a: hipotenusa
b: maior cateto
c: menor cateto
h: altura relativa à hipotenusa
m: projeção do cateto b
n: projeção do cateto c
Relações métricas no triângulo
retângulo:
Identificar as relações métricas nos triângulos retângulos e aplicá-las na
resolução de problemas;
O Teorema de Pitágoras relaciona os
catetos com a hipotenusa.
Como fica a fórmula?
Está difícil solucionar o desafio? Fique tranquilo, ao final desta aula, você estará apto a
responder esta questão!
A chácara de Ângela tem a forma de um triângulo retângulo e as dimensões indicadas na
figura. Qual a distância entre o portão e o poço?
1000 m
Relações métricas no triângulo retângulo...
As construções das pirâmides e dos templos pela
civilização egípcia e babilônica são o testemunho
mais antigo de um conhecimento sistemático da
geometria. Nessas construções nota-se a presença de
ângulos retos e linhas retas perpendiculares entre si.
De acordo com a história os antigos egípcios
utilizavam o triângulo retângulo para construir os
ângulos retos.
Hoje em dia os operários da construção civil usam
linhas na demarcação de terrenos e na construção de
casas. Esses profissionais também utilizam esquadros
para conferir cantos retos.
Assista ao vídeo abaixo e conheça um
pouco mais sobre o assunto.
http://www.youtube.com/watch?v=hVpbAacwD-M
Questão 1
Tangram é um quebra-cabeça chinês formado por 7 peças. Com essas peças podemos
formar várias figuras, utilizando todas elas sem sobrepô-las. Segundo a Enciclopédia do
Tangram é possível montar mais de 1700 figuras com as 7 peças. Esse quebra-cabeça,
também conhecido como jogo das sete peças, é utilizado pelos professores de matemática
como instrumento facilitador da compreensão das formas geométricas. Observando a
imagem do Tangram abaixo, podemos afirmar que a mesma possui quantos triângulos
retângulos?
A) 2
B) 3
C) 4
D) 5
GABARITO: (D)
Questão 2
As construções das pirâmides e templos pelas civilizações egípcia e babilônica são o
testemunho mais antigo de um conhecimento sistemático da Geometria. Contudo, muitas
outras civilizações antigas possuíam conhecimentos de natureza geométrica, desde a
Babilônia até a China, passando pela civilização hindu. Os babilônios tinham
conhecimentos matemáticos que provinham da agrimensura e comércio e a civilização
hindu conhecia o teorema sobre o quadrado da hipotenusa de um ___________________.
Qual figura geométrica completa o texto acima?
A)Losango
B)Paralelogramo
C)Quadrado
D)Triângulo retângulo
GABARITO: (D)
Questão 3
GABARITO: (C)
A figura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de
sua base ligada ao topo do edifício
O comprimento dessa escada é de:
A) 12 m
B) 15 m
C) 17m
D) 30 m
Você já ouviu falar das Relações métricas no triângulo retângulo?
Os elementos de um triângulo retângulo recebem
denominações especiais; assim, para um triângulo
ABC retângulo em A, temos que:
* o lado a (ou de medida a), oposto ao ângulo Â, é a
hipotenusa;
* os lados b e c (ou de medidas b e c), opostos,
respectivamente, aos ângulos B e C, são os catetos;
* m = projeção do cateto b sobre a hipotenusa;
* n = projeção do cateto c sobre a hipotenusa;
* h = altura relativa à hipotenusa.
Pense e responda:
a soma das projeções é
igual a ___________?
m + n = ?
Conheça mais sobre a resolução de Relações métricas no triângulo retângulo.
Em qualquer triângulo retângulo, o quadrado
da medida da altura relativa à hipotenusa é
igual ao produto das medidas das projeções
dos catetos sobre a hipotenusa.
h² = m . nO quadrado da medida de cada cateto é
igual ao produto da medida da hipotenusa
pela medida de sua projeção sobre a
hipotenusa.
c² = a . mb² = a . n Em qualquer triângulo retângulo, o produto das
medidas dos catetos é igual ao produto da
medida da hipotenusa pela medida da altura
relativa à hipotenusa.
b . c = a . h
nm
c h h
b
Relações de Euclides
Teorema de Pitágoras
Questão 4
A) 5 m
B) 7 m
C) 8 m
D) 9 m
Gabarito: (D)
Um bambu partiu-se a uma altura de 4 m do chão, e a parte de cima, ao cair, tocou o chão,
a uma distância de 3 m da base do bambu. Qual era a altura do bambu antes de partir-se?
Questão 5
A medida da diagonal da tela de uma televisão determina as polegadas da TV. Uma
televisão cuja tela mede 30 cm por 40cm possui :
A) 16 polegadas.
B) 18 polegadas.
C) 20 polegadas.
D) 29 polegadas.
Lembrete! 1 polegada 2,5 cm≅ Gabarito: (C)
Questão 6
Um motorista vai da cidade A até a cidade E, passando pela cidade B, conforme mostra a
figura. Ele percorreu:
A) 9 km
B) 20 km
C) 36 km
D) 41 km
Gabarito: (C)
Questão 7
A professora Carolina passou um exercício para Sebastião, no qual ele precisa descobrir a
distância entre os pontos A e D. Vamos ajudá-lo a resolver. Qual a resposta correta?
A) 24 km
B) 28 km
C) 30 km
D) 32 km
Gabarito: (A)
O quadrado da altura é igual ao produto das projeções dos catetos sobre a hipotenusa.
Através da semelhança de triângulos podemos escrever a seguinte proporção entre as
medidas dos lados correspondentes:
Qual o valor da altura deste triângulo ?
O quadrado de um cateto é igual ao produto da hipotenusa pela projeção desse cateto
sobre a hipotenusa.
Determine o
valor de x:
O produto das medidas dos catetos é igual ao produto das medidas da hipotenusa e da
altura relativa a ela.
Qual o valor da altura
deste triângulo ?
Questão 8
Uma praça tem a forma de um triângulo retângulo, com uma via de passagem pelo gramado,
que vai de um vértice do ângulo reto até a calçada maior, como ilustrado pela figura abaixo.
Sabendo que esta via divide o contorno
maior do gramado em dois pedaços, um
de 32 m e outro de 18 m, o contorno b
mede, em metros:
A) 60
B) 45
C) 40
D) 25
Gabarito: (C)
O triângulo ABC é retângulo em B.
O valor de h é:
Questão 9
A) 1,2 cm
B) 2,0 cm
C) 2,4 cm
D) 3,2 cm Gabarito: (C)
Questão 10
Na figura abaixo, a distância da casa à estrada é 1,2 km. Qual é a menor distância da árvore à
caixa d’água?
A) 2,5 km
B) 2 km
C) 1,5 km
D) 0,9 km
Gabarito: (A)
O lampião representado na figura está suspenso por duas cordas perpendiculares presas ao
teto. Sabendo que essas cordas medem 1/2 e 6/5, a distância do lampião ao teto é:
A) 1,69
B) 1,3
C) 1/2
D) 6/13
Gabarito: (D)
Questão 11

Aula geometria

  • 1.
    a: hipotenusa b: maiorcateto c: menor cateto h: altura relativa à hipotenusa m: projeção do cateto b n: projeção do cateto c Relações métricas no triângulo retângulo: Identificar as relações métricas nos triângulos retângulos e aplicá-las na resolução de problemas; O Teorema de Pitágoras relaciona os catetos com a hipotenusa. Como fica a fórmula?
  • 2.
    Está difícil solucionaro desafio? Fique tranquilo, ao final desta aula, você estará apto a responder esta questão! A chácara de Ângela tem a forma de um triângulo retângulo e as dimensões indicadas na figura. Qual a distância entre o portão e o poço? 1000 m
  • 3.
    Relações métricas notriângulo retângulo... As construções das pirâmides e dos templos pela civilização egípcia e babilônica são o testemunho mais antigo de um conhecimento sistemático da geometria. Nessas construções nota-se a presença de ângulos retos e linhas retas perpendiculares entre si. De acordo com a história os antigos egípcios utilizavam o triângulo retângulo para construir os ângulos retos. Hoje em dia os operários da construção civil usam linhas na demarcação de terrenos e na construção de casas. Esses profissionais também utilizam esquadros para conferir cantos retos. Assista ao vídeo abaixo e conheça um pouco mais sobre o assunto. http://www.youtube.com/watch?v=hVpbAacwD-M
  • 4.
    Questão 1 Tangram éum quebra-cabeça chinês formado por 7 peças. Com essas peças podemos formar várias figuras, utilizando todas elas sem sobrepô-las. Segundo a Enciclopédia do Tangram é possível montar mais de 1700 figuras com as 7 peças. Esse quebra-cabeça, também conhecido como jogo das sete peças, é utilizado pelos professores de matemática como instrumento facilitador da compreensão das formas geométricas. Observando a imagem do Tangram abaixo, podemos afirmar que a mesma possui quantos triângulos retângulos? A) 2 B) 3 C) 4 D) 5 GABARITO: (D)
  • 5.
    Questão 2 As construçõesdas pirâmides e templos pelas civilizações egípcia e babilônica são o testemunho mais antigo de um conhecimento sistemático da Geometria. Contudo, muitas outras civilizações antigas possuíam conhecimentos de natureza geométrica, desde a Babilônia até a China, passando pela civilização hindu. Os babilônios tinham conhecimentos matemáticos que provinham da agrimensura e comércio e a civilização hindu conhecia o teorema sobre o quadrado da hipotenusa de um ___________________. Qual figura geométrica completa o texto acima? A)Losango B)Paralelogramo C)Quadrado D)Triângulo retângulo GABARITO: (D)
  • 6.
    Questão 3 GABARITO: (C) Afigura mostra um edifício que tem 15 m de altura, com uma escada colocada a 8 m de sua base ligada ao topo do edifício O comprimento dessa escada é de: A) 12 m B) 15 m C) 17m D) 30 m
  • 7.
    Você já ouviufalar das Relações métricas no triângulo retângulo? Os elementos de um triângulo retângulo recebem denominações especiais; assim, para um triângulo ABC retângulo em A, temos que: * o lado a (ou de medida a), oposto ao ângulo Â, é a hipotenusa; * os lados b e c (ou de medidas b e c), opostos, respectivamente, aos ângulos B e C, são os catetos; * m = projeção do cateto b sobre a hipotenusa; * n = projeção do cateto c sobre a hipotenusa; * h = altura relativa à hipotenusa. Pense e responda: a soma das projeções é igual a ___________? m + n = ?
  • 8.
    Conheça mais sobrea resolução de Relações métricas no triângulo retângulo. Em qualquer triângulo retângulo, o quadrado da medida da altura relativa à hipotenusa é igual ao produto das medidas das projeções dos catetos sobre a hipotenusa. h² = m . nO quadrado da medida de cada cateto é igual ao produto da medida da hipotenusa pela medida de sua projeção sobre a hipotenusa. c² = a . mb² = a . n Em qualquer triângulo retângulo, o produto das medidas dos catetos é igual ao produto da medida da hipotenusa pela medida da altura relativa à hipotenusa. b . c = a . h nm c h h b Relações de Euclides Teorema de Pitágoras
  • 9.
    Questão 4 A) 5m B) 7 m C) 8 m D) 9 m Gabarito: (D) Um bambu partiu-se a uma altura de 4 m do chão, e a parte de cima, ao cair, tocou o chão, a uma distância de 3 m da base do bambu. Qual era a altura do bambu antes de partir-se? Questão 5 A medida da diagonal da tela de uma televisão determina as polegadas da TV. Uma televisão cuja tela mede 30 cm por 40cm possui : A) 16 polegadas. B) 18 polegadas. C) 20 polegadas. D) 29 polegadas. Lembrete! 1 polegada 2,5 cm≅ Gabarito: (C)
  • 10.
    Questão 6 Um motoristavai da cidade A até a cidade E, passando pela cidade B, conforme mostra a figura. Ele percorreu: A) 9 km B) 20 km C) 36 km D) 41 km Gabarito: (C) Questão 7 A professora Carolina passou um exercício para Sebastião, no qual ele precisa descobrir a distância entre os pontos A e D. Vamos ajudá-lo a resolver. Qual a resposta correta? A) 24 km B) 28 km C) 30 km D) 32 km Gabarito: (A)
  • 11.
    O quadrado daaltura é igual ao produto das projeções dos catetos sobre a hipotenusa. Através da semelhança de triângulos podemos escrever a seguinte proporção entre as medidas dos lados correspondentes: Qual o valor da altura deste triângulo ?
  • 12.
    O quadrado deum cateto é igual ao produto da hipotenusa pela projeção desse cateto sobre a hipotenusa. Determine o valor de x:
  • 13.
    O produto dasmedidas dos catetos é igual ao produto das medidas da hipotenusa e da altura relativa a ela. Qual o valor da altura deste triângulo ?
  • 14.
    Questão 8 Uma praçatem a forma de um triângulo retângulo, com uma via de passagem pelo gramado, que vai de um vértice do ângulo reto até a calçada maior, como ilustrado pela figura abaixo. Sabendo que esta via divide o contorno maior do gramado em dois pedaços, um de 32 m e outro de 18 m, o contorno b mede, em metros: A) 60 B) 45 C) 40 D) 25 Gabarito: (C) O triângulo ABC é retângulo em B. O valor de h é: Questão 9 A) 1,2 cm B) 2,0 cm C) 2,4 cm D) 3,2 cm Gabarito: (C)
  • 15.
    Questão 10 Na figuraabaixo, a distância da casa à estrada é 1,2 km. Qual é a menor distância da árvore à caixa d’água? A) 2,5 km B) 2 km C) 1,5 km D) 0,9 km Gabarito: (A) O lampião representado na figura está suspenso por duas cordas perpendiculares presas ao teto. Sabendo que essas cordas medem 1/2 e 6/5, a distância do lampião ao teto é: A) 1,69 B) 1,3 C) 1/2 D) 6/13 Gabarito: (D) Questão 11