SlideShare uma empresa Scribd logo
Notas de Aula - 30/11/2009




         Profo : José Sérgio Domingues


Universidade Estadual de Montes Claros - UNIMONTES

     Curso de Licenciatura Plena em Matemática
Sumário
1 Diagonalização de Matrizes                                                                 1

2 Diagonalização de Operadores                                                              2

3 Formas Bilineares e Quadráticas Reais                                                      4
  3.1   Formas Bilineares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .    4
  3.2   Matriz de uma Forma Bilinear . . . . . . . . . . . . . . . . . . . . . . . . .       5
  3.3   Forma Bilinear Simétrica . . . . . . . . . . . . . . . . . . . . . . . . . . . .     6
  3.4   Formas Quadráticas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .     7

4 Forma Canônica de Jordan                                                                   8

5 Teorema Espectral                                                                         10
  5.1   Operadores Auto-Adjuntos . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
  5.2   Teorema Espectral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

6 Referências                                                                               11
1 Diagonalização de Matrizes
Denição 1.1. Dizemos que uma matriz A, de ordem n, é diagonalizável, se existem
matrizes P e D tais que A = P DP −1 , ou equivalente, D = P −1 AP , em que D é uma
matriz diagonal.

Teorema 1.2. Seja A uma matriz de ordem n que tem n autovetores L.I (V1 , V2 , ..., Vn ),
associados a λ1 , λ2 , ..., λn , respectivamente. Então, as matrizes

                                                                                    
                                                              λ1    0     ···   0 
                                                                                   
                                                              0    λ2      0    0 
                                                                                   
                    P = [V1 V2 ... Vn ]          e       D=   .                  . 
                                                              .
                                                               .     0     ···    . 
                                                                                  . 
                                                           
                                                                                   
                                                               0    ···     0    λn

são tais que D = P −1 AP , ou seja, A é diagonalizável. Reciprocamente, se A é diagonal-
izável, então ela possui n autovetores L.I.
                                                                                    
                                                                           1 −1
Exemplo 1.3. Encontre as matrizes P e D, sendo A =                                   e verique que
                                                                          −4     1
A = P DP   −1
                .

   Os autovalores encontrados são λ1 = −1 e λ2 = 3. Seus respectivos autoespaços
associados são W1 = {(α, 2α) | α ∈ R} = {α(1, 2) | α ∈ R} e W2 = {(α, −2α) | α ∈
R} = {α(1, −2) | α ∈ R}.
   Observe que V1 = (1, 2) e V2 = (1, −2) são autovetores L.I. Portanto, de acordo com
o Teorema 1.2, temos que
                                                                         
                                     1   1                          −1 0
                            P =                    e    D=               .
                                     2 −2                            0 3
                                    
                            1   1
Além disso, P −1 =         2   4     e A = P DP −1 .
                            1
                            2
                                −1
                                 4

Teorema 1.4. Autovalores distintos possuem autovetores associados linearmente inde-
pendentes (L.I).

Corolário 1.5. Se V é um espaço vetorial de dimensão n e T : V → V é um operador
linear que possui n autovalores distintos, então V possui uma base cujos vetores são todos
autovetores de T.

                                                     1
Em outras palavras, o corolário nos garante que, se conseguirmos encontrar tantos
autovalores distintos quanto for a dimensão do espaço, podemos garantir a existência de
uma base de autovetores.



2 Diagonalização de Operadores
Denição 2.1. Dizemos que o operador linear T : V → V é um operador diagonalizável
se existe uma base de V cujos elementos são autovetores de T.

   Portanto, de acordo com o corolário acima, para vericar se um operador linear é di-
agonalizável, basta mostrar que a matriz associada a esse operador possui n autovalores
distintos.

Exemplo 2.2. Verique que T : R3 → R3 dado por T (x, y, z) = (3x−3y−4z, 3y+5z, −z),
não é diagonalizável.
   A matriz associada a esse operador linear em relação à base canônica é
                                                      
                                            3 −3 −4
                                                      
                                                      
                             A = [T ]α =  0
                                     α          3    5 
                                                      
                                            0   0 −1

portanto, o seu polinômio característico é dado por det(A − λI3 ) e seus autovalores são
as soluções da equação característica det(A − λI3 ). Para o nosso exemplo, temos
                                                                        
                    3 −3 −4   λ 0 0   3 − λ −3   −4                     
                                                                        
         A − λI3 =  0
                       3  5 − 0 λ 0 = 0
                                             3−λ   5                     
                                                                             
                                                                        
                     0  0 −1     0 0 λ       0    0  −1 − λ

   Então, P (λ) = 0 ⇐⇒ det(A − λI3 ) = (3 − λ)2 (−1 − λ) = 0 ⇐⇒ λ1 = 3 e λ2 = −1.

   • Para λ1 = 3, temos:
                                                        
                                                              
                                                               −3y − 4z = 0
                          0 −3 −4           x   0       
                                                              
                                                              
                                                
      (A − 3I3 )v = 0 ⇐⇒  0
                             0  5      
                                        
                                                  =  0  ⇐⇒
                                               y                   5z = 0
                                                        
                                                              
                                                              
                                                              
                           0  0 −4             z       0           − 4z = 0


                    ⇐⇒ x = α       e   y = z = 0.

      Portanto,

      W1 = {(α, 0, 0) | α ∈ R} = {α(1, 0, 0) | α ∈ R}

                                           2
• Para λ2 = −1, temos:

                                                         
                                                  
                                                   4x − 3y − 4z = 0
                      4 −3 −4   x   0       
                                                  
                                                  
                                 
                      0
     (A+I3 )v = 0 ⇐⇒     4      y  =  0  ⇐⇒
                             5                      4y + 5z = 0
                                            
                                                  
                                                  
                                                  
                       0  0  0     z       0                 0 = 0

                                 α
                   ⇐⇒ x =        16
                                    ,   y = −5α
                                             4
                                                      e   z = α.

     Portanto,

     W2 = {( 16 , − 5 α, α) | α ∈ R} = {α( 16 , − 5 , 1) | α ∈ R}
             α
                    4
                                           1
                                                  4


     Neste caso, temos apenas dois autovetores L.I para T , e portanto não existe uma
     base de R3 constituída só de autovetores de T . Isto signica este operador não é
     diagonalizável.


Exemplo 2.3. Mostre que T : R2 → R2 onde T (x, y) = (−3x + 4y, −x + 2y), é
diagonalizável.
   De acordo com o que estudamos anteriormente, para mostrar que T é diagonalizável,
basta vericar que a matriz associada a este operador linear possui o número de autoval-
ores distintos igual a 2, pois neste caso, V = R2 e dim(R2 ) = 2.
                                                                                        
                                                                                  −3 4
   Pois bem, em relação à base canônica α, temos que A = [T ]α = 
                                                             α
                                                                                         . Logo,
                                                                                  −1 2
                                                 
                                −3 − λ      4
det(A − λI2 ) = 0 ⇐⇒ det                          = 0 ⇐⇒ (−3 − λ)(2 − λ) + 4 = 0
                                 −1       2−λ

                  ⇐⇒ λ2 + λ − 2 = 0 ⇐⇒ λ1 = 1                      e   λ2 = −2.


   Como a matriz A possui dois autovalores distintos, pelo Corolário 1.5, V = R2
possui uma base formada por autovetores de T . E portanto, pela Denição 2.1, T é
diagonalizável.

Exemplo 2.4. No exemplo anterior, vimos que λ1 = 1 = λ2 = −2. O leitor pode vericar
que dois autovetores linearmente independentes associados a λ1 e λ2 são, respectivamente,
V1 = (1, 1) e V2 = (4, 1). Pelo Corolário 1.5, uma base de V = R2 é β = {V1 , V2 }.
Vamos encontrar [T ]β e observar de que tipo ela será.
                    β




                                                  3
T (V1 ) = T (1, 1) = (−3 + 4, −1 + 2) = (1, 1) = 1 · V1 + 0 · V2
   T (V2 ) = T (4, 1) = (−3 · 4 + 4 · 1, −4 + 2 · 1) = (−8, −2) = 0 · V1 − 2 · V2

   Portanto, concluímos que
                                                         
                                                  1   0
                                      [T ]β = 
                                          β
                                                          
                                                  0 −2

que é uma matriz diagonal, onde a diagonal principal é formada exatamente pelos auto-
valores de T .

   Isso não ocorreu por acaso, na realidade, a denição formal de operador diagonalizável,
vem da idéia de a partir de um operador linear T : V → V , conseguirmos encontrar uma
base β de V na qual a matriz do operador nesta base ([T ]β ) seja uma matriz diagonal,
                                                         β

que é a forma mais simples possível de se representar um operador.



3 Formas Bilineares e Quadráticas Reais

3.1 Formas Bilineares
Denição 3.1. Seja V um espaço vetorial real. Uma forma bilinear é uma aplicação
B : V XV → R denida por (v, w) → B(v, w) tal que:

   i. Para w xado, B(v, w) é uma forma linear em v , isto é,


                 B(v1 + v2 , w) = B(v1 , w) + B(v2 , w)       e   B(av, w) = aB(v, w)


  ii. Para v xado, B(v, w) é uma forma linear em w, isto é,


             B(v, w1 + w2 ) = B(v, w1 ) + B(v, w2 )           e   B(v, aw) = aB(v, w)


Exemplo 3.2. O produto usual de números reais, denido por P : R X R → R com
(x, y) → xy .
   Vamos vericar as duas propriedades para demonstrar que esta aplicação é bilinear.


   i. P (x1 + x2 , y) = (x1 + x2 )y = x1 y + x2 y = P (x1 , y) + P (x2 , y)

      P (ax, y) = axy = a(xy) = aP (x, y)



                                               4
ii. P (x, y1 + y2 ) = x(y1 + y2 ) = xy1 + xy2 = P (x, y1 ) + P (x, y2 )

      P (x, ay) = xay = a(xy) = aP (x, y)


Exemplo 3.3. Seja V um espaço vetorial com produto interno , . O operador linear
B : V X V → R denido por (v, w) → v, w é uma forma bilinear pelas propriedades
de produto interno.


3.2 Matriz de uma Forma Bilinear
Seja V um espaço vetorial e B : V X V → R uma forma bilinear. Se α = {v1 , ..., vn } é
uma base de V , podemos associar a B uma matriz ([B]α ), denominada matriz da forma
                                                    α

bilinear B , na base α, da seguinte forma:

   Como α é base de V , tomando v, w ∈ V podemos escrever


                                    v = x1 v1 + ... + xn vn
                                                e
                                    w = y1 v1 + ... + yn vn .


   Então,
                                                                             
                                         B(v1 , v1 ) · · ·   B(v1 , vn )     y
                                                                          1 
                                            .
                                             .        ..         .
                                                                 .         . 
            B(v, w) = [x1 ... xn ] ·        .           .       .       · . 
                                                                              .
                                                                             
                                         B(vn , v1 ) · · ·   B(vn , vn )     yn


Portanto,


                               B(v, w) = [v]α · [B]α · [w]α
                                                   α


Exemplo 3.4. Seja B : R2 X R2 → R a forma bilinear dada por B(v, w) = −x1 y1 +
2x2 y1 + 5x2 y2 onde v = (x1 , x2 ) e w = (y1 , y2 ). Então, se α = {e1 , e2 } é a base canônica
de R2 , temos:

   B(e1 , e1 ) = B((1, 0), (1, 0)) = −1 · 1 + 2 · 0 · 1 + 5 · 0 · 0 = −1
   B(e2 , e1 ) = B((0, 1), (1, 0)) = −0 · 1 + 2 · 1 · 1 + 5 · 1 · 0 = 2
   B(e1 , e2 ) = B((1, 0), (0, 1)) = −1 · 0 + 2 · 0 · 0 + 5 · 0 · 1 = 0
   B(e2 , e2 ) = B((0, 1), (0, 1)) = −0 · 0 + 2 · 1 · 0 + 5 · 1 · 1 = 5


                                                5
Então,
                                                                              
                                   B(e1 , e1 ) B(e1 , e2 )               −1 0
                       [B]α = 
                          α
                                                             =                 
                                   B(e2 , e1 ) B(e2 , e2 )               2   5
                                                     e
                                                              
                                           −1 0             y1
                B(v, w) = [x1 x2 ] ·                ·          = [v]α · [B]α · [w]α
                                                                               α
                                            2    5          y2



                                               
                                   −2 0 0
                                          
Exemplo 3.5. Seja M = 
                      
                                           
                                     4 2 0 . É possível associar a M uma forma bilinear
                                          
                                     0 0 2
B : R3 X R3 → R denida por
                                                                                         
                                                                     −2 0 0            y1
                                                                                  
                                                                                  
            B((x1 , x2 , x3 ), (y1 , y2 , y3 )) = [x1 x2 x3 ] ·      4 2 0  ·  y2 
                                                                                  
                                                                      0 0 2       y3

   Então,

              B((x1 , x2 , x3 ), (y1 , y2 , y3 )) = −2x1 y1 + 4x2 y1 + 2x2 y2 + 2x3 y3 .


3.3 Forma Bilinear Simétrica
Denição 3.6. Uma forma bilinear B : V X V → R é denominada forma bilinear
simétrica se B(v, w) = B(w, v), ∀ v, w ∈ V .

Exemplo 3.7. B(v, w) = v, w , onde , é um produto interno em V .

Exemplo 3.8. B : R2 X R2 → R dada por B(v, w) = −x1 y1 + 3x2 y1 + 3x1 y2 + 2x2 y2 ,
onde v = (x1 , x2 ) e w = (y1 , y2 ) (Verique!).

Exemplo 3.9. Vamos encontrar a matriz da forma bilinear acima, utilizando a base
canônica α, [B]α .
               α


   No exemplo acima, V = R2           =⇒ α = {e1 , e2 } é uma base de V . Logo,

   B(e1 , e1 ) = B((1, 0), (1, 0)) = −1 · 1 + 3 · 0 · 1 + 3 · 1 · 0 + 2 · 0 · 0 = −1

   B(e1 , e2 ) = B((1, 0), (0, 1)) = −1 · 0 + 3 · 0 · 0 + 3 · 1 · 1 + 2 · 0 · 1 = 3


                                                     6
B(e2 , e1 ) = B((0, 1), (1, 0)) = −0 · 1 + 3 · 1 · 1 + 3 · 0 · 0 + 2 · 1 · 0 = 3

   B(e2 , e2 ) = B((0, 1), (0, 1)) = −0 · 0 + 3 · 1 · 0 + 3 · 0 · 1 + 2 · 1 · 1 = 2

   Então,
                                                                        
                                 B(e1 , e1 ) B(e1 , e2 )           −1 3
                     [B]α = 
                        α
                                                           =             
                                 B(e2 , e1 ) B(e2 , e2 )           3   2


Observação 3.10. Observe que a matriz da forma bilinear que encontramos acima é
simétrica.


Teorema 3.11. Uma forma bilinear B : V X V → R é simétrica se, e somente se, [B]α
                                                                                α

é uma matriz simétrica.

Observação 3.12. A demonstração do teorema acima é trivial, e ca a cargo do leitor.


3.4 Formas Quadráticas
Denição 3.13. Seja V um espaço vetorial real e B : V X V → R uma forma bilinear
simétrica. A função Q : V → R denida por Q(v) = B(v, v) é chamada forma quadrática
associada a B .

Exemplo 3.14. Seja B : R3 X R3 → R dada por B(v, w) = x1 y1 + 2x2 y2 + 3x3 y3 +
x1 y2 + x2 y1 , onde v = (x1 , x2 , x3 ) e w = (y1 , y2 , y3 ). Facilmente, verica-se que B é
uma forma bilinear simétrica de R3 .
   A forma quadrática associada associada a B é a função


                     Q(v) = B(v, v) = x2 + 2x2 + 3x2 + x1 x2 + x2 x1
                                       1     2     3



                           = x2 + 2x2 + 3x2 + 2x1 x2
                              1     2     3


Exemplo 3.15. Associada ao produto interno usual de Rn , B : Rn X Rn → R com
B(v, w) = x1 y1 + x2 y2 + ... + xn yn (que obviamente é uma forma linear simétrica) está
a forma quadrática Q(v), dada por


                            Q(v) = B(v, v) = x2 + x2 + ... + x2
                                              1    2          n




                                                7
4 Forma Canônica de Jordan
Partição de uma Matriz em Blocos: Particionar uma matriz A qualquer em blocos,
signica dividir esta matriz em submatrizes.
                                              
                                           √
                                  1 −2      π
                                            3 
                                              
Exemplo 4.1.         Se A = 
                                  6 −7  2 −1 , uma das possíveis subdivisões de A é
                                               
                                              
                                  −7 −3 −9   0
                                             
                                           √
                                   1 −2  π  3             
                          
                                                  A11 A12
                        A=
                                  6 −7  2 −1  = 
                                              
                                                            ,
                                                  A13 A14
                                  −7 −3 −9  0

onde,                                                                                    
                                        √                 6 −7       2                 −1
   A11 =    1 −2 π         , A12 =       3   , A13 =                     e A14 =         ,
                                                         −7 −3 −9                       0


são os blocos da subdivisão da matriz original A.


   Já estudamos que nem todo operador linear T : V → V é diagonalizável, ou seja,
nem sempre existe uma base β de V tal que a matriz [T ]β é diagonal. Entretanto, para
                                                       β

várias aplicações, é suciente que exista uma base β tal que a matriz [T ]β tenha uma forma
                                                                          β

bem próxima da forma diagonal. Essa forma é denominada forma canônica de Jordan.



Denição 4.2. Uma matriz J , n xn, está na forma canônica de Jordan, se ela é da
forma
                                                                                           
                                                               λj 0 · · ·      0  0 
                                                          
               Jλ1     0   ···      0                                                
                                                        
                                                              1 λj · · ·      0 0 
              0      Jλ2 · · ·     0                                               
                                                              . . ...
                                                                 . .              . . 
                                                                                  . . 
    J =                                , em que Jλj    =      . .              . .
              .
               .       . ...
                       .            .
                                    .                                               
              .       .            .                                               
                                                              0       0 ···   λj 0 
                                                                                     
               0       0   · · · Jλk                                                 
                                                                 0       0 ···   1 λj

para j = 1, ..., k . Jλj é chamado bloco de Jordan.




                                                 8
                             
                        2   0        0     0
                                            
                                            
                   1       2        0     0 
                                            
Exemplo 4.3.    A=                           está na forma canônica de Jordan e é formada
                   0       1        2     0 
                                            
                                            
                    0       0        0     2

por dois blocos de Jordan, o primeiro sendo 3x3 e o segundo 1x1.


                                                 
                    5       0        0        0
                                      
                                      
                   1       5     0  0 
                                      
Exemplo 4.4.    B=                     está na forma canônica de Jordan e é formada
                                      
                   0       0    −3  0 
                                      
                    0       0     1 −3

por dois blocos de Jordan, ambos 2x2.


                                                     
                   −4           0        0  0 
                                              
                   1           −4        0  0 
                                              
Exemplo 4.5.    C=                             está na forma canônica de Jordan e é for-
                   0            1       −4  0 
                                              
                                              
                     0           0        1 −4

mada por apenas um bloco de Jordan.


                                           
                   7       0        0    0 
                                           
                   0       7        0    0 
                                           
Exemplo 4.6.    D=                          está na forma canônica de Jordan e é formada
                   0       0        7    0 
                                           
                                           
                    0       0        0    7

por 4 blocos 1x1.


                                            
                   2       0        0     0 
                                            
                   1       2        0     0 
                                            
Exemplo 4.7.    E=                           não está na forma canônica de Jordan. Pois
                   0       1        2     0 
                                            
                                            
                    0       0        1    −1

como os elementos da diagonal principal não são iguais, ela teria que ser formada por
pelo menos dois blocos de Jordan e [−1] deveria ser um bloco de Jordan 1x1.



                                                      9
5 Teorema Espectral

5.1 Operadores Auto-Adjuntos
Denição 5.1. Sejam U e V espaços vetoriais sobre R. Indicaremos por L(U, V ) o
conjunto das transformações lineares de U em V e se U = V , o conjunto dos operadores
lineares de U será denotado por L(U ).

Denição 5.2. Seja V um espaço vetorial euclidiano. Um operador T ∈ L(V ) se diz
auto-adjunto se


                                    T (v), w = v, T (w)


para quaisquer v, w ∈ V .



Exemplo 5.3. Seja T ∈ L(R2 ) dado por T (x, y) = (ax + by, bx + cy). Vamos mostrar
que T é um operador auto-adjunto.

    T (x, y), (z, y) = (ax + by, bx + cy), (z, y) = axz + byz + bxt + cyt.

Por outro lado,

    (x, y), T (z, y) = (x, y), (az + bt, bz + ct) = axz + bxt + byz + cyt.

   Portanto, T (x, y), (z, y) = (x, y), T (z, y) e consequentemente, T é um operador
auto-adjunto.


5.2 Teorema Espectral
Teorema 5.4 (Espectral). Para todo operador auto-adjunto T ∈ L(V ), sendo V um es-
paço vetorial de dimensão nita e munido de produto interno, existe uma base ortonormal
{v1 , v2 , ..., vn } ⊂ V formada por autovetores de T .




                                              10
6 Referências
[1] BOLDRINI, J. L (et al.). Álgebra Linear, 3a edição. Editora Harbra ltda. São Paulo, 1980.


[2] CALLIOLI, H. e ROBERTO C. Álgebra Linear e Aplicações - Nova Edição.


[3] LIMA, E.L. Álgebra Linear, 7a edição - Coleção Matemática Universitária - IMPA.


[4] LANG, S. Álgebra Linear - Editora Edgar Blucher Ltda, SP.


[4] SANTOS, R.J. Introdução à Álgebra Linear - Editora UFMG - Belo Horizonte.


[5] SANTOS, R.J. Álgebra Linear e Aplicações - Editora UFMG - Belo Horizonte.




                                             11

Mais conteúdo relacionado

Mais procurados

7 coordenadas polares e curvas paramétricas
7   coordenadas polares e curvas paramétricas7   coordenadas polares e curvas paramétricas
7 coordenadas polares e curvas paramétricas
Duilio Matias Gonçalves
 
Calculo vetorial
Calculo vetorialCalculo vetorial
Calculo vetorial
tooonks
 
LISTA DE FUNÇÕES TRIGONOMÉTRICAS
LISTA DE FUNÇÕES TRIGONOMÉTRICASLISTA DE FUNÇÕES TRIGONOMÉTRICAS
LISTA DE FUNÇÕES TRIGONOMÉTRICAS
Professor Carlinhos
 
GEOMETRIA ANALÍTICA cap 06
GEOMETRIA ANALÍTICA cap  06GEOMETRIA ANALÍTICA cap  06
GEOMETRIA ANALÍTICA cap 06
Andrei Bastos
 
FunçOes Injetoras, Sobrejetoras E Sobrejetoras
FunçOes Injetoras, Sobrejetoras E SobrejetorasFunçOes Injetoras, Sobrejetoras E Sobrejetoras
FunçOes Injetoras, Sobrejetoras E Sobrejetoras
andreabelchol
 
Funcao modular
Funcao modularFuncao modular
Funcao modular
con_seguir
 
Funções, Equações e Inequações Trigonométricas
Funções, Equações e Inequações TrigonométricasFunções, Equações e Inequações Trigonométricas
Funções, Equações e Inequações Trigonométricas
Everton Moraes
 

Mais procurados (20)

7 coordenadas polares e curvas paramétricas
7   coordenadas polares e curvas paramétricas7   coordenadas polares e curvas paramétricas
7 coordenadas polares e curvas paramétricas
 
Calculo vetorial
Calculo vetorialCalculo vetorial
Calculo vetorial
 
Identificacao de conicas
Identificacao de conicasIdentificacao de conicas
Identificacao de conicas
 
LISTA DE FUNÇÕES TRIGONOMÉTRICAS
LISTA DE FUNÇÕES TRIGONOMÉTRICASLISTA DE FUNÇÕES TRIGONOMÉTRICAS
LISTA DE FUNÇÕES TRIGONOMÉTRICAS
 
GEOMETRIA ANALÍTICA cap 06
GEOMETRIA ANALÍTICA cap  06GEOMETRIA ANALÍTICA cap  06
GEOMETRIA ANALÍTICA cap 06
 
FunçOes Injetoras, Sobrejetoras E Sobrejetoras
FunçOes Injetoras, Sobrejetoras E SobrejetorasFunçOes Injetoras, Sobrejetoras E Sobrejetoras
FunçOes Injetoras, Sobrejetoras E Sobrejetoras
 
Funções.saa
Funções.saaFunções.saa
Funções.saa
 
Resolução de equações paramétricas
Resolução de equações paramétricasResolução de equações paramétricas
Resolução de equações paramétricas
 
Funcao modular
Funcao modularFuncao modular
Funcao modular
 
Funções
FunçõesFunções
Funções
 
Funções
FunçõesFunções
Funções
 
Exercicios resolvidos
Exercicios resolvidosExercicios resolvidos
Exercicios resolvidos
 
Funções, Equações e Inequações Trigonométricas
Funções, Equações e Inequações TrigonométricasFunções, Equações e Inequações Trigonométricas
Funções, Equações e Inequações Trigonométricas
 
Fatoração
FatoraçãoFatoração
Fatoração
 
Expressoes Matematicas com o LaTeX
Expressoes Matematicas com o LaTeXExpressoes Matematicas com o LaTeX
Expressoes Matematicas com o LaTeX
 
Função quadrática 10º exercicios
Função quadrática 10º exerciciosFunção quadrática 10º exercicios
Função quadrática 10º exercicios
 
Produto cartesiano - Relação - Função
Produto cartesiano - Relação - FunçãoProduto cartesiano - Relação - Função
Produto cartesiano - Relação - Função
 
Slides da aula sobre Coordenadas Polares e Integrais Duplas em Coordenadas Po...
Slides da aula sobre Coordenadas Polares e Integrais Duplas em Coordenadas Po...Slides da aula sobre Coordenadas Polares e Integrais Duplas em Coordenadas Po...
Slides da aula sobre Coordenadas Polares e Integrais Duplas em Coordenadas Po...
 
Relações
RelaçõesRelações
Relações
 
Aula3 operaçoes mon_polinom1
Aula3 operaçoes mon_polinom1Aula3 operaçoes mon_polinom1
Aula3 operaçoes mon_polinom1
 

Destaque (7)

1928 d
1928 d1928 d
1928 d
 
[Arquitetura] projetos de casas suomi
[Arquitetura] projetos de casas   suomi[Arquitetura] projetos de casas   suomi
[Arquitetura] projetos de casas suomi
 
Apostila de-algebra-linear-1235013869657841-2
Apostila de-algebra-linear-1235013869657841-2Apostila de-algebra-linear-1235013869657841-2
Apostila de-algebra-linear-1235013869657841-2
 
CHP'NİN YAPTIKLARI AKP'NİN SATTIKLARI
CHP'NİN YAPTIKLARI AKP'NİN SATTIKLARICHP'NİN YAPTIKLARI AKP'NİN SATTIKLARI
CHP'NİN YAPTIKLARI AKP'NİN SATTIKLARI
 
Apostila de algebra linear
Apostila de algebra linearApostila de algebra linear
Apostila de algebra linear
 
Vetores
VetoresVetores
Vetores
 
Vetores
VetoresVetores
Vetores
 

Semelhante a Álgebra Li

Algebra Linear cap 09
Algebra Linear cap 09Algebra Linear cap 09
Algebra Linear cap 09
Andrei Bastos
 
Cap. I - Fotogrametria II
Cap. I - Fotogrametria IICap. I - Fotogrametria II
Cap. I - Fotogrametria II
UFPR
 
1) matrizes 2012 (prevest)
1) matrizes 2012 (prevest)1) matrizes 2012 (prevest)
1) matrizes 2012 (prevest)
Márcio Queiroz
 
transformadalaplace-
transformadalaplace-transformadalaplace-
transformadalaplace-
Du Mucc
 
Aula 1 integrais du e tr c_po_cci_ces
Aula 1  integrais du e tr c_po_cci_cesAula 1  integrais du e tr c_po_cci_ces
Aula 1 integrais du e tr c_po_cci_ces
Gabriela Di Mateos
 

Semelhante a Álgebra Li (20)

1943 d
1943 d1943 d
1943 d
 
Algebra Linear cap 09
Algebra Linear cap 09Algebra Linear cap 09
Algebra Linear cap 09
 
Lista matrizes 2_ano_2012_pdf
Lista matrizes 2_ano_2012_pdfLista matrizes 2_ano_2012_pdf
Lista matrizes 2_ano_2012_pdf
 
Algebra
AlgebraAlgebra
Algebra
 
Cap. I - Fotogrametria II
Cap. I - Fotogrametria IICap. I - Fotogrametria II
Cap. I - Fotogrametria II
 
Funções
FunçõesFunções
Funções
 
Otimização no Armazenamento de Imagens por meio da Decomposição em Valores Si...
Otimização no Armazenamento de Imagens por meio da Decomposição em Valores Si...Otimização no Armazenamento de Imagens por meio da Decomposição em Valores Si...
Otimização no Armazenamento de Imagens por meio da Decomposição em Valores Si...
 
Autovalor autovetor
Autovalor autovetorAutovalor autovetor
Autovalor autovetor
 
Otimização no Armazenamento de Imagens por meio da Decomposição em Valores Si...
Otimização no Armazenamento de Imagens por meio da Decomposição em Valores Si...Otimização no Armazenamento de Imagens por meio da Decomposição em Valores Si...
Otimização no Armazenamento de Imagens por meio da Decomposição em Valores Si...
 
Apostila 1 calculo i
Apostila 1 calculo iApostila 1 calculo i
Apostila 1 calculo i
 
Apostila limites
Apostila limitesApostila limites
Apostila limites
 
1) matrizes 2012 (prevest)
1) matrizes 2012 (prevest)1) matrizes 2012 (prevest)
1) matrizes 2012 (prevest)
 
Aula 4 espaços vetoriais
Aula 4   espaços vetoriaisAula 4   espaços vetoriais
Aula 4 espaços vetoriais
 
Mat angulos retas
Mat angulos   retasMat angulos   retas
Mat angulos retas
 
4. espacos vectoriais
4. espacos vectoriais4. espacos vectoriais
4. espacos vectoriais
 
A forma cannica de jordan
A forma cannica de jordanA forma cannica de jordan
A forma cannica de jordan
 
transformadalaplace-
transformadalaplace-transformadalaplace-
transformadalaplace-
 
Integral multiplas
Integral multiplasIntegral multiplas
Integral multiplas
 
Aula 1 integrais du e tr c_po_cci_ces
Aula 1  integrais du e tr c_po_cci_cesAula 1  integrais du e tr c_po_cci_ces
Aula 1 integrais du e tr c_po_cci_ces
 
2 equações
2 equações2 equações
2 equações
 

Mais de José Sérgio Domingues (7)

Publicação CN
Publicação CNPublicação CN
Publicação CN
 
Congresso de ufu
Congresso de ufuCongresso de ufu
Congresso de ufu
 
Boas Vindas!
Boas Vindas!Boas Vindas!
Boas Vindas!
 
Exercício extra
Exercício extraExercício extra
Exercício extra
 
Lista 1 ed
Lista 1   edLista 1   ed
Lista 1 ed
 
Seminário de Criptografia_CCET
Seminário de Criptografia_CCETSeminário de Criptografia_CCET
Seminário de Criptografia_CCET
 
Seminário ccet
Seminário ccetSeminário ccet
Seminário ccet
 

Álgebra Li

  • 1. Notas de Aula - 30/11/2009 Profo : José Sérgio Domingues Universidade Estadual de Montes Claros - UNIMONTES Curso de Licenciatura Plena em Matemática
  • 2. Sumário 1 Diagonalização de Matrizes 1 2 Diagonalização de Operadores 2 3 Formas Bilineares e Quadráticas Reais 4 3.1 Formas Bilineares . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 3.2 Matriz de uma Forma Bilinear . . . . . . . . . . . . . . . . . . . . . . . . . 5 3.3 Forma Bilinear Simétrica . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3.4 Formas Quadráticas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 4 Forma Canônica de Jordan 8 5 Teorema Espectral 10 5.1 Operadores Auto-Adjuntos . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 5.2 Teorema Espectral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 6 Referências 11
  • 3. 1 Diagonalização de Matrizes Denição 1.1. Dizemos que uma matriz A, de ordem n, é diagonalizável, se existem matrizes P e D tais que A = P DP −1 , ou equivalente, D = P −1 AP , em que D é uma matriz diagonal. Teorema 1.2. Seja A uma matriz de ordem n que tem n autovetores L.I (V1 , V2 , ..., Vn ), associados a λ1 , λ2 , ..., λn , respectivamente. Então, as matrizes    λ1 0 ··· 0     0 λ2 0 0    P = [V1 V2 ... Vn ] e D= . .   . . 0 ··· .  .     0 ··· 0 λn são tais que D = P −1 AP , ou seja, A é diagonalizável. Reciprocamente, se A é diagonal- izável, então ela possui n autovetores L.I.   1 −1 Exemplo 1.3. Encontre as matrizes P e D, sendo A =   e verique que −4 1 A = P DP −1 . Os autovalores encontrados são λ1 = −1 e λ2 = 3. Seus respectivos autoespaços associados são W1 = {(α, 2α) | α ∈ R} = {α(1, 2) | α ∈ R} e W2 = {(α, −2α) | α ∈ R} = {α(1, −2) | α ∈ R}. Observe que V1 = (1, 2) e V2 = (1, −2) são autovetores L.I. Portanto, de acordo com o Teorema 1.2, temos que     1 1 −1 0 P =  e D= . 2 −2 0 3   1 1 Além disso, P −1 =  2 4  e A = P DP −1 . 1 2 −1 4 Teorema 1.4. Autovalores distintos possuem autovetores associados linearmente inde- pendentes (L.I). Corolário 1.5. Se V é um espaço vetorial de dimensão n e T : V → V é um operador linear que possui n autovalores distintos, então V possui uma base cujos vetores são todos autovetores de T. 1
  • 4. Em outras palavras, o corolário nos garante que, se conseguirmos encontrar tantos autovalores distintos quanto for a dimensão do espaço, podemos garantir a existência de uma base de autovetores. 2 Diagonalização de Operadores Denição 2.1. Dizemos que o operador linear T : V → V é um operador diagonalizável se existe uma base de V cujos elementos são autovetores de T. Portanto, de acordo com o corolário acima, para vericar se um operador linear é di- agonalizável, basta mostrar que a matriz associada a esse operador possui n autovalores distintos. Exemplo 2.2. Verique que T : R3 → R3 dado por T (x, y, z) = (3x−3y−4z, 3y+5z, −z), não é diagonalizável. A matriz associada a esse operador linear em relação à base canônica é   3 −3 −4     A = [T ]α =  0 α 3 5    0 0 −1 portanto, o seu polinômio característico é dado por det(A − λI3 ) e seus autovalores são as soluções da equação característica det(A − λI3 ). Para o nosso exemplo, temos        3 −3 −4   λ 0 0   3 − λ −3 −4        A − λI3 =  0  3 5 − 0 λ 0 = 0     3−λ 5         0 0 −1 0 0 λ 0 0 −1 − λ Então, P (λ) = 0 ⇐⇒ det(A − λI3 ) = (3 − λ)2 (−1 − λ) = 0 ⇐⇒ λ1 = 3 e λ2 = −1. • Para λ1 = 3, temos:         −3y − 4z = 0  0 −3 −4  x   0          (A − 3I3 )v = 0 ⇐⇒  0  0 5    =  0  ⇐⇒ y    5z = 0          0 0 −4 z 0  − 4z = 0 ⇐⇒ x = α e y = z = 0. Portanto, W1 = {(α, 0, 0) | α ∈ R} = {α(1, 0, 0) | α ∈ R} 2
  • 5. • Para λ2 = −1, temos:         4x − 3y − 4z = 0  4 −3 −4   x   0           0 (A+I3 )v = 0 ⇐⇒  4   y  =  0  ⇐⇒ 5     4y + 5z = 0          0 0 0 z 0  0 = 0 α ⇐⇒ x = 16 , y = −5α 4 e z = α. Portanto, W2 = {( 16 , − 5 α, α) | α ∈ R} = {α( 16 , − 5 , 1) | α ∈ R} α 4 1 4 Neste caso, temos apenas dois autovetores L.I para T , e portanto não existe uma base de R3 constituída só de autovetores de T . Isto signica este operador não é diagonalizável. Exemplo 2.3. Mostre que T : R2 → R2 onde T (x, y) = (−3x + 4y, −x + 2y), é diagonalizável. De acordo com o que estudamos anteriormente, para mostrar que T é diagonalizável, basta vericar que a matriz associada a este operador linear possui o número de autoval- ores distintos igual a 2, pois neste caso, V = R2 e dim(R2 ) = 2.   −3 4 Pois bem, em relação à base canônica α, temos que A = [T ]α =  α . Logo, −1 2   −3 − λ 4 det(A − λI2 ) = 0 ⇐⇒ det   = 0 ⇐⇒ (−3 − λ)(2 − λ) + 4 = 0 −1 2−λ ⇐⇒ λ2 + λ − 2 = 0 ⇐⇒ λ1 = 1 e λ2 = −2. Como a matriz A possui dois autovalores distintos, pelo Corolário 1.5, V = R2 possui uma base formada por autovetores de T . E portanto, pela Denição 2.1, T é diagonalizável. Exemplo 2.4. No exemplo anterior, vimos que λ1 = 1 = λ2 = −2. O leitor pode vericar que dois autovetores linearmente independentes associados a λ1 e λ2 são, respectivamente, V1 = (1, 1) e V2 = (4, 1). Pelo Corolário 1.5, uma base de V = R2 é β = {V1 , V2 }. Vamos encontrar [T ]β e observar de que tipo ela será. β 3
  • 6. T (V1 ) = T (1, 1) = (−3 + 4, −1 + 2) = (1, 1) = 1 · V1 + 0 · V2 T (V2 ) = T (4, 1) = (−3 · 4 + 4 · 1, −4 + 2 · 1) = (−8, −2) = 0 · V1 − 2 · V2 Portanto, concluímos que   1 0 [T ]β =  β  0 −2 que é uma matriz diagonal, onde a diagonal principal é formada exatamente pelos auto- valores de T . Isso não ocorreu por acaso, na realidade, a denição formal de operador diagonalizável, vem da idéia de a partir de um operador linear T : V → V , conseguirmos encontrar uma base β de V na qual a matriz do operador nesta base ([T ]β ) seja uma matriz diagonal, β que é a forma mais simples possível de se representar um operador. 3 Formas Bilineares e Quadráticas Reais 3.1 Formas Bilineares Denição 3.1. Seja V um espaço vetorial real. Uma forma bilinear é uma aplicação B : V XV → R denida por (v, w) → B(v, w) tal que: i. Para w xado, B(v, w) é uma forma linear em v , isto é, B(v1 + v2 , w) = B(v1 , w) + B(v2 , w) e B(av, w) = aB(v, w) ii. Para v xado, B(v, w) é uma forma linear em w, isto é, B(v, w1 + w2 ) = B(v, w1 ) + B(v, w2 ) e B(v, aw) = aB(v, w) Exemplo 3.2. O produto usual de números reais, denido por P : R X R → R com (x, y) → xy . Vamos vericar as duas propriedades para demonstrar que esta aplicação é bilinear. i. P (x1 + x2 , y) = (x1 + x2 )y = x1 y + x2 y = P (x1 , y) + P (x2 , y) P (ax, y) = axy = a(xy) = aP (x, y) 4
  • 7. ii. P (x, y1 + y2 ) = x(y1 + y2 ) = xy1 + xy2 = P (x, y1 ) + P (x, y2 ) P (x, ay) = xay = a(xy) = aP (x, y) Exemplo 3.3. Seja V um espaço vetorial com produto interno , . O operador linear B : V X V → R denido por (v, w) → v, w é uma forma bilinear pelas propriedades de produto interno. 3.2 Matriz de uma Forma Bilinear Seja V um espaço vetorial e B : V X V → R uma forma bilinear. Se α = {v1 , ..., vn } é uma base de V , podemos associar a B uma matriz ([B]α ), denominada matriz da forma α bilinear B , na base α, da seguinte forma: Como α é base de V , tomando v, w ∈ V podemos escrever v = x1 v1 + ... + xn vn e w = y1 v1 + ... + yn vn . Então,     B(v1 , v1 ) · · · B(v1 , vn ) y    1   . . .. . .   .  B(v, w) = [x1 ... xn ] ·  . . . · .  .     B(vn , v1 ) · · · B(vn , vn ) yn Portanto, B(v, w) = [v]α · [B]α · [w]α α Exemplo 3.4. Seja B : R2 X R2 → R a forma bilinear dada por B(v, w) = −x1 y1 + 2x2 y1 + 5x2 y2 onde v = (x1 , x2 ) e w = (y1 , y2 ). Então, se α = {e1 , e2 } é a base canônica de R2 , temos: B(e1 , e1 ) = B((1, 0), (1, 0)) = −1 · 1 + 2 · 0 · 1 + 5 · 0 · 0 = −1 B(e2 , e1 ) = B((0, 1), (1, 0)) = −0 · 1 + 2 · 1 · 1 + 5 · 1 · 0 = 2 B(e1 , e2 ) = B((1, 0), (0, 1)) = −1 · 0 + 2 · 0 · 0 + 5 · 0 · 1 = 0 B(e2 , e2 ) = B((0, 1), (0, 1)) = −0 · 0 + 2 · 1 · 0 + 5 · 1 · 1 = 5 5
  • 8. Então,     B(e1 , e1 ) B(e1 , e2 ) −1 0 [B]α =  α =  B(e2 , e1 ) B(e2 , e2 ) 2 5 e     −1 0 y1 B(v, w) = [x1 x2 ] ·  ·  = [v]α · [B]α · [w]α α 2 5 y2   −2 0 0   Exemplo 3.5. Seja M =    4 2 0 . É possível associar a M uma forma bilinear   0 0 2 B : R3 X R3 → R denida por     −2 0 0 y1         B((x1 , x2 , x3 ), (y1 , y2 , y3 )) = [x1 x2 x3 ] ·  4 2 0  ·  y2      0 0 2 y3 Então, B((x1 , x2 , x3 ), (y1 , y2 , y3 )) = −2x1 y1 + 4x2 y1 + 2x2 y2 + 2x3 y3 . 3.3 Forma Bilinear Simétrica Denição 3.6. Uma forma bilinear B : V X V → R é denominada forma bilinear simétrica se B(v, w) = B(w, v), ∀ v, w ∈ V . Exemplo 3.7. B(v, w) = v, w , onde , é um produto interno em V . Exemplo 3.8. B : R2 X R2 → R dada por B(v, w) = −x1 y1 + 3x2 y1 + 3x1 y2 + 2x2 y2 , onde v = (x1 , x2 ) e w = (y1 , y2 ) (Verique!). Exemplo 3.9. Vamos encontrar a matriz da forma bilinear acima, utilizando a base canônica α, [B]α . α No exemplo acima, V = R2 =⇒ α = {e1 , e2 } é uma base de V . Logo, B(e1 , e1 ) = B((1, 0), (1, 0)) = −1 · 1 + 3 · 0 · 1 + 3 · 1 · 0 + 2 · 0 · 0 = −1 B(e1 , e2 ) = B((1, 0), (0, 1)) = −1 · 0 + 3 · 0 · 0 + 3 · 1 · 1 + 2 · 0 · 1 = 3 6
  • 9. B(e2 , e1 ) = B((0, 1), (1, 0)) = −0 · 1 + 3 · 1 · 1 + 3 · 0 · 0 + 2 · 1 · 0 = 3 B(e2 , e2 ) = B((0, 1), (0, 1)) = −0 · 0 + 3 · 1 · 0 + 3 · 0 · 1 + 2 · 1 · 1 = 2 Então,     B(e1 , e1 ) B(e1 , e2 ) −1 3 [B]α =  α =  B(e2 , e1 ) B(e2 , e2 ) 3 2 Observação 3.10. Observe que a matriz da forma bilinear que encontramos acima é simétrica. Teorema 3.11. Uma forma bilinear B : V X V → R é simétrica se, e somente se, [B]α α é uma matriz simétrica. Observação 3.12. A demonstração do teorema acima é trivial, e ca a cargo do leitor. 3.4 Formas Quadráticas Denição 3.13. Seja V um espaço vetorial real e B : V X V → R uma forma bilinear simétrica. A função Q : V → R denida por Q(v) = B(v, v) é chamada forma quadrática associada a B . Exemplo 3.14. Seja B : R3 X R3 → R dada por B(v, w) = x1 y1 + 2x2 y2 + 3x3 y3 + x1 y2 + x2 y1 , onde v = (x1 , x2 , x3 ) e w = (y1 , y2 , y3 ). Facilmente, verica-se que B é uma forma bilinear simétrica de R3 . A forma quadrática associada associada a B é a função Q(v) = B(v, v) = x2 + 2x2 + 3x2 + x1 x2 + x2 x1 1 2 3 = x2 + 2x2 + 3x2 + 2x1 x2 1 2 3 Exemplo 3.15. Associada ao produto interno usual de Rn , B : Rn X Rn → R com B(v, w) = x1 y1 + x2 y2 + ... + xn yn (que obviamente é uma forma linear simétrica) está a forma quadrática Q(v), dada por Q(v) = B(v, v) = x2 + x2 + ... + x2 1 2 n 7
  • 10. 4 Forma Canônica de Jordan Partição de uma Matriz em Blocos: Particionar uma matriz A qualquer em blocos, signica dividir esta matriz em submatrizes.   √  1 −2 π 3    Exemplo 4.1. Se A =   6 −7 2 −1 , uma das possíveis subdivisões de A é    −7 −3 −9 0   √ 1 −2 π 3       A11 A12 A=  6 −7 2 −1  =   ,   A13 A14 −7 −3 −9 0 onde,     √ 6 −7 2 −1 A11 = 1 −2 π , A12 = 3 , A13 =   e A14 =  , −7 −3 −9 0 são os blocos da subdivisão da matriz original A. Já estudamos que nem todo operador linear T : V → V é diagonalizável, ou seja, nem sempre existe uma base β de V tal que a matriz [T ]β é diagonal. Entretanto, para β várias aplicações, é suciente que exista uma base β tal que a matriz [T ]β tenha uma forma β bem próxima da forma diagonal. Essa forma é denominada forma canônica de Jordan. Denição 4.2. Uma matriz J , n xn, está na forma canônica de Jordan, se ela é da forma     λj 0 · · · 0 0   Jλ1 0 ··· 0         1 λj · · · 0 0   0 Jλ2 · · · 0       . . ... . . . .  . .  J = , em que Jλj = . . . .  . . . ... . . .     . . .       0 0 ··· λj 0    0 0 · · · Jλk   0 0 ··· 1 λj para j = 1, ..., k . Jλj é chamado bloco de Jordan. 8
  • 11.  2 0 0 0      1 2 0 0    Exemplo 4.3. A=  está na forma canônica de Jordan e é formada  0 1 2 0      0 0 0 2 por dois blocos de Jordan, o primeiro sendo 3x3 e o segundo 1x1.   5 0 0 0      1 5 0 0    Exemplo 4.4. B=  está na forma canônica de Jordan e é formada    0 0 −3 0    0 0 1 −3 por dois blocos de Jordan, ambos 2x2.    −4 0 0 0     1 −4 0 0    Exemplo 4.5. C=  está na forma canônica de Jordan e é for-  0 1 −4 0      0 0 1 −4 mada por apenas um bloco de Jordan.    7 0 0 0     0 7 0 0    Exemplo 4.6. D=  está na forma canônica de Jordan e é formada  0 0 7 0      0 0 0 7 por 4 blocos 1x1.    2 0 0 0     1 2 0 0    Exemplo 4.7. E=  não está na forma canônica de Jordan. Pois  0 1 2 0      0 0 1 −1 como os elementos da diagonal principal não são iguais, ela teria que ser formada por pelo menos dois blocos de Jordan e [−1] deveria ser um bloco de Jordan 1x1. 9
  • 12. 5 Teorema Espectral 5.1 Operadores Auto-Adjuntos Denição 5.1. Sejam U e V espaços vetoriais sobre R. Indicaremos por L(U, V ) o conjunto das transformações lineares de U em V e se U = V , o conjunto dos operadores lineares de U será denotado por L(U ). Denição 5.2. Seja V um espaço vetorial euclidiano. Um operador T ∈ L(V ) se diz auto-adjunto se T (v), w = v, T (w) para quaisquer v, w ∈ V . Exemplo 5.3. Seja T ∈ L(R2 ) dado por T (x, y) = (ax + by, bx + cy). Vamos mostrar que T é um operador auto-adjunto. T (x, y), (z, y) = (ax + by, bx + cy), (z, y) = axz + byz + bxt + cyt. Por outro lado, (x, y), T (z, y) = (x, y), (az + bt, bz + ct) = axz + bxt + byz + cyt. Portanto, T (x, y), (z, y) = (x, y), T (z, y) e consequentemente, T é um operador auto-adjunto. 5.2 Teorema Espectral Teorema 5.4 (Espectral). Para todo operador auto-adjunto T ∈ L(V ), sendo V um es- paço vetorial de dimensão nita e munido de produto interno, existe uma base ortonormal {v1 , v2 , ..., vn } ⊂ V formada por autovetores de T . 10
  • 13. 6 Referências [1] BOLDRINI, J. L (et al.). Álgebra Linear, 3a edição. Editora Harbra ltda. São Paulo, 1980. [2] CALLIOLI, H. e ROBERTO C. Álgebra Linear e Aplicações - Nova Edição. [3] LIMA, E.L. Álgebra Linear, 7a edição - Coleção Matemática Universitária - IMPA. [4] LANG, S. Álgebra Linear - Editora Edgar Blucher Ltda, SP. [4] SANTOS, R.J. Introdução à Álgebra Linear - Editora UFMG - Belo Horizonte. [5] SANTOS, R.J. Álgebra Linear e Aplicações - Editora UFMG - Belo Horizonte. 11