Faculdade de Ciência e Tecnologia de Montes Claros
Disciplina: Cálculo III – Profª Sara Morais
Engenharia de Controle e Automação




   DERIVADAS DIRECIONAIS
   Acadêmicos:
   Amanda Ramos, Ana Laissa, Elcimar, Érika e Warley
INTRODUÇÃO
 As derivadas parciais nos fornecem as taxas de variação de uma
  função em direções paralelas aos eixos coordenados x, y e/ou z.
 Utilizando a regra da cadeia, suponha que z=f(x,y) seja uma
  função diferenciável de x e y, onde x=g(t) e y=h(t) são funções
  diferenciáveis de t. Então:
                    dz     f x      f y
                    dt     x t      y t
 Podemos calcular a taxa de variação em relação a uma
  direção qualquer?
A DERIVADA DIRECIONAL


                       A chamada derivada
                        direcional nos permite
                        determinar a taxa de
                        variação de uma função
                        de duas ou mais variáveis
                        em qualquer direção.
A DERIVADA DIRECIONAL
                       Suponha que queiramos
                        determinar a taxa de
                        variação de z no ponto
                        (x0,y0) na direção e sentido
                        de um vetor unitário
                        arbitrário u= a,b .
                        Devemos considerar a
                        superfície S com equação
                        z=f(x,y) e tomar z0=f(x0,y0).
A DERIVADA DIRECIONAL
                       O ponto P(x0,y0,z0) pertence
                        a S. O plano vertical que
                        passa por P na direção de u
                        intercepta S em uma curva
                        C. A inclinação da reta
                        tangente T a C em P é a
                        taxa de variação de z na
                        direção e sentido de u.
DEFINIÇÃO

   A derivada direcional de
    f em (x0,y0) na direção e
    sentido do vetor unitário
    u= a,b é Duf(x0,y0)
    se esse limite existir.


                         f x0   ha , y0    hb   f x0 , y0
 Du f x0 , y0    lim
                 h   0                    h
TEOREMA
   Se é uma função diferenciável em x e y então f tem
    derivada direcional na direção de qualquer vetor u= a,b
    e
         Du f x0 , y0     f x x0 , y0 a   f y x0 , y0 b

   Se o versor u faz um ângulo com o eixo x positivo,
    então podemos escrever u= cos ,sen e a fórmula do
    Teorema fica:
     Du f x0 , y0    f x x0 , y0 cos      f y x0 , y0 sen
EXEMPLO 1
   Utilize o mapa
    meteorológico da
    figura para estimar o
    valor da derivada
    direcional da função
    temperatura em Reno
    na direção sudeste.
EXEMPLO 1
1. Inicialmente traçamos uma reta
   que passa por Reno na direção
   Sudeste;
2. Aproximamos a derivada
   direcional DuT pela taxa média
   de variação de temperatura entre
   os pontos onde a reta traçada
   intercepta as curvas isotérmicas
   T=50 F e T=60 F;
3. A distância aproximada entre os
   pontos é de 75 milhas. Logo:
         60 50     10
  DuT                   0,13o F / mi
           75      75
EXEMPLO 2
 Encontre a derivada de f(x,y)=x2+xy em P0(1,2) na
  direção do versor u.
                                               1      1
                                          u       i      j
                                                2      2
Solução:
                  1       1                 1    1           5
Du f    2x    y         x         21 2         1
                   2       2                 2    2           2
EXEMPLO 3
   Determine a derivada direcional Duf(x,y) se
    f(x,y)=x3-3xy+4y2 e u é o vetor unitário dado pelo ângulo
      = /6. Qual será Duf(1,2)?
                1
     Du f x, y    3 3x 2 3x 8 3 3 y
                2
               13 3 3
     Du f 1,2            3,901
                  2
EXEMPLO 3 - GRAFICAMENTE
OBRIGADO!

Fontes:
THOMAS, George. Cálculo 2
STEWART, James. Cálculo 2

Derivadas direcionais

  • 1.
    Faculdade de Ciênciae Tecnologia de Montes Claros Disciplina: Cálculo III – Profª Sara Morais Engenharia de Controle e Automação DERIVADAS DIRECIONAIS Acadêmicos: Amanda Ramos, Ana Laissa, Elcimar, Érika e Warley
  • 2.
    INTRODUÇÃO  As derivadasparciais nos fornecem as taxas de variação de uma função em direções paralelas aos eixos coordenados x, y e/ou z.  Utilizando a regra da cadeia, suponha que z=f(x,y) seja uma função diferenciável de x e y, onde x=g(t) e y=h(t) são funções diferenciáveis de t. Então: dz f x f y dt x t y t  Podemos calcular a taxa de variação em relação a uma direção qualquer?
  • 3.
    A DERIVADA DIRECIONAL  A chamada derivada direcional nos permite determinar a taxa de variação de uma função de duas ou mais variáveis em qualquer direção.
  • 4.
    A DERIVADA DIRECIONAL  Suponha que queiramos determinar a taxa de variação de z no ponto (x0,y0) na direção e sentido de um vetor unitário arbitrário u= a,b . Devemos considerar a superfície S com equação z=f(x,y) e tomar z0=f(x0,y0).
  • 5.
    A DERIVADA DIRECIONAL  O ponto P(x0,y0,z0) pertence a S. O plano vertical que passa por P na direção de u intercepta S em uma curva C. A inclinação da reta tangente T a C em P é a taxa de variação de z na direção e sentido de u.
  • 6.
    DEFINIÇÃO  A derivada direcional de f em (x0,y0) na direção e sentido do vetor unitário u= a,b é Duf(x0,y0) se esse limite existir. f x0 ha , y0 hb f x0 , y0 Du f x0 , y0 lim h 0 h
  • 7.
    TEOREMA  Se é uma função diferenciável em x e y então f tem derivada direcional na direção de qualquer vetor u= a,b e Du f x0 , y0 f x x0 , y0 a f y x0 , y0 b  Se o versor u faz um ângulo com o eixo x positivo, então podemos escrever u= cos ,sen e a fórmula do Teorema fica: Du f x0 , y0 f x x0 , y0 cos f y x0 , y0 sen
  • 9.
    EXEMPLO 1  Utilize o mapa meteorológico da figura para estimar o valor da derivada direcional da função temperatura em Reno na direção sudeste.
  • 10.
    EXEMPLO 1 1. Inicialmentetraçamos uma reta que passa por Reno na direção Sudeste; 2. Aproximamos a derivada direcional DuT pela taxa média de variação de temperatura entre os pontos onde a reta traçada intercepta as curvas isotérmicas T=50 F e T=60 F; 3. A distância aproximada entre os pontos é de 75 milhas. Logo: 60 50 10 DuT 0,13o F / mi 75 75
  • 11.
    EXEMPLO 2  Encontrea derivada de f(x,y)=x2+xy em P0(1,2) na direção do versor u. 1 1 u i j 2 2 Solução: 1 1 1 1 5 Du f 2x y x 21 2 1 2 2 2 2 2
  • 12.
    EXEMPLO 3  Determine a derivada direcional Duf(x,y) se f(x,y)=x3-3xy+4y2 e u é o vetor unitário dado pelo ângulo = /6. Qual será Duf(1,2)? 1 Du f x, y 3 3x 2 3x 8 3 3 y 2 13 3 3 Du f 1,2 3,901 2
  • 13.
    EXEMPLO 3 -GRAFICAMENTE
  • 14.
    OBRIGADO! Fontes: THOMAS, George. Cálculo2 STEWART, James. Cálculo 2