SlideShare uma empresa Scribd logo
Gravitação Universal de Newton
Professor: Carlos Alberto Aragão dos Santos

11/02/2014
Nesta aula abordaremos o estudo da
gravitação universal de Newton, onde
faremos uma introdução histórica vendo os
principais cientista da época.
Gravitação Universal
 É a parte da física que estuda o comportamento e
movimento dos astros, ou seja, estuda a
movimentação dos planetas e dos corpos que os
cercam.
Gravitação Universal
 Desde cedo, na história da humanidade, há registros
de observações dos corpos celestes;
 Antigos escritos chineses falam de fenômenos
astronômicos, como eclipses, surgimento de cometas, etc.;

 Os antigos navegantes orientavam-se pelo movimento
da Lua e pelas estrelas;
Um Pouco de Historia

Geocêntrico

Modelos:
Heliocêntrico
Modelo Geocêntrico

Cláudio Ptolomeu de Alexandria

 Ptolomeu, no século II d.C. formulou o universo com a terra ao
centro. Modelo que duraria até o século XVI, com discussões
de Galileu e Corpérnico.

Os planetas giram em órbitas concêntricas, em torno da Terra.
Modelo Heliocêntrico

Nicolau Copérnico (1473 – 1543)
Galileu Galilei (1564 -1642)
 O Sol é o centro do universo.
Leis de Kepler
 A partir das observações feitas por Galileu Galilei, o
alemão Johanes Kepler chegou em três leis básicas do
movimento orbital.

1ª : Lei das Órbitas.
2ª : Lei das áreas.
3ª : Lei dos períodos.
1ª Lei – A Lei das Trajetórias
Todos os planetas se movem em órbitas elípticas,
com Sol ocupando um dos focos.

•

•
f2

f1
Periélio
( V máx )

Orbitas Elípticas.
f1 , f 2 ⇒

Focos

Afélio
( Vmín )
2ª Lei de Kepler – Lei das Áreas
 A linha imaginária que liga o Sol a um planeta varre áreas
iguais em intervalos de tempo iguais.

tC


rC

A2

∆t 2


rD


rB

rA

tB
A1

tD
A1 ∆t1
=
A2 ∆t2

∆t1
tA

An
A1
A2
=
= ... =
= cte ( Va = velocidade areolar )
∆t1 ∆t2
∆tn

se ∆t1 = ∆t 2 = ... = ∆tn , então A1 = A2 = ... An
3ª Lei de Kepler – Lei dos Períodos
Os quadrados dos períodos de revolução de dois
planetas são proporcionais aos cubos dos raios
médios de suas órbitas.
2
1
3
1

2
2
3
2

T
T
=
= ... = cte
R
R
Raio Médio da Órbita

Periélio

•

•

•

F1

d mín

F2

d máx

d mín + d máx
R=
2

• Afélio
Os Planetas do Sistema Solar
Observações Gerais:
• As três leis de Kepler são válidas para quaisquer
sistemas em que corpos gravitam em torno de um
corpo central;
• A lei das órbitas não exclui a possibilidade de a órbita
descrita por um planeta ser circular, já que a
circunferência é um caso particular de elipse;
• Se considerarmos circular a trajetória descrita por um
planeta em torno do Sol, o raio médio de órbita
corresponderá ao raio da circunferência e o período do
movimento corresponderá ao período do movimento
circular uniforme;
• No caso de corpos orbitando ao redor da Terra, o
ponto da órbita mais próximo da Terra recebe o nome
perigeu e o mais afastado recebe o nome apogeu.
Lei de Kepler
Exemplo: A distância média da Terra ao Sol é
aproximadamente RT = 1,5. 1011 m e a distância média de
Marte ao Sol é aproximadamente RM = 2,3.1011 m.
Calcule o período de translação do planeta Marte, isto é, o
tempo que Marte gasta para dar uma volta em torno do
Sol.
Lei de Kepler
• As leis de Kepler descreveram geometricamente
os movimentos, mas faltava explicar porque os
planetas se moviam daquela maneira.
Lei da Gravitação Universal de Newton
 Dois corpos atraem-se gravitacionalmente com forças de
intensidades diretamente proporcional ao produto de suas
massas e inversamente proporcional ao quadrado da
distância que separa seus centros de gravidade.

m1.m2
F =G
2
d
G⇒

É a constante de gravitação
universal:

G ≅ 6, 67.10−11

N . m2
kg 2
Lei da Gravitação Universal de Newton
Observação
mA

⋅


FBA


FAB

d

⋅

mB

u
u
F AB e F BA São forças de ação e reação:
u
u
F AB = F BA = F
Lei da Gravitação Universal de Newton
Intensidade do Campo Gravitacional
m2

h

m1
g =G 2
R

m2

R

m1

F=P
m1. m2
G
= m2 . g
2
R

Caso o corpo esteja a uma altura h
em relação à superfície teremos:

m1
g =G
2
( R + h)
Lei da Gravitação Universal de Newton
A gravitação universal de newton
Lei da Gravitação Universal de Newton
Exemplo: A figura abaixo, ilustra duas pessoas paradas,
de pé, separadas por uma distância de
aproximadamente 3 metros. Qual é o valor
aproximado da intensidade da força de atração
gravitacional entre elas?
mA = 70kg

mB = 60kg
Comprovação das Leis de Kepler
 Combinando as três leis do movimento e a lei da gravitação
universal, Newton demonstra a 3ª Lei de Kepler (Lei dos
períodos). Supondo que um planeta tenha órbita circular
(permitida pela 1ª Lei de Kepler, a força gravitacional
torna-se uma força centrípeta, então:

 Assim

uu

v2
FR = m. a onde a = ac =
R
v2
2π R
M .m
FR = m. , v =
e F=G. 2
R
T
d

 Substituindo as equações
T 2 4π 2
=
=K
3
R
GM

(comprovação da 3ª Lei de Kepler)
Lei da Gravitação Universal de Newton
•

Corpos em Órbita


v

Fcp = F
Fcp = F

2

d =r

v
M .m
m
=G 2
r
r

G. M
v=
r
Lei da Gravitação Universal de Newton
Exemplo: Suponhamos que a Terra seja um corpo esférico,
homogêneo, de massa M = 5,98. 1024 kg, raio R = 6,37.106 m
e que não tenha movimento de rotação.
a) Calcule a aceleração da gravidade num ponto próximo á
superfície da terra.
b) Calcule a aceleração da gravidade num ponto situado a 130
km de altitude.
Lei da Gravitação Universal de Newton
• Quando lançamos um corpo a partir da superfície de
um planeta, com velocidade inicial v 0, é possível que
esse corpo não mais retorne ao planeta, desde que o
valor de v0 seja igual ou maior que uma velocidade ve
denominada velocidade de escape.

2GM
ve =
R
Para Terra ⇒ ve = 11, 2 Km/s
Se v < 8 Km/s: ele retorna à Terra
Se v ≥ 11, 2 Km/s: ele não retorna à Terra
Se 8 Km/s < v < 11, 2 Km/s: ele entra em órbita elíptica da Terra
Satélite Estacionário

• Recebem este nome pelo fato de se
apresentarem “parados” em relação a um
referencial solidário à superfície do planeta.
Condições para que um satélite fique
em órbita geo-estacionária
 Sua órbita deve ser circular e contida no plano
equatorial da Terra.
 Seu período de translação deve coincidir com o
período de rotação da Terra ao redor de seu eixo, isto
é, 24 horas.
 Seu raio de órbita deverá ser de 6,7 raios terrestres,
aproximadamente.
Efeito da Marés
 Os navegantes sempre souberam que havia conexão
entre as marés e a Lua, mas nem um deles foi capaz de
formular uma teoria satisfatória para explicar as duas
marés altas que ocorrem diariamente;
 Newton mostrou que as marés eram causadas pelas
diferenças na atração gravitacional entre a Lua e a
Terra sobre os lados opostos desta;
 A força gravitacional entre a Lua e a Terra é a mais
forte sobre o lado da Terra que está mais próximo da
Lua e mais fraca o lado oposto, que está mais afastado
da Lua;
FIM!!
Muito
obrigado!!!
Carlosaragaosantos.blogspot.com

Mais conteúdo relacionado

Mais procurados

Cinemática introdução
Cinemática introduçãoCinemática introdução
Cinemática introdução
O mundo da FÍSICA
 
Energia Cinética e Potencial
Energia Cinética e PotencialEnergia Cinética e Potencial
Energia Cinética e Potencial
Denise Marinho
 
Termodinâmica
TermodinâmicaTermodinâmica
Termodinâmica
fisicaatual
 
Campo elétrico
Campo elétricoCampo elétrico
9 ano leis de newton
9 ano leis de newton9 ano leis de newton
9 ano leis de newton
crisbassanimedeiros
 
Maquinas simples
Maquinas simplesMaquinas simples
Maquinas simples
Elisabete Trentin
 
Slides eletrostatica
Slides eletrostaticaSlides eletrostatica
Slides eletrostatica
Warlle1992
 
Leis De Kepler
Leis De KeplerLeis De Kepler
Leis De Kepler
ISJ
 
Propagação de Calor
Propagação de CalorPropagação de Calor
Propagação de Calor
Bruno De Siqueira Costa
 
Movimento Circular Uniforme
Movimento Circular UniformeMovimento Circular Uniforme
Movimento Circular Uniforme
Marco Antonio Sanches
 
Aplicações das Leis de Newton
Aplicações das Leis de Newton Aplicações das Leis de Newton
Aplicações das Leis de Newton
Karoline Tavares
 
Ondas
OndasOndas
Magnetismo
MagnetismoMagnetismo
Magnetismo
Rildo Borges
 
Processos de eletrização
Processos de eletrizaçãoProcessos de eletrização
Processos de eletrização
O mundo da FÍSICA
 
Ondulatoria
OndulatoriaOndulatoria
Ondulatoria
Rildo Borges
 
Corrente elétrica
Corrente elétricaCorrente elétrica
Corrente elétrica
O mundo da FÍSICA
 
I.1 A origem do universo
I.1 A origem do universoI.1 A origem do universo
I.1 A origem do universo
Rebeca Vale
 
TERMOLOGIA
TERMOLOGIATERMOLOGIA
Introdução a Física
Introdução a FísicaIntrodução a Física
Introdução a Física
fismatromulo
 
Óptica introdução
Óptica introduçãoÓptica introdução
Óptica introdução
O mundo da FÍSICA
 

Mais procurados (20)

Cinemática introdução
Cinemática introduçãoCinemática introdução
Cinemática introdução
 
Energia Cinética e Potencial
Energia Cinética e PotencialEnergia Cinética e Potencial
Energia Cinética e Potencial
 
Termodinâmica
TermodinâmicaTermodinâmica
Termodinâmica
 
Campo elétrico
Campo elétricoCampo elétrico
Campo elétrico
 
9 ano leis de newton
9 ano leis de newton9 ano leis de newton
9 ano leis de newton
 
Maquinas simples
Maquinas simplesMaquinas simples
Maquinas simples
 
Slides eletrostatica
Slides eletrostaticaSlides eletrostatica
Slides eletrostatica
 
Leis De Kepler
Leis De KeplerLeis De Kepler
Leis De Kepler
 
Propagação de Calor
Propagação de CalorPropagação de Calor
Propagação de Calor
 
Movimento Circular Uniforme
Movimento Circular UniformeMovimento Circular Uniforme
Movimento Circular Uniforme
 
Aplicações das Leis de Newton
Aplicações das Leis de Newton Aplicações das Leis de Newton
Aplicações das Leis de Newton
 
Ondas
OndasOndas
Ondas
 
Magnetismo
MagnetismoMagnetismo
Magnetismo
 
Processos de eletrização
Processos de eletrizaçãoProcessos de eletrização
Processos de eletrização
 
Ondulatoria
OndulatoriaOndulatoria
Ondulatoria
 
Corrente elétrica
Corrente elétricaCorrente elétrica
Corrente elétrica
 
I.1 A origem do universo
I.1 A origem do universoI.1 A origem do universo
I.1 A origem do universo
 
TERMOLOGIA
TERMOLOGIATERMOLOGIA
TERMOLOGIA
 
Introdução a Física
Introdução a FísicaIntrodução a Física
Introdução a Física
 
Óptica introdução
Óptica introduçãoÓptica introdução
Óptica introdução
 

Destaque

Gravitação Universal
Gravitação UniversalGravitação Universal
Gravitação Universal
Pibid Física
 
Gravitação universal
Gravitação universalGravitação universal
Gravitação universal
Rildo Borges
 
Gravitação universal
Gravitação universalGravitação universal
Gravitação universal
Vídeo Aulas Apoio
 
Estudo das forças II: Força e Movimento; Leis de Newton 9º Ano - EF UNASP
Estudo das forças II: Força e Movimento; Leis de Newton 9º Ano - EF UNASPEstudo das forças II: Força e Movimento; Leis de Newton 9º Ano - EF UNASP
Estudo das forças II: Força e Movimento; Leis de Newton 9º Ano - EF UNASP
Ronaldo Santana
 
Gravitação universal
Gravitação universalGravitação universal
Gravitação universal
jorgevieiraa
 
Gravidade power point
Gravidade power pointGravidade power point
Gravidade power point
Flávia Allves
 
Física - Gravitação universal -
Física - Gravitação universal -Física - Gravitação universal -
Física - Gravitação universal -
Vídeo Aulas Apoio
 
Aula de Física: Conceitos, Grandezas, Força, Cinemática, Leis de Newton
Aula de Física: Conceitos, Grandezas, Força, Cinemática, Leis de NewtonAula de Física: Conceitos, Grandezas, Força, Cinemática, Leis de Newton
Aula de Física: Conceitos, Grandezas, Força, Cinemática, Leis de Newton
Carlos Priante
 
Modelos do universo
Modelos do universoModelos do universo
Modelos do universo
Patrícia Santos
 
Gravitação final
Gravitação finalGravitação final
Gravitação final
edulessi
 
Gravitação
GravitaçãoGravitação
Gravitação
Fabricio Scheffer
 
Cosmologia - o Universo
Cosmologia - o UniversoCosmologia - o Universo
Cosmologia - o Universo
Wesley Germano Otávio
 
Satélites estacionários
Satélites estacionáriosSatélites estacionários
Satélites estacionários
Elisa Mitye Akiyama
 
Histologia vegetal
Histologia vegetalHistologia vegetal
Histologia vegetal
Elisa Mitye Akiyama
 
Cosmologia - Sistema Solar - Origem do sol e suas características
Cosmologia - Sistema Solar - Origem do sol e suas característicasCosmologia - Sistema Solar - Origem do sol e suas características
Cosmologia - Sistema Solar - Origem do sol e suas características
Wesley Germano Otávio
 
A física do “muito grande”
A física do “muito grande”A física do “muito grande”
A física do “muito grande”
Vitor Morais
 
Força g
Força gForça g
Força g
Jomar Trabalho
 
Módulo 02
Módulo 02Módulo 02
Módulo 02
Rildo Borges
 
3 s ciclos biogeo 21122012
3 s ciclos biogeo 211220123 s ciclos biogeo 21122012
3 s ciclos biogeo 21122012
Ionara Urrutia Moura
 
Exercícios de Trabalho Mecânico e Força de Atrito
Exercícios de Trabalho Mecânico e Força de AtritoExercícios de Trabalho Mecânico e Força de Atrito
Exercícios de Trabalho Mecânico e Força de Atrito
Sérgio F. de Lima
 

Destaque (20)

Gravitação Universal
Gravitação UniversalGravitação Universal
Gravitação Universal
 
Gravitação universal
Gravitação universalGravitação universal
Gravitação universal
 
Gravitação universal
Gravitação universalGravitação universal
Gravitação universal
 
Estudo das forças II: Força e Movimento; Leis de Newton 9º Ano - EF UNASP
Estudo das forças II: Força e Movimento; Leis de Newton 9º Ano - EF UNASPEstudo das forças II: Força e Movimento; Leis de Newton 9º Ano - EF UNASP
Estudo das forças II: Força e Movimento; Leis de Newton 9º Ano - EF UNASP
 
Gravitação universal
Gravitação universalGravitação universal
Gravitação universal
 
Gravidade power point
Gravidade power pointGravidade power point
Gravidade power point
 
Física - Gravitação universal -
Física - Gravitação universal -Física - Gravitação universal -
Física - Gravitação universal -
 
Aula de Física: Conceitos, Grandezas, Força, Cinemática, Leis de Newton
Aula de Física: Conceitos, Grandezas, Força, Cinemática, Leis de NewtonAula de Física: Conceitos, Grandezas, Força, Cinemática, Leis de Newton
Aula de Física: Conceitos, Grandezas, Força, Cinemática, Leis de Newton
 
Modelos do universo
Modelos do universoModelos do universo
Modelos do universo
 
Gravitação final
Gravitação finalGravitação final
Gravitação final
 
Gravitação
GravitaçãoGravitação
Gravitação
 
Cosmologia - o Universo
Cosmologia - o UniversoCosmologia - o Universo
Cosmologia - o Universo
 
Satélites estacionários
Satélites estacionáriosSatélites estacionários
Satélites estacionários
 
Histologia vegetal
Histologia vegetalHistologia vegetal
Histologia vegetal
 
Cosmologia - Sistema Solar - Origem do sol e suas características
Cosmologia - Sistema Solar - Origem do sol e suas característicasCosmologia - Sistema Solar - Origem do sol e suas características
Cosmologia - Sistema Solar - Origem do sol e suas características
 
A física do “muito grande”
A física do “muito grande”A física do “muito grande”
A física do “muito grande”
 
Força g
Força gForça g
Força g
 
Módulo 02
Módulo 02Módulo 02
Módulo 02
 
3 s ciclos biogeo 21122012
3 s ciclos biogeo 211220123 s ciclos biogeo 21122012
3 s ciclos biogeo 21122012
 
Exercícios de Trabalho Mecânico e Força de Atrito
Exercícios de Trabalho Mecânico e Força de AtritoExercícios de Trabalho Mecânico e Força de Atrito
Exercícios de Trabalho Mecânico e Força de Atrito
 

Semelhante a A gravitação universal de newton

Lista 11 gravita+º+úo
Lista 11 gravita+º+úoLista 11 gravita+º+úo
Lista 11 gravita+º+úo
rodrigoateneu
 
AULA DE FÍSICA - GRAVITAÇÃO UNIVERSAL AS LEIS DE KEPLLER
AULA DE FÍSICA - GRAVITAÇÃO UNIVERSAL AS LEIS DE KEPLLERAULA DE FÍSICA - GRAVITAÇÃO UNIVERSAL AS LEIS DE KEPLLER
AULA DE FÍSICA - GRAVITAÇÃO UNIVERSAL AS LEIS DE KEPLLER
MarcellusPinheiro1
 
www.aulasdefisicaapoio.com - Física - Gravitação Universal
www.aulasdefisicaapoio.com  - Física -  Gravitação Universalwww.aulasdefisicaapoio.com  - Física -  Gravitação Universal
www.aulasdefisicaapoio.com - Física - Gravitação Universal
Videoaulas De Física Apoio
 
Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001
Thommas Kevin
 
Fsq
FsqFsq
Gravitacao e leis de kepler (1)
Gravitacao e leis de kepler (1)Gravitacao e leis de kepler (1)
Gravitacao e leis de kepler (1)
Andre Ramos
 
Gravitação e satelites
Gravitação e satelitesGravitação e satelites
Gravitação e satelites
Ricardo Bonaldo
 
Mecanica celeste
Mecanica celesteMecanica celeste
Mecanica celeste
con_seguir
 
Lei da Gravitação Universal e Leis de Kepler
Lei da Gravitação Universal e Leis de KeplerLei da Gravitação Universal e Leis de Kepler
Lei da Gravitação Universal e Leis de Kepler
Fábio Ribeiro
 
Joao pedro trabalho
Joao pedro trabalhoJoao pedro trabalho
Joao pedro trabalho
NeticiaMatos
 
Leis de kepler
Leis de keplerLeis de kepler
Leis de kepler
GGE Colégio e Curso
 
Atividade sobre gravitação e leis de Kepler
Atividade sobre gravitação e leis de KeplerAtividade sobre gravitação e leis de Kepler
Atividade sobre gravitação e leis de Kepler
geancosta3
 
www.AulasParticulares.Info - Física - Gravitação Universal
www.AulasParticulares.Info - Física -  Gravitação Universalwww.AulasParticulares.Info - Física -  Gravitação Universal
www.AulasParticulares.Info - Física - Gravitação Universal
AulasParticularesInfo
 
Gravitação universal
Gravitação universalGravitação universal
Gravitação universal
quantaadriano
 
Gravidade Universal Ezequiel
Gravidade Universal EzequielGravidade Universal Ezequiel
Gravidade Universal Ezequiel
Ezequiel G
 
Gravitação+mhs
Gravitação+mhsGravitação+mhs
Gravitação+mhs
Everton Moraes
 
Gravitação-JP-João Paulo
Gravitação-JP-João PauloGravitação-JP-João Paulo
Gravitação-JP-João Paulo
João Paulo Souza Simão da Silva
 
Gravitação
GravitaçãoGravitação
Física expansionismo2
Física expansionismo2Física expansionismo2
Física expansionismo2
Miguel Jorge Neto Mjoe
 
Questões Corrigidas, em Word: Gravitação Universal ( Conteúdo vinculado ao b...
Questões Corrigidas, em Word: Gravitação Universal  ( Conteúdo vinculado ao b...Questões Corrigidas, em Word: Gravitação Universal  ( Conteúdo vinculado ao b...
Questões Corrigidas, em Word: Gravitação Universal ( Conteúdo vinculado ao b...
Rodrigo Penna
 

Semelhante a A gravitação universal de newton (20)

Lista 11 gravita+º+úo
Lista 11 gravita+º+úoLista 11 gravita+º+úo
Lista 11 gravita+º+úo
 
AULA DE FÍSICA - GRAVITAÇÃO UNIVERSAL AS LEIS DE KEPLLER
AULA DE FÍSICA - GRAVITAÇÃO UNIVERSAL AS LEIS DE KEPLLERAULA DE FÍSICA - GRAVITAÇÃO UNIVERSAL AS LEIS DE KEPLLER
AULA DE FÍSICA - GRAVITAÇÃO UNIVERSAL AS LEIS DE KEPLLER
 
www.aulasdefisicaapoio.com - Física - Gravitação Universal
www.aulasdefisicaapoio.com  - Física -  Gravitação Universalwww.aulasdefisicaapoio.com  - Física -  Gravitação Universal
www.aulasdefisicaapoio.com - Física - Gravitação Universal
 
Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001Astronomia e astrof´+¢sica parte 001
Astronomia e astrof´+¢sica parte 001
 
Fsq
FsqFsq
Fsq
 
Gravitacao e leis de kepler (1)
Gravitacao e leis de kepler (1)Gravitacao e leis de kepler (1)
Gravitacao e leis de kepler (1)
 
Gravitação e satelites
Gravitação e satelitesGravitação e satelites
Gravitação e satelites
 
Mecanica celeste
Mecanica celesteMecanica celeste
Mecanica celeste
 
Lei da Gravitação Universal e Leis de Kepler
Lei da Gravitação Universal e Leis de KeplerLei da Gravitação Universal e Leis de Kepler
Lei da Gravitação Universal e Leis de Kepler
 
Joao pedro trabalho
Joao pedro trabalhoJoao pedro trabalho
Joao pedro trabalho
 
Leis de kepler
Leis de keplerLeis de kepler
Leis de kepler
 
Atividade sobre gravitação e leis de Kepler
Atividade sobre gravitação e leis de KeplerAtividade sobre gravitação e leis de Kepler
Atividade sobre gravitação e leis de Kepler
 
www.AulasParticulares.Info - Física - Gravitação Universal
www.AulasParticulares.Info - Física -  Gravitação Universalwww.AulasParticulares.Info - Física -  Gravitação Universal
www.AulasParticulares.Info - Física - Gravitação Universal
 
Gravitação universal
Gravitação universalGravitação universal
Gravitação universal
 
Gravidade Universal Ezequiel
Gravidade Universal EzequielGravidade Universal Ezequiel
Gravidade Universal Ezequiel
 
Gravitação+mhs
Gravitação+mhsGravitação+mhs
Gravitação+mhs
 
Gravitação-JP-João Paulo
Gravitação-JP-João PauloGravitação-JP-João Paulo
Gravitação-JP-João Paulo
 
Gravitação
GravitaçãoGravitação
Gravitação
 
Física expansionismo2
Física expansionismo2Física expansionismo2
Física expansionismo2
 
Questões Corrigidas, em Word: Gravitação Universal ( Conteúdo vinculado ao b...
Questões Corrigidas, em Word: Gravitação Universal  ( Conteúdo vinculado ao b...Questões Corrigidas, em Word: Gravitação Universal  ( Conteúdo vinculado ao b...
Questões Corrigidas, em Word: Gravitação Universal ( Conteúdo vinculado ao b...
 

Último

se38_layout_erro_xxxxxxxxxxxxxxxxxx.docx
se38_layout_erro_xxxxxxxxxxxxxxxxxx.docxse38_layout_erro_xxxxxxxxxxxxxxxxxx.docx
se38_layout_erro_xxxxxxxxxxxxxxxxxx.docx
ronaldos10
 
INTELIGÊNCIA ARTIFICIAL + COMPUTAÇÃO QUÂNTICA = MAIOR REVOLUÇÃO TECNOLÓGICA D...
INTELIGÊNCIA ARTIFICIAL + COMPUTAÇÃO QUÂNTICA = MAIOR REVOLUÇÃO TECNOLÓGICA D...INTELIGÊNCIA ARTIFICIAL + COMPUTAÇÃO QUÂNTICA = MAIOR REVOLUÇÃO TECNOLÓGICA D...
INTELIGÊNCIA ARTIFICIAL + COMPUTAÇÃO QUÂNTICA = MAIOR REVOLUÇÃO TECNOLÓGICA D...
Faga1939
 
Ferramentas que irão te ajudar a entrar no mundo de DevOps/CLoud
Ferramentas que irão te ajudar a entrar no mundo de   DevOps/CLoudFerramentas que irão te ajudar a entrar no mundo de   DevOps/CLoud
Ferramentas que irão te ajudar a entrar no mundo de DevOps/CLoud
Ismael Ash
 
Subindo uma aplicação WordPress em docker na AWS
Subindo uma aplicação WordPress em docker na AWSSubindo uma aplicação WordPress em docker na AWS
Subindo uma aplicação WordPress em docker na AWS
Ismael Ash
 
Eletiva_O-mundo-conectado-Ensino-Médio.docx.pdf
Eletiva_O-mundo-conectado-Ensino-Médio.docx.pdfEletiva_O-mundo-conectado-Ensino-Médio.docx.pdf
Eletiva_O-mundo-conectado-Ensino-Médio.docx.pdf
barbosajucy47
 
Segurança da Informação - Onde estou e para onde eu vou.pptx
Segurança da Informação - Onde estou e para onde eu vou.pptxSegurança da Informação - Onde estou e para onde eu vou.pptx
Segurança da Informação - Onde estou e para onde eu vou.pptx
Divina Vitorino
 
ExpoGestão 2024 - Desvendando um mundo em ebulição
ExpoGestão 2024 - Desvendando um mundo em ebuliçãoExpoGestão 2024 - Desvendando um mundo em ebulição
ExpoGestão 2024 - Desvendando um mundo em ebulição
ExpoGestão
 

Último (7)

se38_layout_erro_xxxxxxxxxxxxxxxxxx.docx
se38_layout_erro_xxxxxxxxxxxxxxxxxx.docxse38_layout_erro_xxxxxxxxxxxxxxxxxx.docx
se38_layout_erro_xxxxxxxxxxxxxxxxxx.docx
 
INTELIGÊNCIA ARTIFICIAL + COMPUTAÇÃO QUÂNTICA = MAIOR REVOLUÇÃO TECNOLÓGICA D...
INTELIGÊNCIA ARTIFICIAL + COMPUTAÇÃO QUÂNTICA = MAIOR REVOLUÇÃO TECNOLÓGICA D...INTELIGÊNCIA ARTIFICIAL + COMPUTAÇÃO QUÂNTICA = MAIOR REVOLUÇÃO TECNOLÓGICA D...
INTELIGÊNCIA ARTIFICIAL + COMPUTAÇÃO QUÂNTICA = MAIOR REVOLUÇÃO TECNOLÓGICA D...
 
Ferramentas que irão te ajudar a entrar no mundo de DevOps/CLoud
Ferramentas que irão te ajudar a entrar no mundo de   DevOps/CLoudFerramentas que irão te ajudar a entrar no mundo de   DevOps/CLoud
Ferramentas que irão te ajudar a entrar no mundo de DevOps/CLoud
 
Subindo uma aplicação WordPress em docker na AWS
Subindo uma aplicação WordPress em docker na AWSSubindo uma aplicação WordPress em docker na AWS
Subindo uma aplicação WordPress em docker na AWS
 
Eletiva_O-mundo-conectado-Ensino-Médio.docx.pdf
Eletiva_O-mundo-conectado-Ensino-Médio.docx.pdfEletiva_O-mundo-conectado-Ensino-Médio.docx.pdf
Eletiva_O-mundo-conectado-Ensino-Médio.docx.pdf
 
Segurança da Informação - Onde estou e para onde eu vou.pptx
Segurança da Informação - Onde estou e para onde eu vou.pptxSegurança da Informação - Onde estou e para onde eu vou.pptx
Segurança da Informação - Onde estou e para onde eu vou.pptx
 
ExpoGestão 2024 - Desvendando um mundo em ebulição
ExpoGestão 2024 - Desvendando um mundo em ebuliçãoExpoGestão 2024 - Desvendando um mundo em ebulição
ExpoGestão 2024 - Desvendando um mundo em ebulição
 

A gravitação universal de newton

  • 1. Gravitação Universal de Newton Professor: Carlos Alberto Aragão dos Santos 11/02/2014
  • 2. Nesta aula abordaremos o estudo da gravitação universal de Newton, onde faremos uma introdução histórica vendo os principais cientista da época.
  • 3. Gravitação Universal  É a parte da física que estuda o comportamento e movimento dos astros, ou seja, estuda a movimentação dos planetas e dos corpos que os cercam.
  • 4. Gravitação Universal  Desde cedo, na história da humanidade, há registros de observações dos corpos celestes;  Antigos escritos chineses falam de fenômenos astronômicos, como eclipses, surgimento de cometas, etc.;  Os antigos navegantes orientavam-se pelo movimento da Lua e pelas estrelas;
  • 5. Um Pouco de Historia Geocêntrico Modelos: Heliocêntrico
  • 6. Modelo Geocêntrico Cláudio Ptolomeu de Alexandria  Ptolomeu, no século II d.C. formulou o universo com a terra ao centro. Modelo que duraria até o século XVI, com discussões de Galileu e Corpérnico. Os planetas giram em órbitas concêntricas, em torno da Terra.
  • 7. Modelo Heliocêntrico Nicolau Copérnico (1473 – 1543) Galileu Galilei (1564 -1642)  O Sol é o centro do universo.
  • 8. Leis de Kepler  A partir das observações feitas por Galileu Galilei, o alemão Johanes Kepler chegou em três leis básicas do movimento orbital. 1ª : Lei das Órbitas. 2ª : Lei das áreas. 3ª : Lei dos períodos.
  • 9. 1ª Lei – A Lei das Trajetórias Todos os planetas se movem em órbitas elípticas, com Sol ocupando um dos focos. • • f2 f1 Periélio ( V máx ) Orbitas Elípticas. f1 , f 2 ⇒ Focos Afélio ( Vmín )
  • 10. 2ª Lei de Kepler – Lei das Áreas  A linha imaginária que liga o Sol a um planeta varre áreas iguais em intervalos de tempo iguais. tC  rC A2 ∆t 2  rD  rB  rA tB A1 tD A1 ∆t1 = A2 ∆t2 ∆t1 tA An A1 A2 = = ... = = cte ( Va = velocidade areolar ) ∆t1 ∆t2 ∆tn se ∆t1 = ∆t 2 = ... = ∆tn , então A1 = A2 = ... An
  • 11. 3ª Lei de Kepler – Lei dos Períodos Os quadrados dos períodos de revolução de dois planetas são proporcionais aos cubos dos raios médios de suas órbitas. 2 1 3 1 2 2 3 2 T T = = ... = cte R R
  • 12. Raio Médio da Órbita Periélio • • • F1 d mín F2 d máx d mín + d máx R= 2 • Afélio
  • 13. Os Planetas do Sistema Solar
  • 14. Observações Gerais: • As três leis de Kepler são válidas para quaisquer sistemas em que corpos gravitam em torno de um corpo central; • A lei das órbitas não exclui a possibilidade de a órbita descrita por um planeta ser circular, já que a circunferência é um caso particular de elipse; • Se considerarmos circular a trajetória descrita por um planeta em torno do Sol, o raio médio de órbita corresponderá ao raio da circunferência e o período do movimento corresponderá ao período do movimento circular uniforme; • No caso de corpos orbitando ao redor da Terra, o ponto da órbita mais próximo da Terra recebe o nome perigeu e o mais afastado recebe o nome apogeu.
  • 15. Lei de Kepler Exemplo: A distância média da Terra ao Sol é aproximadamente RT = 1,5. 1011 m e a distância média de Marte ao Sol é aproximadamente RM = 2,3.1011 m. Calcule o período de translação do planeta Marte, isto é, o tempo que Marte gasta para dar uma volta em torno do Sol.
  • 16. Lei de Kepler • As leis de Kepler descreveram geometricamente os movimentos, mas faltava explicar porque os planetas se moviam daquela maneira.
  • 17. Lei da Gravitação Universal de Newton  Dois corpos atraem-se gravitacionalmente com forças de intensidades diretamente proporcional ao produto de suas massas e inversamente proporcional ao quadrado da distância que separa seus centros de gravidade. m1.m2 F =G 2 d G⇒ É a constante de gravitação universal: G ≅ 6, 67.10−11 N . m2 kg 2
  • 18. Lei da Gravitação Universal de Newton Observação mA ⋅  FBA  FAB d ⋅ mB u u F AB e F BA São forças de ação e reação: u u F AB = F BA = F
  • 19. Lei da Gravitação Universal de Newton Intensidade do Campo Gravitacional m2 h m1 g =G 2 R m2 R m1 F=P m1. m2 G = m2 . g 2 R Caso o corpo esteja a uma altura h em relação à superfície teremos: m1 g =G 2 ( R + h)
  • 20. Lei da Gravitação Universal de Newton
  • 22. Lei da Gravitação Universal de Newton Exemplo: A figura abaixo, ilustra duas pessoas paradas, de pé, separadas por uma distância de aproximadamente 3 metros. Qual é o valor aproximado da intensidade da força de atração gravitacional entre elas? mA = 70kg mB = 60kg
  • 23. Comprovação das Leis de Kepler  Combinando as três leis do movimento e a lei da gravitação universal, Newton demonstra a 3ª Lei de Kepler (Lei dos períodos). Supondo que um planeta tenha órbita circular (permitida pela 1ª Lei de Kepler, a força gravitacional torna-se uma força centrípeta, então:  Assim uu  v2 FR = m. a onde a = ac = R v2 2π R M .m FR = m. , v = e F=G. 2 R T d  Substituindo as equações T 2 4π 2 = =K 3 R GM (comprovação da 3ª Lei de Kepler)
  • 24. Lei da Gravitação Universal de Newton • Corpos em Órbita  v Fcp = F Fcp = F 2 d =r v M .m m =G 2 r r G. M v= r
  • 25. Lei da Gravitação Universal de Newton Exemplo: Suponhamos que a Terra seja um corpo esférico, homogêneo, de massa M = 5,98. 1024 kg, raio R = 6,37.106 m e que não tenha movimento de rotação. a) Calcule a aceleração da gravidade num ponto próximo á superfície da terra. b) Calcule a aceleração da gravidade num ponto situado a 130 km de altitude.
  • 26. Lei da Gravitação Universal de Newton • Quando lançamos um corpo a partir da superfície de um planeta, com velocidade inicial v 0, é possível que esse corpo não mais retorne ao planeta, desde que o valor de v0 seja igual ou maior que uma velocidade ve denominada velocidade de escape. 2GM ve = R Para Terra ⇒ ve = 11, 2 Km/s Se v < 8 Km/s: ele retorna à Terra Se v ≥ 11, 2 Km/s: ele não retorna à Terra Se 8 Km/s < v < 11, 2 Km/s: ele entra em órbita elíptica da Terra
  • 27. Satélite Estacionário • Recebem este nome pelo fato de se apresentarem “parados” em relação a um referencial solidário à superfície do planeta.
  • 28. Condições para que um satélite fique em órbita geo-estacionária  Sua órbita deve ser circular e contida no plano equatorial da Terra.  Seu período de translação deve coincidir com o período de rotação da Terra ao redor de seu eixo, isto é, 24 horas.  Seu raio de órbita deverá ser de 6,7 raios terrestres, aproximadamente.
  • 29. Efeito da Marés  Os navegantes sempre souberam que havia conexão entre as marés e a Lua, mas nem um deles foi capaz de formular uma teoria satisfatória para explicar as duas marés altas que ocorrem diariamente;  Newton mostrou que as marés eram causadas pelas diferenças na atração gravitacional entre a Lua e a Terra sobre os lados opostos desta;  A força gravitacional entre a Lua e a Terra é a mais forte sobre o lado da Terra que está mais próximo da Lua e mais fraca o lado oposto, que está mais afastado da Lua;