitos nesse mecanismo de imprinting é a chamada
síndrome de Algeman (ou do boneco feliz). Ocorre perda da expressão de genes do cromossomo 15 de origem
materna: del(15q11-13). Apresenta as seguintes características:
 Riso frequente, língua grande
 Mandíbula aumentada
 Pouca coordenação muscular
 Convulsões (provocam agitação nos braços)
 Retardamento mental grave
 Peso altura baixos
 Alterações faciais
 Estrabismo
 Hiperatividade
 Irritabilidade
 Choros e risos imotivados.
Figura 48 – Fenótipo característico da síndrome do boneco feliz.
Dissomia Uniparental
Se a não disjunção ocorre em ambos os gametas que se unem para formar um zigoto, pode surgir uma
situação na qual um par de homólogos (ou parte deles) vem apenas de um genitor, em vez dos dois. Essa situação é
muito rara porque requer a ocorrência de dois eventos também raros e de forma simultânea. Geralmente não esta
associada a modificações fenotípicas, apenas sendo notadas quando ocorre alguma alteração em um gene
importante.
Referências
LEWIS, R. Genética Humana – Conceitos e Aplicações. Rio de Janeiro: Guanabara Koogan. 2004.
Thompson, Margaret W.; McInnes, R.R.; Willard, H. F.. Thompson & Thompson, Genética Médica. 5ª ed. RJ, Ed.
Guanabara Koogan, 2000.
ALBERTS, B.; ROBERTS, K.; LEWIS, J.; RAFF, M.; JOHNSON, A. Molecular Biology of the Cell. 5rd ed. Garland
Publishing Inc., New York & London, 2007.
READ, A.; DONNAI D. Genética Clínica: uma nova abordagem. Porto Alegre, RS: Artmed, 2008.

Mais conteúdo relacionado

Mais procurados

Mutações genéticas
Mutações genéticasMutações genéticas
Mutações genéticasJow Araujo
 
Mutações cromossômicas
Mutações cromossômicasMutações cromossômicas
Mutações cromossômicasThiago Faria
 
Aconselhamento genético
Aconselhamento genéticoAconselhamento genético
Aconselhamento genéticoLucas Fontes
 
Lipídios
LipídiosLipídios
Lipídiosemanuel
 
Aula 1 introdução a bioquímica metabólica
Aula 1   introdução a bioquímica metabólica Aula 1   introdução a bioquímica metabólica
Aula 1 introdução a bioquímica metabólica Silvana Arage
 
Herança dos cromossomos sexuais
Herança dos cromossomos sexuaisHerança dos cromossomos sexuais
Herança dos cromossomos sexuaisCésar Milani
 
Genetica de populações
Genetica de populaçõesGenetica de populações
Genetica de populaçõesUERGS
 
Alteracoes cromossomicas
Alteracoes cromossomicasAlteracoes cromossomicas
Alteracoes cromossomicasURCA
 
Genética quantitativa 2010 2v1
Genética quantitativa 2010 2v1Genética quantitativa 2010 2v1
Genética quantitativa 2010 2v1UERGS
 
Linkage
LinkageLinkage
Linkageletyap
 
Aula 8 mecanismos de coping
Aula 8 mecanismos de copingAula 8 mecanismos de coping
Aula 8 mecanismos de copingFuturos Medicos
 

Mais procurados (20)

Mutações genéticas
Mutações genéticasMutações genéticas
Mutações genéticas
 
Mutações cromossômicas
Mutações cromossômicasMutações cromossômicas
Mutações cromossômicas
 
Aconselhamento genético
Aconselhamento genéticoAconselhamento genético
Aconselhamento genético
 
Lipídios
LipídiosLipídios
Lipídios
 
Aula 1 introdução a bioquímica metabólica
Aula 1   introdução a bioquímica metabólica Aula 1   introdução a bioquímica metabólica
Aula 1 introdução a bioquímica metabólica
 
Genetica vi 2012
Genetica vi 2012Genetica vi 2012
Genetica vi 2012
 
Herança dos cromossomos sexuais
Herança dos cromossomos sexuaisHerança dos cromossomos sexuais
Herança dos cromossomos sexuais
 
Proteinas
ProteinasProteinas
Proteinas
 
Aminoácidos e proteínas
Aminoácidos e proteínasAminoácidos e proteínas
Aminoácidos e proteínas
 
Genetica de populações
Genetica de populaçõesGenetica de populações
Genetica de populações
 
Metabolismo do ferro
Metabolismo do ferroMetabolismo do ferro
Metabolismo do ferro
 
Alteracoes cromossomicas
Alteracoes cromossomicasAlteracoes cromossomicas
Alteracoes cromossomicas
 
Genética quantitativa 2010 2v1
Genética quantitativa 2010 2v1Genética quantitativa 2010 2v1
Genética quantitativa 2010 2v1
 
Mutação
MutaçãoMutação
Mutação
 
Genética – a herança ligada ao sexo
Genética – a herança ligada ao sexoGenética – a herança ligada ao sexo
Genética – a herança ligada ao sexo
 
Introducao metabolismo
Introducao metabolismoIntroducao metabolismo
Introducao metabolismo
 
Linkage
LinkageLinkage
Linkage
 
Como Aplicar Técnicas de Dinâmicas de Grupo para Dependentes Químicos?
Como Aplicar Técnicas de Dinâmicas de Grupo para Dependentes Químicos?Como Aplicar Técnicas de Dinâmicas de Grupo para Dependentes Químicos?
Como Aplicar Técnicas de Dinâmicas de Grupo para Dependentes Químicos?
 
Aula 8 mecanismos de coping
Aula 8 mecanismos de copingAula 8 mecanismos de coping
Aula 8 mecanismos de coping
 
Mutações
MutaçõesMutações
Mutações
 

Destaque

Nomenclatura e estrutura cromossômica resumida
Nomenclatura e estrutura cromossômica resumidaNomenclatura e estrutura cromossômica resumida
Nomenclatura e estrutura cromossômica resumidaMirna Cavalcante
 
Alcanos e Cicloalcanos - Nomenclatura, estrutura e propriedades
Alcanos e Cicloalcanos - Nomenclatura, estrutura e propriedadesAlcanos e Cicloalcanos - Nomenclatura, estrutura e propriedades
Alcanos e Cicloalcanos - Nomenclatura, estrutura e propriedadesRicardo Stefani
 
Slides estudo das mutaçoes
Slides estudo das mutaçoesSlides estudo das mutaçoes
Slides estudo das mutaçoesFabiano Reis
 
Atividade organizando os cromossomos humanos
Atividade   organizando os cromossomos humanosAtividade   organizando os cromossomos humanos
Atividade organizando os cromossomos humanosnetoalvirubro
 
Mutações Cromossómicas
Mutações CromossómicasMutações Cromossómicas
Mutações CromossómicasCatir
 
Bio 12 alteração do material genético
Bio 12   alteração do material genéticoBio 12   alteração do material genético
Bio 12 alteração do material genéticoNuno Correia
 
Ppt 15 ReproduçãO Sexuada E Variabilidade GenéTica
Ppt 15    ReproduçãO Sexuada E Variabilidade GenéTicaPpt 15    ReproduçãO Sexuada E Variabilidade GenéTica
Ppt 15 ReproduçãO Sexuada E Variabilidade GenéTicaNuno Correia
 
Bg 17 diversidade de estratégias na reprodução sexuada
Bg 17   diversidade de estratégias na reprodução sexuadaBg 17   diversidade de estratégias na reprodução sexuada
Bg 17 diversidade de estratégias na reprodução sexuadaNuno Correia
 
Aula 1 - parte 1 Mutação
Aula 1 - parte 1 MutaçãoAula 1 - parte 1 Mutação
Aula 1 - parte 1 Mutaçãoaivilsilveira
 
Mutações cromossômicas
Mutações cromossômicasMutações cromossômicas
Mutações cromossômicasKennet1
 
Alteração do material genético
Alteração do material genéticoAlteração do material genético
Alteração do material genéticoNuno Correia
 
Ppt 9 AlteraçãO Do Material GenéTico
Ppt 9    AlteraçãO Do Material GenéTicoPpt 9    AlteraçãO Do Material GenéTico
Ppt 9 AlteraçãO Do Material GenéTicoNuno Correia
 
Ppt 16 Diversidade De EstratéGias Na ReproduçãO Sexuada
Ppt 16   Diversidade De EstratéGias Na ReproduçãO SexuadaPpt 16   Diversidade De EstratéGias Na ReproduçãO Sexuada
Ppt 16 Diversidade De EstratéGias Na ReproduçãO SexuadaNuno Correia
 
Ppt 14 ReproduçãO Sexuada Meiose
Ppt 14    ReproduçãO Sexuada   MeiosePpt 14    ReproduçãO Sexuada   Meiose
Ppt 14 ReproduçãO Sexuada MeioseNuno Correia
 

Destaque (20)

Nomenclatura e estrutura cromossômica resumida
Nomenclatura e estrutura cromossômica resumidaNomenclatura e estrutura cromossômica resumida
Nomenclatura e estrutura cromossômica resumida
 
Doença de Huntington
Doença de HuntingtonDoença de Huntington
Doença de Huntington
 
Alcanos e Cicloalcanos - Nomenclatura, estrutura e propriedades
Alcanos e Cicloalcanos - Nomenclatura, estrutura e propriedadesAlcanos e Cicloalcanos - Nomenclatura, estrutura e propriedades
Alcanos e Cicloalcanos - Nomenclatura, estrutura e propriedades
 
Slides estudo das mutaçoes
Slides estudo das mutaçoesSlides estudo das mutaçoes
Slides estudo das mutaçoes
 
1EM #13 cromossomos
1EM #13 cromossomos1EM #13 cromossomos
1EM #13 cromossomos
 
Atividade organizando os cromossomos humanos
Atividade   organizando os cromossomos humanosAtividade   organizando os cromossomos humanos
Atividade organizando os cromossomos humanos
 
Cromossomos
CromossomosCromossomos
Cromossomos
 
Cromossomos
CromossomosCromossomos
Cromossomos
 
Mutações Cromossómicas
Mutações CromossómicasMutações Cromossómicas
Mutações Cromossómicas
 
Bio 12 alteração do material genético
Bio 12   alteração do material genéticoBio 12   alteração do material genético
Bio 12 alteração do material genético
 
Ppt 15 ReproduçãO Sexuada E Variabilidade GenéTica
Ppt 15    ReproduçãO Sexuada E Variabilidade GenéTicaPpt 15    ReproduçãO Sexuada E Variabilidade GenéTica
Ppt 15 ReproduçãO Sexuada E Variabilidade GenéTica
 
Bg 17 diversidade de estratégias na reprodução sexuada
Bg 17   diversidade de estratégias na reprodução sexuadaBg 17   diversidade de estratégias na reprodução sexuada
Bg 17 diversidade de estratégias na reprodução sexuada
 
Aula 1 - parte 1 Mutação
Aula 1 - parte 1 MutaçãoAula 1 - parte 1 Mutação
Aula 1 - parte 1 Mutação
 
Mutações cromossômicas
Mutações cromossômicasMutações cromossômicas
Mutações cromossômicas
 
Alteração do material genético
Alteração do material genéticoAlteração do material genético
Alteração do material genético
 
Ppt 9 AlteraçãO Do Material GenéTico
Ppt 9    AlteraçãO Do Material GenéTicoPpt 9    AlteraçãO Do Material GenéTico
Ppt 9 AlteraçãO Do Material GenéTico
 
Doenças Cromossómicas
Doenças CromossómicasDoenças Cromossómicas
Doenças Cromossómicas
 
Ppt 16 Diversidade De EstratéGias Na ReproduçãO Sexuada
Ppt 16   Diversidade De EstratéGias Na ReproduçãO SexuadaPpt 16   Diversidade De EstratéGias Na ReproduçãO Sexuada
Ppt 16 Diversidade De EstratéGias Na ReproduçãO Sexuada
 
Ppt 14 ReproduçãO Sexuada Meiose
Ppt 14    ReproduçãO Sexuada   MeiosePpt 14    ReproduçãO Sexuada   Meiose
Ppt 14 ReproduçãO Sexuada Meiose
 
Mutações
Mutações Mutações
Mutações
 

Semelhante a Cromossomos e mutações genética

Semelhante a Cromossomos e mutações genética (20)

Mitose
MitoseMitose
Mitose
 
Mitose e meiose
Mitose e meioseMitose e meiose
Mitose e meiose
 
Mitose e meiose
Mitose e meioseMitose e meiose
Mitose e meiose
 
Núcleo FIJ
Núcleo FIJNúcleo FIJ
Núcleo FIJ
 
Ciclo celular - PowerPoint resumo da matéria
Ciclo celular - PowerPoint resumo da matériaCiclo celular - PowerPoint resumo da matéria
Ciclo celular - PowerPoint resumo da matéria
 
O nucleo celular
O nucleo celularO nucleo celular
O nucleo celular
 
Núcleo celular
Núcleo celularNúcleo celular
Núcleo celular
 
Núcleo celular aprofundamento
Núcleo celular aprofundamentoNúcleo celular aprofundamento
Núcleo celular aprofundamento
 
2ª Aula Núcleo
2ª Aula Núcleo2ª Aula Núcleo
2ª Aula Núcleo
 
Mitose e meiose
Mitose e meioseMitose e meiose
Mitose e meiose
 
Estrutura celular 1
Estrutura celular 1Estrutura celular 1
Estrutura celular 1
 
Biologia Molecular e Celular - Aula 2
Biologia Molecular e Celular - Aula 2Biologia Molecular e Celular - Aula 2
Biologia Molecular e Celular - Aula 2
 
Divisoes celulares
Divisoes celularesDivisoes celulares
Divisoes celulares
 
Mitose
MitoseMitose
Mitose
 
Núcleo cromossomos
Núcleo cromossomosNúcleo cromossomos
Núcleo cromossomos
 
Aula de Núcleo Celular e DNA
Aula de Núcleo Celular e DNAAula de Núcleo Celular e DNA
Aula de Núcleo Celular e DNA
 
Genética
GenéticaGenética
Genética
 
Biologia ppt -_aula_14_diviso_
Biologia ppt -_aula_14_diviso_Biologia ppt -_aula_14_diviso_
Biologia ppt -_aula_14_diviso_
 
Núcleo celular
Núcleo celularNúcleo celular
Núcleo celular
 
mitoseemeios23181419-phpapp01.pdf
mitoseemeios23181419-phpapp01.pdfmitoseemeios23181419-phpapp01.pdf
mitoseemeios23181419-phpapp01.pdf
 

Último

Processos Psicológicos Básicos - Psicologia
Processos Psicológicos Básicos - PsicologiaProcessos Psicológicos Básicos - Psicologia
Processos Psicológicos Básicos - Psicologiaprofdeniseismarsi
 
Dengue no Brasil 2024 treinamento DDS pptx
Dengue no Brasil 2024 treinamento DDS pptxDengue no Brasil 2024 treinamento DDS pptx
Dengue no Brasil 2024 treinamento DDS pptxrafaelacushman21
 
Níveis de biosseguranca ,com um resumo completo
Níveis  de biosseguranca ,com um resumo completoNíveis  de biosseguranca ,com um resumo completo
Níveis de biosseguranca ,com um resumo completomiriancarvalho34
 
medicamentos+periodonti medicamentos+periodontia
medicamentos+periodonti medicamentos+periodontiamedicamentos+periodonti medicamentos+periodontia
medicamentos+periodonti medicamentos+periodontiaGabrieliCapeline
 
PNAB- POLITICA NACIONAL DE ATENÇAO BASICA
PNAB- POLITICA NACIONAL DE ATENÇAO BASICAPNAB- POLITICA NACIONAL DE ATENÇAO BASICA
PNAB- POLITICA NACIONAL DE ATENÇAO BASICAKaiannyFelix
 
BIOLOGIA CELULAR-Teoria Celular, Célula, Vírus, Estrutura Celular de Célula...
BIOLOGIA CELULAR-Teoria Celular, Célula, Vírus,   Estrutura Celular de Célula...BIOLOGIA CELULAR-Teoria Celular, Célula, Vírus,   Estrutura Celular de Célula...
BIOLOGIA CELULAR-Teoria Celular, Célula, Vírus, Estrutura Celular de Célula...kassiasilva1571
 
aula de codigo de etica dos profissionais da enfermagem
aula de codigo de etica dos profissionais da  enfermagemaula de codigo de etica dos profissionais da  enfermagem
aula de codigo de etica dos profissionais da enfermagemvaniceandrade1
 
XABCDE - atendimento ao politraumatizado
XABCDE - atendimento ao politraumatizadoXABCDE - atendimento ao politraumatizado
XABCDE - atendimento ao politraumatizadojosianeavila3
 
Histologia- Tecido muscular e nervoso.pdf
Histologia- Tecido muscular e nervoso.pdfHistologia- Tecido muscular e nervoso.pdf
Histologia- Tecido muscular e nervoso.pdfzsasukehdowna
 
Aula Processo de Enfermagem na atenção primária a saúde
Aula Processo de Enfermagem na atenção primária a saúdeAula Processo de Enfermagem na atenção primária a saúde
Aula Processo de Enfermagem na atenção primária a saúdeLviaResende3
 
Conceitos de Saúde Coletiva e Saúde Pública.pptx
Conceitos de Saúde Coletiva e Saúde Pública.pptxConceitos de Saúde Coletiva e Saúde Pública.pptx
Conceitos de Saúde Coletiva e Saúde Pública.pptxPedroHPRoriz
 
NR32---Treinamento-Perfurocortantes.pptx
NR32---Treinamento-Perfurocortantes.pptxNR32---Treinamento-Perfurocortantes.pptx
NR32---Treinamento-Perfurocortantes.pptxRayaneArruda2
 
Encontro Clínico e Operações - Fotos do Evento
Encontro Clínico e Operações - Fotos do EventoEncontro Clínico e Operações - Fotos do Evento
Encontro Clínico e Operações - Fotos do Eventowisdombrazil
 

Último (13)

Processos Psicológicos Básicos - Psicologia
Processos Psicológicos Básicos - PsicologiaProcessos Psicológicos Básicos - Psicologia
Processos Psicológicos Básicos - Psicologia
 
Dengue no Brasil 2024 treinamento DDS pptx
Dengue no Brasil 2024 treinamento DDS pptxDengue no Brasil 2024 treinamento DDS pptx
Dengue no Brasil 2024 treinamento DDS pptx
 
Níveis de biosseguranca ,com um resumo completo
Níveis  de biosseguranca ,com um resumo completoNíveis  de biosseguranca ,com um resumo completo
Níveis de biosseguranca ,com um resumo completo
 
medicamentos+periodonti medicamentos+periodontia
medicamentos+periodonti medicamentos+periodontiamedicamentos+periodonti medicamentos+periodontia
medicamentos+periodonti medicamentos+periodontia
 
PNAB- POLITICA NACIONAL DE ATENÇAO BASICA
PNAB- POLITICA NACIONAL DE ATENÇAO BASICAPNAB- POLITICA NACIONAL DE ATENÇAO BASICA
PNAB- POLITICA NACIONAL DE ATENÇAO BASICA
 
BIOLOGIA CELULAR-Teoria Celular, Célula, Vírus, Estrutura Celular de Célula...
BIOLOGIA CELULAR-Teoria Celular, Célula, Vírus,   Estrutura Celular de Célula...BIOLOGIA CELULAR-Teoria Celular, Célula, Vírus,   Estrutura Celular de Célula...
BIOLOGIA CELULAR-Teoria Celular, Célula, Vírus, Estrutura Celular de Célula...
 
aula de codigo de etica dos profissionais da enfermagem
aula de codigo de etica dos profissionais da  enfermagemaula de codigo de etica dos profissionais da  enfermagem
aula de codigo de etica dos profissionais da enfermagem
 
XABCDE - atendimento ao politraumatizado
XABCDE - atendimento ao politraumatizadoXABCDE - atendimento ao politraumatizado
XABCDE - atendimento ao politraumatizado
 
Histologia- Tecido muscular e nervoso.pdf
Histologia- Tecido muscular e nervoso.pdfHistologia- Tecido muscular e nervoso.pdf
Histologia- Tecido muscular e nervoso.pdf
 
Aula Processo de Enfermagem na atenção primária a saúde
Aula Processo de Enfermagem na atenção primária a saúdeAula Processo de Enfermagem na atenção primária a saúde
Aula Processo de Enfermagem na atenção primária a saúde
 
Conceitos de Saúde Coletiva e Saúde Pública.pptx
Conceitos de Saúde Coletiva e Saúde Pública.pptxConceitos de Saúde Coletiva e Saúde Pública.pptx
Conceitos de Saúde Coletiva e Saúde Pública.pptx
 
NR32---Treinamento-Perfurocortantes.pptx
NR32---Treinamento-Perfurocortantes.pptxNR32---Treinamento-Perfurocortantes.pptx
NR32---Treinamento-Perfurocortantes.pptx
 
Encontro Clínico e Operações - Fotos do Evento
Encontro Clínico e Operações - Fotos do EventoEncontro Clínico e Operações - Fotos do Evento
Encontro Clínico e Operações - Fotos do Evento
 

Cromossomos e mutações genética

  • 1. 1 Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética As mutações cromossômicas seguem quase os mesmos princípios das mutações gênicas, diferindo somente em escala e na possibilidade de detectá-las (assim como nas maneiras que são utilizadas para esse fim). Essas mutações são caracteristicamente maiores, ou seja, acometem um número elevado de nucleotídeos. Todas elas se baseiam em modificações nos cromossomos, sendo que estes devem ter uma explicação mais detalhada. Cromossomos Estas estruturas estão presentes em todos os seres vivos, desde procariontes até eucariontes, diferindo somente em características estruturais. Pode-se dizer que os cromossomos virais são compostos por DNA ou RNA (ou seja, podem ser compostos por estruturas unifilamentares ou não), podem ser circulares ou lineares e estão compactados e reservados na cabeça do vírus. Já os cromossomos bacterianos são compostos por uma molécula de DNA dupla fita compactada associada a algumas proteínas (nucleóide), apresentam poucas informações genéticas. Outra característica das bactérias é que boa parte delas apresenta o plasmídeo, que é uma dupla fita de DNA auto replicante. Os cromossomos humanos são muito maiores em comparação com os procariontes, carregando um subconjunto de genes que são arranjados linearmente ao longo do DNA. Macroscopicamente ele é formado por braços (de tamanhos variáveis), um centrômero (que liga esses braços), telômeros (pontas do cromossomo) e, por vezes, constrições secundárias e regiões chamadas de satélites. Ele é formado pela junção de duas cromátides irmãs, sendo estas a junção de dois braços adjacentes. Figura 1 – Representação de um cromossomo típico, juntamente com suas regiões principais. O centrômero é a maior constrição de um cromossomo, sendo chamada de primária, e é onde se ligam fibras do fuso. Ele é formado por milhares de bases de DNA que são repetições de uma sequência de 171 bases chamadas de alfa satélites. Além disso, ele inclui proteínas associadas ao centrômero, sendo que quando a mitose é iminente uma série delas forma o cinetócoro, o qual sai dessa estrutura e faz contato com as fibras do fuso. Esse cinetócoro aparece na prófase e desaparece na telófase. Também existem certas proteínas regulatórias de sua expressão, chamadas de CENP-A, que são transmitidas para células filhas. O centrômero divide os braços cromossômicos e, de acordo com essa divisão, ocorre a classificação dsse cromossomo em quatro grupos:  Metacêntrico: quando ocorrem dois conjuntos de braços de iguais tamanhos;  Submetacêntrico: ocorrem braços de diferentes tamanhos, sendo o conjunto maior chamado de “q” e o menor de “p”;  Acrocêntrico: cromossomo apresenta pequena quantidade de material genético em uma ponta e grande quantidade em outra;  Telocêntrico: apresenta somente dois braços (centrômero na ponta do cromossomo).
  • 2. 2 Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética Figura 2 – Divisão dos diversos tipos de cromossomos de acordo com a posição de seu centrômero, além de sua divisão na anáfase. Os telômeros são as “pontas” dos cromossomos, cada um consistindo de muitas repetições da sequência TTAGG que são encurtadas a cada divisão mitótica da célula. Eles estão relacionados com o envelhecimento e a geração de cromossomos circulares em algumas mutações cromossômicas. Os satélites podem ser identificados em cinco cromossomos humanos (13, 14, 15, 21 e 22) que se prolongam por meio de um fino pedículo do restante do cromossomo. Esses pedículos possuem muitas repetições de genes codificantes de RNA ribossômicos e proteínas ribossômicas, chamadas de regiões de organização nucleolar. Essas regiões coalescem para formar o nucléolo dentro do núcleo celular. Do ponto de vista microscópico os cromossomos são formados essencialmente por duas substâncias: proteínas (1/3 de histonas e 1/3 de outras proteínas) e DNA (terço restante). A esse grupo de compostos dá-se o nome de cromatina (que pode ser dividida em dois tipos, a eucromatina que se cora menos e apresenta a informação genica; e a heterocromatina, se cora mais e não apresenta expressividade genica). A molécula de DNA é extremamente grande, mas deve ser compactada a fim de se localizar em uma região tão pequena como o núcleo da célula. Isso se faz através de um complexo sistema de compactação que se baseia em diversas proteínas e níveis hierárquicos. O primeiro nível de compactação, que diminui em 1/3 o tamanho do DNA é a compactação pelos complexos de histonas. As histonas são proteínas que se organizam em um octâmero (formado pelos subtipos H1 -H2A -H2B -H3 -H4), apresentando grande quantidade de aminoácidos de carga positiva (lisina e arginina) e sendo assim forte ligação aos grupos fosfato (negativo) dos nucleotídeos. Esses aminoácidos se localizam somente em regiões específicas das histonas, fazendo com que o DNA se envolva duas vezes nesse complexo. Isso cria regiões espaçadas entre os octâmeros, resultando em uma aparência de colar de contas (ou contas de um rosário). Cada complexo de octâmeros de histonas mais as duas voltas de DNA formam o chamado nucleossomo. Figura 3 – Representação microscópica dos tipos de cromatina existentes na célula. Figura 4 – Aparência de Contas de Rosário do DNA envolvendo complexos de histonas.
  • 3. 3 Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética A seguir ocorre a helicoidização de todos esses complexos, formando uma estrutura muito mais complexa. Isso faz com que ocorra a organização do DNA + proteínas em solenoides por meio da ação de diversas proteínas juncionais que auxiliam na aderência entre os octâmeros de histonas. Pode-se dizer que é criado dessa maneira uma “corda” mais grossa que por sua vez se enrola continuamente ao redor de proteína central, formando outra “corda” ainda mais grossa. Com essa nova organização a cromatina pode se enrolar mais uma vez, formando assim o cromossomo. Figura 5 – Formação estrutural de um cromossomo, iniciando com os octâmeros de histonas e finalizando com a forte compactação do DNA sobre si mesmo (formando quase que um arcabouço). Todo esse processo é auxiliado por proteínas chamadas de topoisomerases. O DNA contido na cromatina fica inacessível à interação com outras proteínas, inibindo transitoriamente sua replicação e expressão gênica. No entanto as ligações realizadas com as histonas apresentam a possibilidade de serem desfeitas com o propósito de interação proteica com DNA ou para remodelamento das ligações com as histonas. Isso é realizado por meio de modificações histônicas, que podem ser de dois tipos:  Acetilação: adição de um grupo acetil ao grupo amino carregado positivamente do aminoácidoa lisina das histonas (neutraliza a carga positiva) levando a abertura das fibras de cromatina (para ativação gênica, por exemplo, como ocorre na inativação do cromossomo X em mamíferos (corpúsculo de Barr) onde a histona H4 esta insuficientemente acetilada);  Metilação: adição de grupos metila a arginina e lisina das histonas (também para ativação genica). Cromossomos homólogos são os membros de um par de cromossomos que carregam informações genéticas equivalentes (mesmos genes na mesma sequência), sendo que um foi herdado do pai e outro da mãe. Uma das funções mais importantes dos cromossomos é carregar e distribuir os genes entre os organismos parentais e filhos. Organismos diploides contem duas cópias de cada gene, sendo que se definem como genes alelos aqueles que ocupam o mesmo lócus em cromossomos homólogos. Estes alelos podem ser de três tipos distintos:  Homozigotos, quando o par de alelos for idêntico para um determinado gene;  Heterozigotos, quando esses alelos forem diferentes; Figura 6 – Cromossomos homólogos realizando recombinação.
  • 4. 4 Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética  Hemizigotos, no caso dos homens que possuem somente uma cópia de genes do cromossomo X sendo hemizigotos para determinados alelos (não apresentam correspondência em outro cromossomo homólgo). Figura 7 – Representação de alguns tipos de combinações de alelos. O primeiro é dito dominante, pois seu fenótipo (A) prevalece sobre o recessivo (a). O último é chamado de recessivo. Quando há a combinação dos dois resulta-se em heterozigose. As células de nosso corpo podem ser dividas, de acordo com os números e tipos cromossômicos, em dois grandes grupos: células germinativas, células que desenvolvem os gametas (ovulo e espermatozoides), apresentando um total de 23 cromossomos; e células somáticas, todas as outras células do corpo, apresentando 46 cromossomos (23pares). Os cromossomos também podem ser divididos em dois grupos, os somáticos (que foram descritos até o momento) e os sexuais. Os cromossomos sexuais desempenham um papel determinante na especificação sexual primária (formação das gônadas). Isso é realizado por meio de genes localizados em ambos os cromossomos sexuais e autossomos estão envolvidos na determinação e diferenciação sexual. Os cromossomos X e Y são bem diferentes e, portanto, não são homólogos. No entanto, eles têm pequenas regiões homólogas (pseudoautossômicas) e permitem o emparelhamento correto durante a meiose. Os genes encontrados nas regiões pseudoautossômicas apresentam o mesmo padrão de herança dos genes situados nos cromossomos autossômicos. Os genes das demais regiões, chamadas regiões diferenciais, apresentam um padrão característico de herança, relacionado ao cromossomo X ou ao Y. Por isso, o mecanismo de determinação do sexo está diretamente relacionado à herança das características ligadas ao sexo. Nos seres humanos, a determinação do sexo masculino depende mais especificamente do gene SRY, sigla para região do Y determinante do sexo (do inglês, Sex-determining Region Y). Embora o SRY seja determinante para constituição do sexo masculino, outros genes – ligados ao X, ao Y e até mesmo aos autossomos – também desempenham um papel na fertilidade e no desenvolvimento das diferenças entre os fenótipos sexuais, entre eles o fator de azoospermia, AZF (azoospermia factor), está localizado no braço longo deste cromossomo, posição Yq11, estando relacionado com o processo espermatogênico. Figura 8 – Cromossomos sexuais XY em micrografia. Figura 9 - Os cromossomos X e Y são homólogos apenas nas regiões pseudoautossômicas. Nos seres humanos, essas regiões estão presentes em ambas as extremidades dos cromossomos sexuais
  • 5. 5 Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética Citogenética Clínica Citogenética é a subdisciplina dentro da genética que liga variações cromossômicas a características específicas, inclusive doenças. Ela se baseia na observação cromossômica e posterior montagem de um mapa cromossômico, chamado de cariótipo. São indicações para essa análise:  Problemas precoces de crescimento e desenvolvimento: retardo no desenvolvimento, malformações, baixa estatura, genitália ambígua, retardo mental;  Natimortos e morte neonatal: incidência de anomalias cromossômicas muito elevada em natimortos deve ser seguida de uma análise cromossômica em natimortos e óbitos neonatais a fim de identificar uma causa (mais de 50% dos embriões que são abortados espontaneamente no 1º trimestre tem alguma alteração cromossômica);  Problemas de fertilidade: proporção grande de anomalias cromossômicas em casais com estórias de infertilidade;  História familiar: anomalia cromossômica em parente de 1° grau é uma indicação para análise cromossômica;  Neoplasia: praticamente todos os cânceres estão associados a uma ou mais anomalias cromossômicas;  Gestação em idade avançada: risco aumentado de anomalias em fetos concebidos em mulheres com mais de 35 anos. Existem muitas fontes de cromossomos, sendo que diferem entre indivíduos adultos e crianças. No primeiro grupo os glóbulos brancos separados de uma amostra de sangue ou células da pele coletadas no interior das bochechas em geral são a base para essas análises. Já em bebês/fetos pode ocorrer a retirada de uma das seguintes fontes:  Amniocentese: retirada do líquido amniótico por volta da 14ª semana de gestação;  Punção de vilosidades coriônicas: diagnóstico pré-natal precoce (10-12 semanas gestação), por via transvaginal ou transabdominal. Ocorre maior incidência de aborto;  Separação de células fetais: nova técnica que permite a identificação de células do feto na corrente sanguínea da mãe (em 70% das gestações, sendo a técnica menos invasiva). As metáfases das preparações citológicas são analisadas e fotografadas ao microscópio. Posteriormente, as cópias fotográficas são destinadas à montagem de um cariograma. Para a construção do cariograma humano ou de qualquer outro organismo, os cromossomos são recortados e dispostos de forma ordenada, de acordo com a sua morfologia e em ordem decrescente de tamanho, a menos que tenham sido diferenciado longitudinalmente, caso em que se deve também levar em conta o padrão de bandas de cada elemento. Nos laboratórios de citogenética humana, as análises cromossômicas de rotina para fins de diagnóstico têm sido realizadas, em geral, com base em cromossomos que tenham sido diferenciados em bandas G ou alguma outra banda equivalente, que permitem a separação inequívoca de cada par de homólogos. Alguns laboratórios dispõem do recurso de se fazer a montagem do cariograma humano no computador, com o uso de programas desenvolvidos para esta finalidade. Os 46 cromossomos humanos formam 23 pares, sendo 22 pares de autossomos e um par sexual. Os pares de autossomos são numerados de 1 a 22 em ordem decrescente de tamanho e os cromossomos sexuais recebem a notação X e Y. Os pares cromossômicos, incluindo os sexuais, são reunidos em 7 grupos designados pelas letras A até G. Dentro de cada grupo, a identificação individual dos cromossomos nem sempre é possível quando se emprega determinadas técnicas. Isso pode ser feito com segurança apenas para alguns elementos do cariótipo, de modo que durante a montagem do cariograma com coloração convencional, a maioria dos pares cromossomos são tentativamente emparelhados. Para a distribuição nos diferentes grupos, deve-se obedecer os seguintes critérios: Figura 10 – As três fontes utilizadas para análise cromossômica fetal.
  • 6. 6 Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética  Grupo A: compreende os seis maiores cromossomos. O par 1 é metacêntrico, o 2 é submetacêntrico e o 3 é também metacêntrico, porém de tamanho menor que o par 1;  Grupo B: inclui os pares 4 e 5 que são submetacêntricos. O tamanho de seus braços curtos equivale a 1/3 de seus braços longos. Os dois pares de homólogos não são distinguíveis morfologicamente entre si;  Grupo C: compreende 15 cromossomos no homem e 16 na mulher, pois o cromossomo X é incluído nesse grupo. São metacêntricos ou submetacêntricos, sendo difícil a identificação individual dos mesmos. Contudo, por serem os maiores do grupo, os pares 6 e 7 são frequentemente identificados, assim como o X, cujo tamanho está entre o 7º. e 8º. par. Algumas vezes, um dos elementos do par 9 (raramente ambos) ode ser reconhecido, devido a uma constrição secundária proximal nos braços longos;  Grupo D: compreende três pares de acrocêntricos de tamanho médio. São cromossomos portadores de constrição secundária e satélite nos braços curtos, porém nem sempre visíveis. Os pares 13, 14 e 15 não são distinguíveis morfologicamente entre si;  Grupo E; inclui três pares de cromossomos dos quais o 16 é metacêntrico enquanto o 17 e 18 são submetacêntricos. O par 16 é identificado morfologicamente, o que nem sempre acontece com os demais, embora o par 17 tenha os braços curtos ligeiramente maiores que os do par 18;  Grupo F: inclui os pares 19 e 20, os menores metacêntricos, não distinguíveis morfologicamenteentre si;  Grupo G: compreende 4 cromossomos na mulher e 5 no homem, pois o cromossomo Y está incluído neste grupo. Os pares 21 e 22 e o Y são os menores acrocêntricos. Os pares 21 e 22 apresentam constrição secundária e satélite, nem sempre visíveis, nos braços curtos. Não é possível a distinção morfológica desses dois pares. O Y é identificável em muitos casos pelo tamanho maior ou menor que o dos outros autossomos, bem como pela posição paralela dos braços longos. O cromossomo Y se caracteriza também pela ausência de constrição secundaria e satélite, não participando da associação de acrocêntricos. Figura 11 – Cariótipos normais de um homem (46, XY), à esquerda, e de uma mulher normal (46, XX), à esquerda. A nomenclatura utilizada na descrição de um cariótipo é a seguinte: o número de cromossomos, cromossomos sexuais, alteração. Por exemplo:  46,XX – mulher normal;  47,XY,+21 – homem com trissomia do 21;  46,XX, t(1;22)(q25;q13) – mulher com translocação entre os cromossomos 1 e 22, com pontos de quebra em 1q25 e 22q13;  46,XY,del(2)(q34,q36.2) – homem com deleção no braço longo do cromossomo 2, que retira o material localizado entre 2q34 e 2q36.2. Alterações Cromossômicas As mutações cromossômicas podem ocorrer de duas maneiras: no número de cromossomos (chamadas de numéricas), em que ocorrem erros durante a divisão celular; e na estrutura dos cromossomos (chamadas de
  • 7. 7 Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética estruturais), resultam de quebras cromossômicas, maioria constituída de eventos esporádicos causados por quebras aleatórias. As modificações do primeiro grupo podem ser de dois tipos: as euploidias (subdividindo-se em haploidias, triploidias ou poliploidias), e aneuploidias (subdividindo-se em nulissomia, trissomia e monossomia). O segundo grupo também pode ser divido em dois subgrupos: decorrentes de alterações no número de genes (deleções, duplicações, cromossomos em anel e isocrossomos), e mudanças na localização do gene (inversões e translocações). Tabela 1 – Todos os tipos de mutações de acordo com seus respectivos grupos. Euploidias Nessas alterações cromossômicas ocorrem alterações que envolvem todo genoma originando células cujo número de cromossomos é um múltiplo exato do número haploide. Todas essas condições estão relacionadas a abortos espontâneos ou morte muito prematura do bebê por lesões e disfunções múltiplas em todos os órgãos. São divididas de acordo com o número de cromossomos homólogos, em três tipos. Haploidias Ocorre apenas um cromossomo ao invés de um par de homólogos. É representado por “n”. Todos os fetos são precocemente abortados. Triploidias Ocorre um cromossomo a mais no par de homólogos. É representado por “3n”. Geralmente ocorre por dispermia (fertilização por 2 espermatozóides), ou pelo insucesso na meiose (resulta óvulo/espermatozóide 2n). Figura 12 – Exemplo de triploidia, com o feto à esquerda e seu cariótipo confirmando o diagnóstico patológico, à direita.
  • 8. 8 Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética Poliploidias Ocorre mais de três cromossomos ao invés do par de homólogos característico. Geralmente se apresenta como uma tetraploidia (representado por “4n”, tendo cariótipo de 92, XXXX ou 92, XXYY). É representado pelo número de cromossomos homólogos seguido de “n”. Todos os fetos são abortados. Ocorre por insucesso na clivagem inicial do zigoto. Figura 13 – Cariótipo de tetraploidia (92, XXXX). Aneuploidias São alterações que envolvem um ou mais cromossomos de cada par, originando múltiplos não exatos de cada par. São causadas pela não disjunção de um ou mais cromossomos durante a anáfase na meiose I e/ou II (maior parte) ou na anáfase da mitose (melhor representante é uma alteração chamada de mosaico). Figura 14 – Representação esquemática das principais causas de aneuploidias. Essas alterações podem ser dividas de acordo com os cromossomos que afeta em autossômicas (ocorrem do par 1 ao 21 de cromossomos) ou sexuais (ocorrem no par 23). No entanto elas são mais comumente divididas de acordo com a alteração no número cromossômico em trissomias (geralmente autossômica), monossomia (geralmente sexuais) e nulissomia. Trissomia Como já comentado são mais atreladas a aneuploidias autossômicas, sendo que o indivíduo apresenta vida viável somente quando ocorre nos pares 13, 18 ou 21 (pois estes cromossomos apresentam menor número de genes). Geralmente estão atreladas a retardo mental e no desenvolvimento, além de anomalias congênitas múltiplas, em decorrência da dose extra de genes específicos do cromossomo adicional. No entanto é importante frisar que podem ocorrer trissomias em quaisquer cromossomos só que estas alterações estão atreladas a abortos espontâneos.
  • 9. 9 Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética Figura 15 – Número de genes aproximado de cada cromossomo. Região destacada representa os cromossomos que apresentam menos genes e que, justamente, são os que apresentam sobrevida viável em trissomias. A trissomia do par 21, chamada de síndrome de Down (47, XY ou XX, +21), é o distúrbio cromossômico mais recorrente e conhecido. Figura 16 – Cariótipo com trissomia do par 21, destacado em azul (47, XY, +21). Ocorre um caso a cada ~800 nascidos vivos e é a única trissomia compatível com a vida adulta. Sua incidência é maior em filhos de mulheres com mais de 35 anos, em decorrência de dois fatores principais:  Alta porcentagem de casos em que gameta anormal surge na meiose I materna;  Modelo “ovócito velho”: quanto mais velho o ovócito, maior a chance de ocorrer erro na disjunção dos cromossomos. Todos os sinais presentes nessa síndrome são decorrentes do efeito direto do gene extra no inicio do desenvolvimento do indivíduo, sendo os mais recorrentes:  Debilidade mental;  Orelhas de baixa implantação;  Testa inclinada;  Língua protraída, boca aberta;  Estrabismo;  Eritema (vermelhidão);  Defeitos cardíacos, sendo que ¼ dos nascidos morrem por isso antes de completar 1 ano de idade;  Prega simiesca (palma da mão com prega única), mãos curtas e largas e o quinto dedo encurvado;
  • 10. 10 Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética  Ponte nasal achatada, Pálpebras “mongóis”;  Esterilidade comum nos meninos;  Pescoço curto com frouxidão na pele da nuca;  Pés com separação entre dedão e segundo dedo. A trissomia do 18, chamada de Síndrome de Edwards (47, XY ou XX, +18) é incompatível com a vida adulta, mas a criança ainda nasce e vive por um curto período de tempo. Ocorre na frequência de 1 para 7500 nascimentos. Figura 19 – Trissomia do par 18, destacado em azul (47, XY, +18). Geralmente apresenta aparência externa quase que normal, mas tem um grave retardo mental assim como alterações internas profundas. O bebê é caracterizado por:  Deformidade facial  Hipertonia (aumento da rigidez dos músculos)  Retardo mental e do desenvolvimento  Anomalias de extremidades (dedos cerrados, encurvados)  Malformações cardíacas, renais, genitais e respiratórias  Lábio leporino e palato fendido  Óbito em 90% dos casos antes do primeiro ano de vida  Maxilar retraído ou ausente  Cabeça com occipúcio proeminente Figura 17 – Principais características externas da Síndrome de Down. Figura 18 – Fácies mongol, característica dessa síndrome. Figura 20 – Feto com síndrome de Edwards. Perceber mandíbula retraída e posição dos dedos.
  • 11. 11 Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética  Mãos fechadas com sobreposição do 2° e 5° dedos sobre o 3° e 4° dedos  Pés em cadeira de balanço com calcanhar proeminente, unhas hipoplásicas  Orelhas grandes, malformadas e de baixa implantação  95% dos fetos com trissomia são abortados naturalmente  Sobrevida por poucos meses. Figura 21 – Características da síndrome de Edwards. Deformidades na cabeça e no mandíbula (A), nas mãos (B) e nos pés (C). A trissomia do 13, chamada de síndrome de Patau (47, XX ou XY, +13), também é incompatível com a vida em decorrência de graves deformidades na região externa do bebê (como o não desenvolvimento correto dos olhos e da fenda palatina). Ocorre com frequência de 1 para 15000 a 25000 nascimentos. Figura 22 – Trissomia do par 13, destacada em azul (47, XY, +13). As características dessa síndrome são as seguintes:  Retardo do crescimento e retardo mental grave  Microcefalia e face deformada  Olhos pequenos, ausentes ou cíclopes (no meio da testa)  Orelhas deformadas  Pescoço alado  Lábio leporino e fenda platina  Malformações cardíacas, renais, digestivas e do sistema nervoso central  Polidactilia, Mãos fechadas com sobreposição do 2° e 5° dedos sobre o 3° e 4° dedos  Pés em cadeira de balanço com calcanhar proeminente  Morte rápida, abortos espontâneos ou sobrevida até o segundo ano.
  • 12. 12 Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética Figura 23 – Principais características da síndrome de Patau nos bebês recém-nascidos. Nulissomia Decorre da perda dos dois cromossomos de um par homólogo. São geralmente letais, associadas a abortos espontâneos. Monossomias Como já comentado geralmente está atrelado a aneuploidias sexuais. Esses distúrbios decorrem de um processo chamado inativação de X. A inativação do cromossomo X é um processo que ocorre em todos os mamíferos, resultando na inativação seletiva de alelos em um dos dois cromossomos X, nas fêmeas. Sabe-se que as mulheres possuem dois cromossomos X, enquanto os homens possuem apenas um, sendo eles considerados hemizigóticos para os genes deste cromossomo, mas as fêmeas tornam-se funcionalmente hemizigóticas pela inativação de um dos alelos cromossômicos X parentais. O cromossomo Y contém pouquíssimos genes que, em sua maioria, governam a função sexual do macho, de modo que as fêmeas podem passar perfeitamente bem sem este cromossomo. O cromossomo X, entretanto, contém muitos genes que desempenham papéis vitais em ambos os sexos, e, assim, algum método de compensação de dose é necessário para assegurar que as células funcionem normalmente tanto com um como com dois cromossomos X. Essa compensação de dose se dá pelo mecanismo de inativação do X, frequentemente chamado de lyonização, por ter sido a Dra. Mary Lyon quem primeiro sugeriu esse mecanismo. Figura 24 – Representação do mecanismo de compensação de dose.
  • 13. 13 Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética Cedo no desenvolvimento embrionário no estágio tardio da blástula (por volta do 13º ao 16º dias de vida embrionária – blastocisto com menos de 100 células), a célula, de alguma maneira, conta seus cromossomos X e inativa todos eles, menos um (por exemplo uma célula 47,XXX inativaria dois X). No entanto, quando os cromossomos de uma célula feminina são observados na metáfase da mitose, o X ativo e o X inativo têm o mesmo aspecto – mas isso é porque na metáfase mitótica todos os cromossomos estão condensados e inativos. Terminada a divisão celular, o X inativo continua condensado, enquanto os demais cromossomos se descondensam e reassumem as suas atividades de transcrição. Em algumas células, o X inativo pode ser visto como um corpúsculo de Baar ou corpúsculo de cromatina sexual, próximo à membrana do núcleo interfásico. A escolha do X inativado na célula feminina 46,XX é aleatória (com poucas exceções), de modo que algumas células inativarão o X paterno e outras, o X materno. Feita a escolha, ela é memorizada, ou seja, as células filhas inativam o mesmo X que a célula mãe. Uma fêmea adulta é um mosaico de clones derivados de diferentes células embrionárias, ou seja, compreendem misturas de linhagens celulares nas quais o X paterno é inativado e linhagens em que o X materno é inativado. Em um clone todas as células inativam o mesmo X, porém entre clones, a escolha é aleatória. Nem todos os genes do cromossomo X estão sujeitos à inativação; os genes que escapam à inativação incluem aqueles em que existe um homólogo funcional no cromossomo Y e alguns em que a compensação de dose não parece ser importante. Cerca de 25% dos genes do cromossomo X inativo escapam à inativação e expressam-se tanto pelo cromossomo X ativo, como pelo inativo. A maioria desses genes encontra-se no braço curto do cromossomo X (Xp). Uma conseqüência desse processo é a clínica de pacientes com Síndrome de Turner (45,X). Se todos os genes do cromossomo X inativo estivessem metilados, essas pacientes não teriam nenhuma característica clínica diferente da população normal. Porém, a falta dos genes que escapam à metilação do X inativo gera os sinas e sintomas característicos dessa síndrome. Os genes que escapam à metilação são os das seguintes regiões:  Região pseudoautossômica: homologia e crossing over com cromossomo Y.  Região com cópia correlata no Y, mas sem crossing over.  Região sem cópia correlata e sem crossing over com o Y. Ex: gene para esteroide sulfatase. Cerca de 16 genes do cromossomo X inativo escapam à inativação, 12 deles têm homólogos no cromossomo Y. Além disso, alguns genes apresentam inativação variável entre diferentes indivíduos e, desta forma, podemos inferir que existam outros mecanismos envolvidos na compensação de dosagem entre homens e mulheres em relação a genes ligados ao X. O gene XIST determina o padrão de inativação e inicia o silenciamento dos genes do cromossomo X. Para que esse processo seja mantido, é preciso que os genes inativados pelo XIST sejam metilados. A metilação é um processo primariamente normal de inativação de diversos tipos de genes. É o processo mais importante na manutenção da inativação iniciada pelo gene XIST. É feita nas citosinas do DNA pela enzima DNA metiltransferase, sendo restrita ao dinucleotídeo CpG. A metilação também está relacionada à expressão do XIST. No cromossomo X ativo o gene XIST encontra-se hipermetilado, o que determina a ausência de sua expressão neste cromossomo. Algumas proteínas histonas também Figura 25 - Devido à inativação do X, toda mulher é um mosaico de linhagens celulares com diferentes cromossomos X ativos. Figura 26 – Representação esquemática da localização do gene XIST regulatório.
  • 14. 14 Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética participam no processo de manutenção da inativação associadas à metilação. Há algumas situações em que a inativação do X não é aleatória, sendo as principais:  Lyonização seletiva: em situações onde há uma mutação presente em um dos cromossomos X, a inativação ocorre preferencialmente no X onde há defeito, permitindo a seleção de X ativos sem mutação e tendo, portanto, um efeito benéfico. Assim, as anomalias do X são melhores toleradas que as anomalias similares dos autossomos;  Lyonização negativa: neste caso também há uma mutação presente em um dos cromossomos X, mas há uma inativação preferencial do cromossomo X normal, permanecendo o X mutado na maioria dos cromossomos X ativos. Esta forma de inativação não aleatória tem conseqüências negativas, podendo heterozigotas desenvolverem doenças ligadas ao X como Hemofilia, Distrofia Muscular de Duchenne, Daltonismo, Síndrome de Wiskott-Aldrich e distúrbios oculares ligados ao X;  Mutação em XIST: que proporciona alteração no processo aleatório;  Células de tecido extra-embrionário: nas quais somente o X de origem paterna é inativado. A inativação não-aleatória gera expressividade variável de doenças ligadas ao cromossomo X em mulheres heterozigotas. As mesmas podem ter fenótipo desde normal até plenamente afetado, dependendo da porcentagem de X ativo alterado e de X ativo não alterado por mutação, translocação ou doença recessiva ligada ao X. Além desses tipos de aneuploidias pode ocorrer modificações nos cromossomos sexuais, chamadas de aneuploidias sexuais. Aneuploidias Sexuais Primeiramente podem ocorrer recombinações fora das regiões pseudoautossômicas dos cromossomos sexuais gerando duas possíveis mutações ( que ocorrem em 1 a cada 20000 nascimentos):  Homens XX (46,XX): fenótipo masculino com alguma sequência do Y (SRY) translocado para o braço X. Suas características são: infertilidade, geralmente com genitália externa normal, 10-20% com ambiguidade genital;  Mulheres XY (46, XY): fenótipo feminino com perda do SRY. Suas características são: infertilidade, gônada indiferenciada (não forma ovário ou testículo). Porém as aneuploidias sexuais clássicas levam a uma deleção ou adição de cromossomo sexual, trazendo malefícios muito maiores do que em modificações autossômicas. A monossomia do X, chamada de síndrome de Turner (45, X), ocorre em mulheres (1 em cada 5000 nascimentos). Figura 28 – Cariótipo da monossomia do X, destacada em azul. Figura 27- Representação de mutações decorrentes de recombinações erradas entre os cromossomos sexuais.
  • 15. 15 Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética A infertilidade depende da depleção do X que apresenta o locus para desenvolvimento de ovários e fertilidade. No entanto são características comuns dessa síndrome:  Normalmente de ocorrência esporádica  Acomete o sexo feminino  Ausência de corpúsculo de Barr  Baixa estatura  Ausência de mamas  Genitália infantil  Ausência de menstruação  Esterilidade  Pescoço alado  Hipoplasia do lado esquerdo do coração  Geralmente, função intelectual preservada (leve deficiência)  Alto índice de abortos  econhecidas ao nascimento por suas características fenotípicas distintas  Pescoço alado  Linfedema de mãos e pés (acúmulo de fluído linfático)  Tórax amplo (mamas espaçadas)  Hipoplasia de unhas (Unhas hiperconvexas)  Implantação baixa cabelos  Complicações posteriores: osteoporose, Deficiência auditiva, Hipertensão, Estrabismo. Seu tratamento consiste em administração de hormônios do crescimento, estrogênio e progesterona. Figura 30 - `Principais características externas da síndrome de Turner. Figura 29 – Características da síndrome de Turner em fetos nascimortos.
  • 16. 16 Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética A trissomia do 23, chamada de síndrome de Klinefelter (44A + XXY), ocorre 1 em cada 2000 nascidos vivos. Figura 31 – Cariótipo da síndrome de Klinefelter, destacada a trissomia no quadrado. Ela ocorre somente em indivíduos masculinos, sendo caracterizada pelos seguintes itens:  Presença de 1 corpúsculo de Barr  Altos, magros com membros alongados  Leve debilidade mental  Testículos pequenos e atrofiados: características sexuais secundárias não se desenvolvem  Ginecomastia: risco grande de câncer de mama nestes pacientes  Dorso e tórax estreitos  Esterilidade (devido ao não desenvolvimento correto das células germinativas)  Genitália infantil  Distribuição feminina de gordura corporal. Figura 32 – Principais características da síndrome de Klinefelter. A trissomia do X, chamada de síndrome do triplo X (47, XXX), ocorre em 1 a cada 1000 nascimentos femininos, mas não apresenta modificações fenotípicas.
  • 17. 17 Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética Figura 33 – Cariótipo de uma trissomia do X, indicado em azul. São características dessa síndrome:  Dois cromossomos X inativados  Estatura maior que Turner  Fenotipicamente normais, muitas vezes não são diagnosticadas  Geralmente férteis (algumas apresentam problemas)  70% apresentam problemas de aprendizagem  Sofre influência da idade materna avançada. A pentassomia do X (49, XXXXX) é um distúrbio muito raro (1000 casos descritos) em que a gravidade da doença se relaciona com o número de cromossomos adicionais. O fenótipo é semelhante a trissomia do par 21, sendo que as meninas apresentam retardo mental grave. Além desses pontos são características variantes dessa síndrome:  Baixo peso ao nascer (55%)  Deficit de crescimento e desenvolvimento (35%)  Atraso da idade óssea (30%)  Microcefalia (55%)  Retardo mental (80%)  Fissuras palpebrais inclinadas para cima (60%)  Ponte nasal baixa (55%)  Anomalia auricular (65%)  Anomalias dentárias (50%)  Fissura palatina (10%)  Pescoço curto (45%)  Baixa implantação cabelos (20%)  Hipermobilidade articular (35%)  Camptodactilia/clinodactilia (75%)  Cardiopatia congênita (40%)  Hipoplasia renal (10%)  Hipoplasia de útero e ovários. Figura 34 – Fenótipo típico de uma pentassomia do X.
  • 18. 18 Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética A síndrome do duplo Y (47, XYY) ocorre em 1 a cada 1000 meninos nascidos. Ela foi muito associada a uma tendência assassina e mais viril no indivíduo, porém sem nenhuma confirmação científica desses fatos. Figura 35 – Cariótipo de um duplo Y, destacado em azul. Mais de 1% do esperma de homens normais contém espermatozoides contendo dois Y. As características clínicas dessa enfermidade são:  Alta estatura  Distúrbio de linguagem e/ou coordenação  Geralmente, com inteligência normal, alguns com retardo mental leve  Desenvolvimento gonadal normal  Fenótipo normal  Problemas comportamentais maiores do que os normais. Figura 36 – Comparação entre um fenótipo masculino normal (à direita) e um com duplo Y (à esquerda, mais alto).
  • 19. 19 Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética Alterações Estruturais Cromossômicas Deleções As deleções ocorrem por perda de segmentos cromossômicos. Esses defeitos podem passar despercebidos, principalmente porque esses tipos de mutações cromossômicas são altamente dependentes do número de genes perdidos. Geralmente quando essas alterações conseguem gerar um fenótipo expressivo causam síndromes graves. Existem dois tipos de deleções: intersticiais (quando ocorrem dentro do cromossomo) e terminais (quando ocorrem em suas pontas). Ocorre geralmente em uma frequência de 1 para 7000 nascidos vivos. São identificadas duas síndromes, envolvendo o par 5 e par 4 cromossômico. A síndrome de Cri Du Chat (também chamada de síndrome do miado de gato) ocorre por uma deleção no cromossomo 5, Na realidade ocorre extensa deleção de vários locais desse cromossomo, sendo que são variáveis entre os pacientes, mas nenhum apresenta a banda 5p15 do mesmo. Figura 38 – Cariótipo da síndrome de Cri Du Chat, sendo destacado a deleção característica. São características fenotípicas dela:  Choro semelhante ao miado de gato  Retardo mental, motor  Microcefalia, epicanto  Hipotonia muscular  Orelhas de baixa implantação  Defeitos cardíacos. Figura 37 – Tipos de deleções, ocorrendo por excisão de genes cromossômicos. Figura 39 – Característica fenotípica da síndrome do miado de gato.
  • 20. 20 Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética A síndrome de Wolf-Hirschhorn também é causada por uma deleção, só que no par cromossômico 4. Figura 40 – Cariótipo da síndrome de Wolf, com deleção indicada pela seta. São características dessa síndrome:  Retardo no desenvolvimento psicomotor  Peso baixo ao nascer  Convulsões  Microcefalia  Estrabismo  Lábio leporino  Palato fendido  Defeitos cardíacos congênitos  Face atípica. Duplicações Ocorre repetições de segmentos cromossômicos. Da mesma maneira está relacionada com o número de repetições que ocorrem. A principal síndrome que origina é a síndrome de Pallister-Killian. Nela ocorre duplicação de parte do 12º par cromossômico ocorrendo trissomia ou tetrassomia de genes específicos da região duplicada. Ocorrem traços cranio-faciais característicos, retardo mental, etc. Figura 42 – Traços fenotípicos da síndrome de Killian. Figura 41 – Fenótipo típico da síndrome de Wolf.
  • 21. 21 Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética Cromossomo em Anel Essa mutação ocorre quando um cromossomo apresenta deleção em dois telômeros, expondo as regiões chamadas de adesivas culminando na fusão das duas. Um pequeno cromossomo anel no par 22 causa a chamada síndrome do Olho do Gato. As crianças afetadas por essa síndrome tem pupilas verticais, anomalias cardíacas e urinárias e um crescimento anormal de pele no ânus. Figura 43 – Fenótipos característicos da doença (à esquerda) e suas modificações a nível de cariótipo (à esquerda). Isocrossomo Ocorre quando a divisão do centrômero durante a divisão celular se dá transversalmente e não longitudinalmente. Geralmente associada a uma síndrome com o mesmo fenótipo de Turner, mas que ocorre por mecanismos distintos. Figura 44 – Isocrossomo representado pelo esquema em B.
  • 22. 22 Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética Inversões Regiões específicas dos cromossomos se encontram dispostas de inverso, quebrando alguns genes e modificando o pareamento dos cromossomos homólogos. Essas condições raramente estão associadas a síndromes, somente o fazendo quando atingem um gene importante. Para o pareamento de cromossomos homólogos deve ocorrer a formação de uma alça, que ,em decorrência dos compostos que estão nessa alça,divide as inversões em dois tipos:  Pericêntrica: um crossing-over dentro da alça de inversão (com a presença do centrômero) resulta em formações de cromossomos recombinantes com duplicações e deleções do material genético;  Paracêntrica: um crossing-over dentro da alça de inversão, sem a presença do centrômero, resulta em formações de cromossomos recombinantes acêntricos e dicêntricos. Figura 45 – Representação dos dois tipos de inversões. Translocações Nessas mutações ocorrem trnasferências de segmentos de um cromossomo para outro (não homólogo), ocasionando a quebra em dois cromossomos e uma troca de genes quebrados. Pode ser dividida em três tipos:  Recíprocas: troca de segmentos entre cromossomos que sofreram quebras;  Não-recíprocas: um segmento de um cromossomo liga-se a outro (sem trocas);  Robertsonianas (fusão cêntrica): 2 cromossomos acrocêntricos sofrem quebras nos centrômeros e se unem (cariótipo = 45 cromossomos). Figura 46 – Representações dos diversos tipos de translocações. Geralmente estão associadas a maneiras distintas de adquiri as trissomias do 21 e do 18.
  • 23. 23 Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética Imprinting Genômico Com exceção dos cromossomos sexuais, X e Y, para a totalidade dos genes restantes dos cromossomos autossômicos, existem dois alelos ativos, cujas manifestações fenotípicas dependem da sua dominância ou recessividade. No entanto, vários estudos recentes, mostraram que, para alguns genes, o postulado da contribuição eqüitativa dos progenitores não se aplica. Nesses casos excepcionais, observa-se que apenas um dos alelos, paterno ou materno, é normalmente expresso. O alelo herdado de um dos progenitores comporta-se de forma distinta do alelo herdado do outro progenitor. Este fenômeno denomina-se imprinting genômico, já que se admite que um dos alelos parentais adquiriu, presumivelmente, uma marca (imprint) de natureza supostamente bioquímica. O imprint deverá levar, direta ou indiretamente, à expressão diferencial de um dos alelos parentais. O imprinting poderá assim ser o responsável pelo fato de algumas doenças genéticas apenas ocorrerem quando o gene responsável é herdado por via materna, e outras quando o alelo em causa é de origem paterna, como é o caso das síndromes de Prader-Willi e Angelman. Geralmente, se refere ao somatório das diferenças entre alelos como epigenético, e elas incluem modificações covalentes do DNA (metilação), alteração da estrutura da cromatina e acetilação das histonas. O mecanismo de imprinting não é exclusivo da classe dos mamíferos, sendo observado também em fungos, nematódios, insetos e protozoários, que apresentam elegantes processos de marcação genética, que resultam na expessão diferenciada de genes. Os genes imprintados raramente são encontrados em regiões isoladas. Em torno de 80% estão fisicamente ligados em um agrupamento (cluster) com outros genes imprintados. A organização em agrupamentos deve refletir a regulação coordenada dos genes em um domínio cromossômico. Há elementos controladores do imprinting (IC’S) em alguns agrupamentos que são necessários para seu controle ou para a expressão dos genes imprintados. Não existe uma tendência no padrão de metilação dos genes. Isto significa que a metilação pode estar associada com a atividade e inatividade do gene. Existem inúmeras propriedades que permitem a distinção entre genes expressos e não expressos e é razoável esperar que os dois alelos parentais mostrem tal diferença. Geralmente, se refere ao somatório das diferenças entre alelos como epigenético, e elas incluem modificações covalentes do DNA (metilação), alteração da estrutura da cromatina e acetilação das histonas. O imprinting é, assim como outros mecanismos genéticos, passível de erros. Alterações no imprinting tem sido relatadas como causa de diversas doenças humanas. Entre elas estão a síndrome de Prader-Willi e de Algeman. A primeira ocorre em 1 a cada 10000 a 15000 nascidos vivos. Ocorre perda da expressão de genes do cromossomo 15 de origem paterna: del(15q11-13). São características dessa síndrome:  Ausência saciedade: hábitos alimentares excessivos  Obesidade  Período de lactância: dificuldade de alimentação, hipotonia  Estrabismo  Retardo mental  Mãos, pés e pênis pequenos  Inférteis. Figura 47 – Fenótipo típico da síndrome de Prader-Wili.
  • 24. 24 Eduardo Antunes Martins - Cromossomos e Mutações Cromossômicas - Genética A segunda síndrome causada por defeitos nesse mecanismo de imprinting é a chamada síndrome de Algeman (ou do boneco feliz). Ocorre perda da expressão de genes do cromossomo 15 de origem materna: del(15q11-13). Apresenta as seguintes características:  Riso frequente, língua grande  Mandíbula aumentada  Pouca coordenação muscular  Convulsões (provocam agitação nos braços)  Retardamento mental grave  Peso altura baixos  Alterações faciais  Estrabismo  Hiperatividade  Irritabilidade  Choros e risos imotivados. Figura 48 – Fenótipo característico da síndrome do boneco feliz. Dissomia Uniparental Se a não disjunção ocorre em ambos os gametas que se unem para formar um zigoto, pode surgir uma situação na qual um par de homólogos (ou parte deles) vem apenas de um genitor, em vez dos dois. Essa situação é muito rara porque requer a ocorrência de dois eventos também raros e de forma simultânea. Geralmente não esta associada a modificações fenotípicas, apenas sendo notadas quando ocorre alguma alteração em um gene importante. Referências LEWIS, R. Genética Humana – Conceitos e Aplicações. Rio de Janeiro: Guanabara Koogan. 2004. Thompson, Margaret W.; McInnes, R.R.; Willard, H. F.. Thompson & Thompson, Genética Médica. 5ª ed. RJ, Ed. Guanabara Koogan, 2000. ALBERTS, B.; ROBERTS, K.; LEWIS, J.; RAFF, M.; JOHNSON, A. Molecular Biology of the Cell. 5rd ed. Garland Publishing Inc., New York & London, 2007. READ, A.; DONNAI D. Genética Clínica: uma nova abordagem. Porto Alegre, RS: Artmed, 2008.