Professora Helen Milene




Indicando partes da reta
Professora Helen Milene


 Números reais como pontos da reta
              Álgebra e Geometria juntas

                                  O


                                      1u
     Reta real
    ou eixo real
                     • Ponto O, chamado origem;
                     • Orientação (para a direita);
                   • Unidade de medida (arbitrária).




Podemos corresponder cada ponto da reta a um número real.
Professora Helen Milene
                     B                O       A          D      C

                   –3 ,5              0       1      √6         4


                  AO mede 1u → corresponde ao real 1
               OB mede 3,5 u → corresponde ao real a –3,5


  Escrevemos P(x) para indicar que o ponto P está associado ao número real x.
        Dizemos então que x é a abscissa ou a coordenada do ponto P.

                  O(0)     A(1)     B(–3,5)       C(4)       D(√6)


A reta real estabelece uma ordenação para os números reais, expressa por relações
              de desigualdade. Sendo a e b dois reais distintos, temos:

                  a< b (a é menor que b) → a está à esquerda de
                                         b
                   a > b (a é maior que b) → a está à direita de b
Professora Helen Milene



                      O

          p           0            q


          Quem é positivo? E
        negativo? Ou os dois são
               positivos ?



                    p < 0 (p é negativo)
                    q > 0 (q é positivo)
               p < 0 < q (0 está entre p e q)



 a ≤ b (a é menor que ou igual a b) → a < b ou a = b
a ≥ b (a é maior que ou igual a b) → a > b ou a = b
Professora Helen Milene
                                      E os intervalos?



              Intervalos reais são partes da reta real (subconjuntos de R)
Suponhamos dois números reais a e b tais que a < b. Os subconjuntos de R definidos a seguir
               são chamados de intervalos limitados de extremos a e b.
                                Representações                      Na reta real
  Intervalo fechado a, b     [a,b] = {x є R / a ≤ x ≤ b}
                                                                   a             b

   Intervalo aberto a, b     ]a,b[ = {x є R / a < x < b}
                                                                   a             b

  Intervalo aberto em a      ]a,b] = {x є R / a < x ≤ b}
      e fechado em b                                               a             b


 Intervalo fechado em a      [a,b[ = {x є R / a ≤ x < b}
      e aberto em b                                                a              b
Professora Helen Milene

                     Cada intervalo inclui TODOS os
                           reais entre a e b!!!




Bolinha CHEIA, intervalo fechado, colchetes normais [ ], inclusão do extremo

Bolinha VAZIA, intervalo aberto, colchetes invertidos ] [, exclusão do extremo




                                     E o infinito?
Professora Helen Milene
 Sendo a um real qualquer, utilizamos os símbolos +∞ (mais infinito) e –∞ (menos infinito)
                      para representarmos intervalos ilimitados.

                                    Representações                        Na reta real
Intervalo de a aberto até +∞       ]a, +∞[ = {x є R / x > a}
                                                                      a


Intervalo de a fechado até +∞      [a, +∞[ = {x є R / x ≥ a }
                                                                      a


Intervalo de –∞ até a aberto       ]–∞, a[ = {x є R / x < a}
                                                                                         a


Intervalo de –∞ até a fechado      ]–∞, a] = {x є R / x ≤ a}
                                                                                         a
                      Em +∞ ou –∞, o intervalo é sempre ABERTO, que
                           também pode ser indicado por ( )

               [–1, 3[ é o mesmo que [–1, 3)            ]–∞, 5[ é o mesmo que (–∞, 5)
Professora Helen Milene
                Será que você entendeu?



                     Reta
A = [–3, 5[                               A= {x є R / –3 ≤ x < 5}
               –3           5


   Vamos preencher as lacunas com є ou є


     є
–3 _____ A              є
                    5 _____ A                     є
                                           –√10 ____ A

   є
0 _____ A                 є
                    7,2 _____ A                  є
                                           √27 ____ A

      є
3,42 _____ A                є
                    4,99 _____ A                       є
                                           4,999... _____ A
Professora Helen Milene
O intervalo A = [–3, 2[ é igual ao conjunto B = {–3, –2, –1, 0, 1}?


  Quantos elementos tem o conjunto B?                           Cinco

  E o conjunto A?                                               Infinitos

  Qual é o conjunto universo, nos intervalos reais?             R
Professora Helen Milene
                          Operando com intervalos reais
         Amanda                                                             Bruno
               Estudar                                               Dormir
               Estar com os amigos                     Estar com os amigos
               Ler                                            Tocar guitarra
               Ouvir música                                    Ouvir música



              A ∩ B → A interseção B: conjunto dos elementos COMUNS a A e B.
              Estar com os amigos                  Ouvir música

A ∪ B → A união B: conjunto dos elementos que pertencem A PELO MENOS UM dos conjuntos
                                         A ou B.
    Estudar     Estar com os amigos     Ler   Ouvir música     Dormir    Tocar guitarra
  A – B → A menos B: conjunto dos elementos que pertencem a A e NÃO PERTENCEM a B.
                             Estudar                     Ler
  B – A → B menos A: conjunto dos elementos que pertencem a B e NÃO PERTENCEM a A.
                    Dormir                              Tocar guitarra
Professora Helen Milene
Dados os intervalos A = ]–2, 5] e B = ]3, +∞[, obter A ∩ B, A ∪ B, A – B:



                                                          A = ]–2, 5]
                    –2                    5


                                                          B = ]3, +∞[
                                   3

                                                          A ∩ B = ]3, 5]
                                  3        5

                                                           A ∪ B = ]–2, +∞[
                    –2

                                                          A – B = ]–2, 3]
                    –2            3
                                                           B – A = ]5, +∞[
                                          5

Intervalos Reais

  • 1.
  • 2.
    Professora Helen Milene Números reais como pontos da reta Álgebra e Geometria juntas O 1u Reta real ou eixo real • Ponto O, chamado origem; • Orientação (para a direita); • Unidade de medida (arbitrária). Podemos corresponder cada ponto da reta a um número real.
  • 3.
    Professora Helen Milene B O A D C –3 ,5 0 1 √6 4 AO mede 1u → corresponde ao real 1 OB mede 3,5 u → corresponde ao real a –3,5 Escrevemos P(x) para indicar que o ponto P está associado ao número real x. Dizemos então que x é a abscissa ou a coordenada do ponto P. O(0) A(1) B(–3,5) C(4) D(√6) A reta real estabelece uma ordenação para os números reais, expressa por relações de desigualdade. Sendo a e b dois reais distintos, temos: a< b (a é menor que b) → a está à esquerda de b a > b (a é maior que b) → a está à direita de b
  • 4.
    Professora Helen Milene O p 0 q Quem é positivo? E negativo? Ou os dois são positivos ? p < 0 (p é negativo) q > 0 (q é positivo) p < 0 < q (0 está entre p e q) a ≤ b (a é menor que ou igual a b) → a < b ou a = b a ≥ b (a é maior que ou igual a b) → a > b ou a = b
  • 5.
    Professora Helen Milene E os intervalos? Intervalos reais são partes da reta real (subconjuntos de R) Suponhamos dois números reais a e b tais que a < b. Os subconjuntos de R definidos a seguir são chamados de intervalos limitados de extremos a e b. Representações Na reta real Intervalo fechado a, b [a,b] = {x є R / a ≤ x ≤ b} a b Intervalo aberto a, b ]a,b[ = {x є R / a < x < b} a b Intervalo aberto em a ]a,b] = {x є R / a < x ≤ b} e fechado em b a b Intervalo fechado em a [a,b[ = {x є R / a ≤ x < b} e aberto em b a b
  • 6.
    Professora Helen Milene Cada intervalo inclui TODOS os reais entre a e b!!! Bolinha CHEIA, intervalo fechado, colchetes normais [ ], inclusão do extremo Bolinha VAZIA, intervalo aberto, colchetes invertidos ] [, exclusão do extremo E o infinito?
  • 7.
    Professora Helen Milene Sendo a um real qualquer, utilizamos os símbolos +∞ (mais infinito) e –∞ (menos infinito) para representarmos intervalos ilimitados. Representações Na reta real Intervalo de a aberto até +∞ ]a, +∞[ = {x є R / x > a} a Intervalo de a fechado até +∞ [a, +∞[ = {x є R / x ≥ a } a Intervalo de –∞ até a aberto ]–∞, a[ = {x є R / x < a} a Intervalo de –∞ até a fechado ]–∞, a] = {x є R / x ≤ a} a Em +∞ ou –∞, o intervalo é sempre ABERTO, que também pode ser indicado por ( ) [–1, 3[ é o mesmo que [–1, 3) ]–∞, 5[ é o mesmo que (–∞, 5)
  • 8.
    Professora Helen Milene Será que você entendeu? Reta A = [–3, 5[ A= {x є R / –3 ≤ x < 5} –3 5 Vamos preencher as lacunas com є ou є є –3 _____ A є 5 _____ A є –√10 ____ A є 0 _____ A є 7,2 _____ A є √27 ____ A є 3,42 _____ A є 4,99 _____ A є 4,999... _____ A
  • 9.
    Professora Helen Milene Ointervalo A = [–3, 2[ é igual ao conjunto B = {–3, –2, –1, 0, 1}? Quantos elementos tem o conjunto B? Cinco E o conjunto A? Infinitos Qual é o conjunto universo, nos intervalos reais? R
  • 10.
    Professora Helen Milene Operando com intervalos reais Amanda Bruno Estudar Dormir Estar com os amigos Estar com os amigos Ler Tocar guitarra Ouvir música Ouvir música A ∩ B → A interseção B: conjunto dos elementos COMUNS a A e B. Estar com os amigos Ouvir música A ∪ B → A união B: conjunto dos elementos que pertencem A PELO MENOS UM dos conjuntos A ou B. Estudar Estar com os amigos Ler Ouvir música Dormir Tocar guitarra A – B → A menos B: conjunto dos elementos que pertencem a A e NÃO PERTENCEM a B. Estudar Ler B – A → B menos A: conjunto dos elementos que pertencem a B e NÃO PERTENCEM a A. Dormir Tocar guitarra
  • 11.
    Professora Helen Milene Dadosos intervalos A = ]–2, 5] e B = ]3, +∞[, obter A ∩ B, A ∪ B, A – B: A = ]–2, 5] –2 5 B = ]3, +∞[ 3 A ∩ B = ]3, 5] 3 5 A ∪ B = ]–2, +∞[ –2 A – B = ]–2, 3] –2 3 B – A = ]5, +∞[ 5