SlideShare uma empresa Scribd logo
1 de 18
GEOMETRIA ANALÍTICA
Distância entre dois pontos
Ponto Médio
Baricentro
Área de um triângulo qualquer
Condição de alinhamento de três pontos
Ponto e Reta
1Profa. Me. Kaline Andreza de França Correia Andrade
Introdução
• A Geometria Analítica, também denominada de coordenadas geométricas, se baseia nos
estudos da Geometria através da utilização da Álgebra. Os estudos iniciais estão ligados ao
matemático francês René Descartes (1596 -1650), criador do sistema de coordenadas
cartesianas.
Os estudos relacionados à Geometria Analítica datam seu início no século XVII, Descartes, ao
relacionar a Álgebra com a Geometria, criou princípios matemáticos capazes de analisar por
métodos geométricos as propriedades do ponto, da reta e da circunferência, determinando
distâncias entre eles, localização e pontos de coordenadas.
• Os cientistas Isaac Newton e Gottfried Wilhelm Leibniz concentraram estudos na Geometria
Analítica, que serviu como base teórica e prática para o surgimento do Cálculo Diferencial e
Integral, muito utilizado atualmente na Engenharia.
2
Profa. Me. Kaline Andreza de França Correia
Andrade
Distância entre dois pontos
A distância permeia todos os conceitos da geometria analítica, pois nesta área da
matemática temos a relação de elementos geométricos com os algébricos, e o
elemento básico da geometria é o ponto.
Um dos conceitos básicos que vimos na geometria é que a menor distância entre
dois pontos é dada por uma reta, contudo, na geometria analítica esses pontos
recebem coordenadas no plano cartesiano e por meio dessas coordenadas
podemos encontrar o valor da distância entre dois pontos.
3
Profa. Me. Kaline Andreza de França Correia
Andrade
Vamos representar dois pontos
quaisquer no plano cartesiano.
Portanto, teremos que a distância entre os
pontos A e B será a medida do segmento
que tem os dois pontos como extremidade.
Por se tratar de dois pontos quaisquer,
representaremos as coordenadas desses
pontos de maneira genérica.
4
Profa. Me. Kaline Andreza de França Correia
Andrade
Sabe-se que os eixos coordenados do plano cartesiano são ortogonais, portanto,
podemos construir um triângulo retângulo utilizando os pontos A e B, como mostra a
figura a seguir.
Note que o segmento AB é a hipotenusa do
triângulo AOB, e a medida de AB corresponde
à distância entre esses dois pontos. Por se
tratar de um triângulo retângulo, podemos
aplicar o teorema de Pitágoras, no qual
teremos:
5
Profa. Me. Kaline Andreza de França Correia
Andrade
Calcule a distância entre os pontos: A (4,5) e B(1,1) e represente-os geometricamente.
6
Profa. Me. Kaline Andreza de França Correia
Andrade
Ponto Médio de um Segmento de Reta
O segmento de reta AB terá um
ponto médio (M) com as
seguintes coordenadas (xM, yM).
Observe que os triângulos AMN e
ABP são semelhantes, possuindo
os três ângulos respectivamente
iguais. Dessa forma, podemos
aplicar a seguinte relação entre
os segmentos que formam os
triângulos.
Portanto, considerando M o ponto médio do segmento AB, temos a seguinte
expressão matemática capaz de determinar a coordenada do ponto médio de
qualquer segmento no plano cartesiano:
7
Profa. Me. Kaline Andreza de França Correia
Andrade
Exemplo 1
Dadas as coordenadas dos pontos A(4,6) e B(8,10) pertencentes ao segmento AB,
determine as coordenadas do ponto médio desse segmento.
Exemplo 2
Dados os pontos P(5,1) e Q(–2,–9), determine as coordenadas do ponto médio
do segmento PQ.
8
Profa. Me. Kaline Andreza de França Correia
Andrade
Baricentro
O triângulo é uma figura geométrica muito importante, bastante utilizado na construção
civil. No estudo analítico dos triângulos, quando conhecemos as coordenadas dos seus
vértices, conseguimos determinar qual é o tipo de triângulo, qual a sua área e quais as
coordenadas de seu baricentro. Faremos o estudo de como obter as coordenadas do
baricentro do triângulo. Antes, precisamos definir o que é baricentro.
Considere o triângulo de vértices A, B e C abaixo. Os pontos M, N e P são os pontos
médios dos lados AB, BC e AC, respectivamente. Os segmentos de reta MC, AN e PB são
as medianas do triângulo. Denominamos baricentro (G) de um triângulo o ponto de
encontro das medianas.
9
Profa. Me. Kaline Andreza de França Correia
Andrade
Baricentro
Agora vamos considerar um triângulo no plano cartesiano de vértices A(xA, yA), B(xB, yB)
e C(xC, yC) e baricentro G(xG, yG).
10
Profa. Me. Kaline Andreza de França Correia
Andrade
Baricentro
Exemplo 1. Determine as coordenadas do baricentro do triângulo de vértices A(2, 7),
B(5, 3) e C(2, 2).
Solução: Vamos calcular as coordenadas do Baricentro do triângulo separadamente,
para não haver confusão no entendimento da fórmula, que é muito simples.
Sabemos que:
Portanto, o baricentro do triângulo ABC tem coordenadas G(3, 4).
11
Profa. Me. Kaline Andreza de França Correia
Andrade
Área de um Triângulo
na Geometria Analítica
Vamos determinar a área de um triângulo do ponto de vista da geometria analítica.
Assim, considere três pontos quaisquer, não colineares, A (xa, ya), B (xb, yb) e C (xc, yc).
Como esses pontos não são colineares, ou seja, não estão numa mesma reta, eles
determinam um triângulo. A área desse triângulo será dada por:
Observe que a área será metade do módulo do determinante das
coordenadas dos pontos A, B e C.
12
Profa. Me. Kaline Andreza de França Correia
Andrade
Área de um Triângulo
na Geometria Analítica
Exemplo 1. Calcule a área do triângulo de vértices A (4 , 0), B (0 , 0) e C (0 , 6).
Solução: Primeiro passo é fazer o cálculo do determinante das coordenadas dos
pontos A, B e C.
Portanto, a área do triângulo de vértices A (4 , 0), B (0 , 0) e C (0 , 6) é 12.
13
Profa. Me. Kaline Andreza de França Correia
Andrade
Área de um Triângulo
na Geometria Analítica
Exemplo 2. Determine a área do triângulo de vértices A (1, 3), B (2, 5) e C (-2,4).
Solução: Primeiro devemos realizar o cálculo do determinante.
14
Profa. Me. Kaline Andreza de França Correia
Andrade
Área de um Triângulo
na Geometria Analítica
Exemplo 3. Os pontos A (0, 0), B (0, -8) e C (x, 0) determinam um triângulo de área
igual a 20. Encontre o valor de x.
Solução: Sabemos que a área do triângulo de vértices A, B e C é 20. Então:
15
Profa. Me. Kaline Andreza de França Correia
Andrade
Condição de alinhamento de três
pontos
Com três pontos distintos e não alinhados formamos um plano, para que com eles
seja formada uma reta é preciso que eles estejam alinhados.
Considere os pontos A(1,2), B(3,0), C(4,-1). Colocando-os em um plano
cartesiano percebemos que a união irá formar uma reta, ou seja, eles estão
alinhados.
Unir os três pontos distintos em um
plano cartesiano é uma opção para
verificar seu alinhamento, mas isso
nem sempre apresenta uma resposta
segura, pois um dos três pontos pode
estar milímetros fora da reta formada,
o que deixa os três pontos não
alinhados.
Por esse motivo, ao verificar se os três
pontos são alinhados, é preciso seguir
a seguinte condição:
16
Profa. Me. Kaline Andreza de França Correia
Andrade
Condição de alinhamento de três
pontos
Três pontos não alinhados em um plano cartesiano formam um triângulo de
vértices A(xA, yA), B(xB, yB) e C(xC, yC). A sua área poderá ser calculada da
seguinte forma:
Para que exista a área do triângulo esse determinante deverá ser diferente de
zero. Caso seja igual a zero os três pontos, que eram os vértices do triângulo, só
poderão estar alinhados.
Portanto, podemos concluir que três pontos distintos A(xA, yA), B(xB, yB) e C(xC, yC)
estarão alinhados se
= 0
17
Profa. Me. Kaline Andreza de França Correia
Andrade
Condição de alinhamento de três
pontos
Exemplo1:
Verifique se os pontos A(0,5), B(1,3) e C(2,1) são ou não colineares (são alinhados).
Exemplo2:
Verifique se os pontos A(-1,4), B(5,-2) e C(2,3) são ou não colineares (são alinhados).
18
Profa. Me. Kaline Andreza de França Correia
Andrade

Mais conteúdo relacionado

Mais procurados

Semelhança de triângulos
Semelhança de triângulosSemelhança de triângulos
Semelhança de triângulos
giselelamas
 
Geometria analítica distancia entre dois pontos
Geometria analítica distancia entre dois pontosGeometria analítica distancia entre dois pontos
Geometria analítica distancia entre dois pontos
Camila Oliveira
 
Exercicios resolvidos movimento retilíneo uniforme
Exercicios resolvidos movimento retilíneo uniformeExercicios resolvidos movimento retilíneo uniforme
Exercicios resolvidos movimento retilíneo uniforme
razonetecontabil
 
Grandezas escalares e vetoriais
Grandezas escalares e vetoriaisGrandezas escalares e vetoriais
Grandezas escalares e vetoriais
fisicaatual
 
Círculo e circunferência
Círculo e circunferênciaCírculo e circunferência
Círculo e circunferência
mariacferreira
 

Mais procurados (20)

Plano cartesiano animado
Plano cartesiano animadoPlano cartesiano animado
Plano cartesiano animado
 
Área e Volume
Área e VolumeÁrea e Volume
Área e Volume
 
Razao e proporção
Razao e proporçãoRazao e proporção
Razao e proporção
 
Áreas de Figuras Planas
Áreas de Figuras PlanasÁreas de Figuras Planas
Áreas de Figuras Planas
 
Lista
ListaLista
Lista
 
Porcentagem
PorcentagemPorcentagem
Porcentagem
 
Função exponencial
Função exponencialFunção exponencial
Função exponencial
 
Semelhança de triângulos
Semelhança de triângulosSemelhança de triângulos
Semelhança de triângulos
 
Sistemas lineares
Sistemas linearesSistemas lineares
Sistemas lineares
 
3ª aula ângulos e retas
3ª aula   ângulos  e retas3ª aula   ângulos  e retas
3ª aula ângulos e retas
 
Geometria analítica distancia entre dois pontos
Geometria analítica distancia entre dois pontosGeometria analítica distancia entre dois pontos
Geometria analítica distancia entre dois pontos
 
Função de 1º Grau
Função de 1º GrauFunção de 1º Grau
Função de 1º Grau
 
Função afim
Função afimFunção afim
Função afim
 
Função.quadratica
Função.quadraticaFunção.quadratica
Função.quadratica
 
Zero da função do 1º grau
Zero da função do 1º grauZero da função do 1º grau
Zero da função do 1º grau
 
Exercicios resolvidos movimento retilíneo uniforme
Exercicios resolvidos movimento retilíneo uniformeExercicios resolvidos movimento retilíneo uniforme
Exercicios resolvidos movimento retilíneo uniforme
 
Geometria plana
Geometria planaGeometria plana
Geometria plana
 
Grandezas escalares e vetoriais
Grandezas escalares e vetoriaisGrandezas escalares e vetoriais
Grandezas escalares e vetoriais
 
Aula 22 probabilidade - parte 1
Aula 22   probabilidade - parte 1Aula 22   probabilidade - parte 1
Aula 22 probabilidade - parte 1
 
Círculo e circunferência
Círculo e circunferênciaCírculo e circunferência
Círculo e circunferência
 

Destaque

Geometria analitica exercicios resolvidos
Geometria analitica exercicios resolvidosGeometria analitica exercicios resolvidos
Geometria analitica exercicios resolvidos
con_seguir
 
Geometria analítica anotações de aula 1° semestre 2010
Geometria analítica anotações de aula 1° semestre 2010Geometria analítica anotações de aula 1° semestre 2010
Geometria analítica anotações de aula 1° semestre 2010
Marcos Azevedo
 
Ap geometria analitica resolvidos
Ap geometria analitica resolvidosAp geometria analitica resolvidos
Ap geometria analitica resolvidos
trigono_metrico
 
Mat 140 questoes resolvidas vol i
Mat 140 questoes resolvidas vol iMat 140 questoes resolvidas vol i
Mat 140 questoes resolvidas vol i
trigono_metrico
 

Destaque (20)

Geometria analítica
Geometria analíticaGeometria analítica
Geometria analítica
 
Apresentação geometria analítica
Apresentação geometria analíticaApresentação geometria analítica
Apresentação geometria analítica
 
2º lista de exercícios 3º ano geometria analítica
2º lista de exercícios 3º ano   geometria analítica2º lista de exercícios 3º ano   geometria analítica
2º lista de exercícios 3º ano geometria analítica
 
Geometria analitica exercicios resolvidos
Geometria analitica exercicios resolvidosGeometria analitica exercicios resolvidos
Geometria analitica exercicios resolvidos
 
Geometria analítica
Geometria analíticaGeometria analítica
Geometria analítica
 
Geometría Analítica
Geometría AnalíticaGeometría Analítica
Geometría Analítica
 
Geometria Analítica - Distância entre dois pontos
Geometria Analítica - Distância entre dois pontosGeometria Analítica - Distância entre dois pontos
Geometria Analítica - Distância entre dois pontos
 
Trabalho de geometria analítica - SUPERIOR
Trabalho de geometria analítica - SUPERIORTrabalho de geometria analítica - SUPERIOR
Trabalho de geometria analítica - SUPERIOR
 
Lista 5 - Geometria Analítica - Resolução
Lista 5 - Geometria Analítica - ResoluçãoLista 5 - Geometria Analítica - Resolução
Lista 5 - Geometria Analítica - Resolução
 
Lista 8 - Geometria Analítica - Resolução
Lista 8 - Geometria Analítica - ResoluçãoLista 8 - Geometria Analítica - Resolução
Lista 8 - Geometria Analítica - Resolução
 
Geometria analítica - Coeficiente angular e equação reduzida da reta
Geometria analítica - Coeficiente angular e equação reduzida da retaGeometria analítica - Coeficiente angular e equação reduzida da reta
Geometria analítica - Coeficiente angular e equação reduzida da reta
 
Apostila de geometria analítica
Apostila de geometria analíticaApostila de geometria analítica
Apostila de geometria analítica
 
Geometria analítica anotações de aula 1° semestre 2010
Geometria analítica anotações de aula 1° semestre 2010Geometria analítica anotações de aula 1° semestre 2010
Geometria analítica anotações de aula 1° semestre 2010
 
Ap geometria analitica resolvidos
Ap geometria analitica resolvidosAp geometria analitica resolvidos
Ap geometria analitica resolvidos
 
Mat 140 questoes resolvidas vol i
Mat 140 questoes resolvidas vol iMat 140 questoes resolvidas vol i
Mat 140 questoes resolvidas vol i
 
Apostila de geometria plana exercícios resolvidos - crbrasil
Apostila de geometria plana   exercícios resolvidos - crbrasilApostila de geometria plana   exercícios resolvidos - crbrasil
Apostila de geometria plana exercícios resolvidos - crbrasil
 
Geometria anatica retas exercicios by gledson
Geometria anatica retas exercicios by gledsonGeometria anatica retas exercicios by gledson
Geometria anatica retas exercicios by gledson
 
Baricentro
BaricentroBaricentro
Baricentro
 
Triangulos elementos
Triangulos elementosTriangulos elementos
Triangulos elementos
 
Os notáveis de um triângulo
Os notáveis de um triânguloOs notáveis de um triângulo
Os notáveis de um triângulo
 

Semelhante a Geometria analítica

Matematica aplicada
Matematica aplicadaMatematica aplicada
Matematica aplicada
con_seguir
 
Lista de exercícios geometria analítica (ponto)
Lista de exercícios   geometria analítica (ponto)Lista de exercícios   geometria analítica (ponto)
Lista de exercícios geometria analítica (ponto)
Renato Barbosa
 
Lista - Geometria
Lista - GeometriaLista - Geometria
Lista - Geometria
luiz10filho
 
066 apostila de_trigonometria_filipe
066 apostila de_trigonometria_filipe066 apostila de_trigonometria_filipe
066 apostila de_trigonometria_filipe
Ezsilvasilva Silva
 
Matemática – geometria triângulos 01 – 2013 – ifba
Matemática – geometria triângulos 01 – 2013 – ifbaMatemática – geometria triângulos 01 – 2013 – ifba
Matemática – geometria triângulos 01 – 2013 – ifba
Jakson Raphael Pereira Barbosa
 
Outras aplicações com seno, cosseno e tangente 2
Outras aplicações com seno, cosseno e tangente 2Outras aplicações com seno, cosseno e tangente 2
Outras aplicações com seno, cosseno e tangente 2
grpoliart
 
Lei dos-senos-e-lei-dos-cossenos-aula-07
Lei dos-senos-e-lei-dos-cossenos-aula-07Lei dos-senos-e-lei-dos-cossenos-aula-07
Lei dos-senos-e-lei-dos-cossenos-aula-07
André Luís Nogueira
 

Semelhante a Geometria analítica (20)

Geometria Analítica Introdução
Geometria Analítica IntroduçãoGeometria Analítica Introdução
Geometria Analítica Introdução
 
Geometria Analítica.pptx
Geometria Analítica.pptxGeometria Analítica.pptx
Geometria Analítica.pptx
 
Slide de matemática Geometria analítica
Slide de matemática Geometria analítica Slide de matemática Geometria analítica
Slide de matemática Geometria analítica
 
Semelhança e Distancia
Semelhança e DistanciaSemelhança e Distancia
Semelhança e Distancia
 
Geoanalitica atualização1
Geoanalitica atualização1Geoanalitica atualização1
Geoanalitica atualização1
 
Matematica aplicada
Matematica aplicadaMatematica aplicada
Matematica aplicada
 
Matematica aplicada
Matematica aplicadaMatematica aplicada
Matematica aplicada
 
Geometria Analítica I (AP 01)
Geometria Analítica I (AP 01)Geometria Analítica I (AP 01)
Geometria Analítica I (AP 01)
 
Lista de exercícios geometria analítica (ponto)
Lista de exercícios   geometria analítica (ponto)Lista de exercícios   geometria analítica (ponto)
Lista de exercícios geometria analítica (ponto)
 
Lista - Geometria
Lista - GeometriaLista - Geometria
Lista - Geometria
 
066 apostila de_trigonometria_filipe
066 apostila de_trigonometria_filipe066 apostila de_trigonometria_filipe
066 apostila de_trigonometria_filipe
 
Ppt geometria analitica
Ppt geometria analiticaPpt geometria analitica
Ppt geometria analitica
 
Matemática – geometria triângulos 01 – 2013 – ifba
Matemática – geometria triângulos 01 – 2013 – ifbaMatemática – geometria triângulos 01 – 2013 – ifba
Matemática – geometria triângulos 01 – 2013 – ifba
 
Relações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retânguloRelações trigonométricas no triângulo retângulo
Relações trigonométricas no triângulo retângulo
 
Outras aplicações com seno, cosseno e tangente 2
Outras aplicações com seno, cosseno e tangente 2Outras aplicações com seno, cosseno e tangente 2
Outras aplicações com seno, cosseno e tangente 2
 
Ef constucoes geometricas
Ef constucoes geometricasEf constucoes geometricas
Ef constucoes geometricas
 
Apostila resumao geometria
Apostila resumao geometriaApostila resumao geometria
Apostila resumao geometria
 
Lei dos-senos-e-lei-dos-cossenos-aula-07
Lei dos-senos-e-lei-dos-cossenos-aula-07Lei dos-senos-e-lei-dos-cossenos-aula-07
Lei dos-senos-e-lei-dos-cossenos-aula-07
 
oi
oioi
oi
 
Trigonometra
TrigonometraTrigonometra
Trigonometra
 

Mais de Kaline Andreza (7)

Principais fórmulas da Geometria Espacial
Principais fórmulas da Geometria EspacialPrincipais fórmulas da Geometria Espacial
Principais fórmulas da Geometria Espacial
 
Pirâmides
PirâmidesPirâmides
Pirâmides
 
Geometria espacial: Prismas
Geometria espacial: PrismasGeometria espacial: Prismas
Geometria espacial: Prismas
 
Resumo: Cilindro, cone e esfera
Resumo: Cilindro, cone e esferaResumo: Cilindro, cone e esfera
Resumo: Cilindro, cone e esfera
 
Geometria analítica
Geometria analíticaGeometria analítica
Geometria analítica
 
Geometria analítica2
Geometria analítica2Geometria analítica2
Geometria analítica2
 
Geometria analítica2
Geometria analítica2Geometria analítica2
Geometria analítica2
 

Último

O Reizinho Autista.pdf - livro maravilhoso
O Reizinho Autista.pdf - livro maravilhosoO Reizinho Autista.pdf - livro maravilhoso
O Reizinho Autista.pdf - livro maravilhoso
VALMIRARIBEIRO1
 
Manual dos Principio básicos do Relacionamento e sexologia humana .pdf
Manual dos Principio básicos do Relacionamento e sexologia humana .pdfManual dos Principio básicos do Relacionamento e sexologia humana .pdf
Manual dos Principio básicos do Relacionamento e sexologia humana .pdf
Pastor Robson Colaço
 
Plano de aula ensino fundamental escola pública
Plano de aula ensino fundamental escola públicaPlano de aula ensino fundamental escola pública
Plano de aula ensino fundamental escola pública
anapsuls
 

Último (20)

UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...
UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...
UFCD_9184_Saúde, nutrição, higiene, segurança, repouso e conforto da criança ...
 
O Reizinho Autista.pdf - livro maravilhoso
O Reizinho Autista.pdf - livro maravilhosoO Reizinho Autista.pdf - livro maravilhoso
O Reizinho Autista.pdf - livro maravilhoso
 
APH- Avaliação de cena , analise geral do ambiente e paciente.
APH- Avaliação de cena , analise geral do ambiente e paciente.APH- Avaliação de cena , analise geral do ambiente e paciente.
APH- Avaliação de cena , analise geral do ambiente e paciente.
 
Unidade 4 (Texto poético) (Teste sem correção) (2).docx
Unidade 4 (Texto poético) (Teste sem correção) (2).docxUnidade 4 (Texto poético) (Teste sem correção) (2).docx
Unidade 4 (Texto poético) (Teste sem correção) (2).docx
 
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdfufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
ufcd_9649_Educação Inclusiva e Necessidades Educativas Especificas_índice.pdf
 
04_GuiaDoCurso_Neurociência, Psicologia Positiva e Mindfulness.pdf
04_GuiaDoCurso_Neurociência, Psicologia Positiva e Mindfulness.pdf04_GuiaDoCurso_Neurociência, Psicologia Positiva e Mindfulness.pdf
04_GuiaDoCurso_Neurociência, Psicologia Positiva e Mindfulness.pdf
 
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdfAs Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
As Mil Palavras Mais Usadas No Inglês (Robert de Aquino) (Z-Library).pdf
 
"Nós Propomos! Escola Secundária em Pedrógão Grande"
"Nós Propomos! Escola Secundária em Pedrógão Grande""Nós Propomos! Escola Secundária em Pedrógão Grande"
"Nós Propomos! Escola Secundária em Pedrógão Grande"
 
Descrever e planear atividades imersivas estruturadamente
Descrever e planear atividades imersivas estruturadamenteDescrever e planear atividades imersivas estruturadamente
Descrever e planear atividades imersivas estruturadamente
 
Produção de poemas - Reciclar é preciso
Produção  de  poemas  -  Reciclar é precisoProdução  de  poemas  -  Reciclar é preciso
Produção de poemas - Reciclar é preciso
 
prova do exame nacional Port. 2008 - 2ª fase - Criterios.pdf
prova do exame nacional Port. 2008 - 2ª fase - Criterios.pdfprova do exame nacional Port. 2008 - 2ª fase - Criterios.pdf
prova do exame nacional Port. 2008 - 2ª fase - Criterios.pdf
 
Nós Propomos! Sertã 2024 - Geografia C - 12º ano
Nós Propomos! Sertã 2024 - Geografia C - 12º anoNós Propomos! Sertã 2024 - Geografia C - 12º ano
Nós Propomos! Sertã 2024 - Geografia C - 12º ano
 
Nós Propomos! Infraestruturas em Proença-a-Nova
Nós Propomos! Infraestruturas em Proença-a-NovaNós Propomos! Infraestruturas em Proença-a-Nova
Nós Propomos! Infraestruturas em Proença-a-Nova
 
Campanha 18 de. Maio laranja dds.pptx
Campanha 18 de.    Maio laranja dds.pptxCampanha 18 de.    Maio laranja dds.pptx
Campanha 18 de. Maio laranja dds.pptx
 
Manual dos Principio básicos do Relacionamento e sexologia humana .pdf
Manual dos Principio básicos do Relacionamento e sexologia humana .pdfManual dos Principio básicos do Relacionamento e sexologia humana .pdf
Manual dos Principio básicos do Relacionamento e sexologia humana .pdf
 
livro para educação infantil conceitos sensorial
livro para educação infantil conceitos sensoriallivro para educação infantil conceitos sensorial
livro para educação infantil conceitos sensorial
 
O que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditivaO que é uma Revolução Solar. tecnica preditiva
O que é uma Revolução Solar. tecnica preditiva
 
Respostas prova do exame nacional Port. 2008 - 1ª fase - Criterios.pdf
Respostas prova do exame nacional Port. 2008 - 1ª fase - Criterios.pdfRespostas prova do exame nacional Port. 2008 - 1ª fase - Criterios.pdf
Respostas prova do exame nacional Port. 2008 - 1ª fase - Criterios.pdf
 
Plano de aula ensino fundamental escola pública
Plano de aula ensino fundamental escola públicaPlano de aula ensino fundamental escola pública
Plano de aula ensino fundamental escola pública
 
O que é, de facto, a Educação de Infância
O que é, de facto, a Educação de InfânciaO que é, de facto, a Educação de Infância
O que é, de facto, a Educação de Infância
 

Geometria analítica

  • 1. GEOMETRIA ANALÍTICA Distância entre dois pontos Ponto Médio Baricentro Área de um triângulo qualquer Condição de alinhamento de três pontos Ponto e Reta 1Profa. Me. Kaline Andreza de França Correia Andrade
  • 2. Introdução • A Geometria Analítica, também denominada de coordenadas geométricas, se baseia nos estudos da Geometria através da utilização da Álgebra. Os estudos iniciais estão ligados ao matemático francês René Descartes (1596 -1650), criador do sistema de coordenadas cartesianas. Os estudos relacionados à Geometria Analítica datam seu início no século XVII, Descartes, ao relacionar a Álgebra com a Geometria, criou princípios matemáticos capazes de analisar por métodos geométricos as propriedades do ponto, da reta e da circunferência, determinando distâncias entre eles, localização e pontos de coordenadas. • Os cientistas Isaac Newton e Gottfried Wilhelm Leibniz concentraram estudos na Geometria Analítica, que serviu como base teórica e prática para o surgimento do Cálculo Diferencial e Integral, muito utilizado atualmente na Engenharia. 2 Profa. Me. Kaline Andreza de França Correia Andrade
  • 3. Distância entre dois pontos A distância permeia todos os conceitos da geometria analítica, pois nesta área da matemática temos a relação de elementos geométricos com os algébricos, e o elemento básico da geometria é o ponto. Um dos conceitos básicos que vimos na geometria é que a menor distância entre dois pontos é dada por uma reta, contudo, na geometria analítica esses pontos recebem coordenadas no plano cartesiano e por meio dessas coordenadas podemos encontrar o valor da distância entre dois pontos. 3 Profa. Me. Kaline Andreza de França Correia Andrade
  • 4. Vamos representar dois pontos quaisquer no plano cartesiano. Portanto, teremos que a distância entre os pontos A e B será a medida do segmento que tem os dois pontos como extremidade. Por se tratar de dois pontos quaisquer, representaremos as coordenadas desses pontos de maneira genérica. 4 Profa. Me. Kaline Andreza de França Correia Andrade
  • 5. Sabe-se que os eixos coordenados do plano cartesiano são ortogonais, portanto, podemos construir um triângulo retângulo utilizando os pontos A e B, como mostra a figura a seguir. Note que o segmento AB é a hipotenusa do triângulo AOB, e a medida de AB corresponde à distância entre esses dois pontos. Por se tratar de um triângulo retângulo, podemos aplicar o teorema de Pitágoras, no qual teremos: 5 Profa. Me. Kaline Andreza de França Correia Andrade
  • 6. Calcule a distância entre os pontos: A (4,5) e B(1,1) e represente-os geometricamente. 6 Profa. Me. Kaline Andreza de França Correia Andrade
  • 7. Ponto Médio de um Segmento de Reta O segmento de reta AB terá um ponto médio (M) com as seguintes coordenadas (xM, yM). Observe que os triângulos AMN e ABP são semelhantes, possuindo os três ângulos respectivamente iguais. Dessa forma, podemos aplicar a seguinte relação entre os segmentos que formam os triângulos. Portanto, considerando M o ponto médio do segmento AB, temos a seguinte expressão matemática capaz de determinar a coordenada do ponto médio de qualquer segmento no plano cartesiano: 7 Profa. Me. Kaline Andreza de França Correia Andrade
  • 8. Exemplo 1 Dadas as coordenadas dos pontos A(4,6) e B(8,10) pertencentes ao segmento AB, determine as coordenadas do ponto médio desse segmento. Exemplo 2 Dados os pontos P(5,1) e Q(–2,–9), determine as coordenadas do ponto médio do segmento PQ. 8 Profa. Me. Kaline Andreza de França Correia Andrade
  • 9. Baricentro O triângulo é uma figura geométrica muito importante, bastante utilizado na construção civil. No estudo analítico dos triângulos, quando conhecemos as coordenadas dos seus vértices, conseguimos determinar qual é o tipo de triângulo, qual a sua área e quais as coordenadas de seu baricentro. Faremos o estudo de como obter as coordenadas do baricentro do triângulo. Antes, precisamos definir o que é baricentro. Considere o triângulo de vértices A, B e C abaixo. Os pontos M, N e P são os pontos médios dos lados AB, BC e AC, respectivamente. Os segmentos de reta MC, AN e PB são as medianas do triângulo. Denominamos baricentro (G) de um triângulo o ponto de encontro das medianas. 9 Profa. Me. Kaline Andreza de França Correia Andrade
  • 10. Baricentro Agora vamos considerar um triângulo no plano cartesiano de vértices A(xA, yA), B(xB, yB) e C(xC, yC) e baricentro G(xG, yG). 10 Profa. Me. Kaline Andreza de França Correia Andrade
  • 11. Baricentro Exemplo 1. Determine as coordenadas do baricentro do triângulo de vértices A(2, 7), B(5, 3) e C(2, 2). Solução: Vamos calcular as coordenadas do Baricentro do triângulo separadamente, para não haver confusão no entendimento da fórmula, que é muito simples. Sabemos que: Portanto, o baricentro do triângulo ABC tem coordenadas G(3, 4). 11 Profa. Me. Kaline Andreza de França Correia Andrade
  • 12. Área de um Triângulo na Geometria Analítica Vamos determinar a área de um triângulo do ponto de vista da geometria analítica. Assim, considere três pontos quaisquer, não colineares, A (xa, ya), B (xb, yb) e C (xc, yc). Como esses pontos não são colineares, ou seja, não estão numa mesma reta, eles determinam um triângulo. A área desse triângulo será dada por: Observe que a área será metade do módulo do determinante das coordenadas dos pontos A, B e C. 12 Profa. Me. Kaline Andreza de França Correia Andrade
  • 13. Área de um Triângulo na Geometria Analítica Exemplo 1. Calcule a área do triângulo de vértices A (4 , 0), B (0 , 0) e C (0 , 6). Solução: Primeiro passo é fazer o cálculo do determinante das coordenadas dos pontos A, B e C. Portanto, a área do triângulo de vértices A (4 , 0), B (0 , 0) e C (0 , 6) é 12. 13 Profa. Me. Kaline Andreza de França Correia Andrade
  • 14. Área de um Triângulo na Geometria Analítica Exemplo 2. Determine a área do triângulo de vértices A (1, 3), B (2, 5) e C (-2,4). Solução: Primeiro devemos realizar o cálculo do determinante. 14 Profa. Me. Kaline Andreza de França Correia Andrade
  • 15. Área de um Triângulo na Geometria Analítica Exemplo 3. Os pontos A (0, 0), B (0, -8) e C (x, 0) determinam um triângulo de área igual a 20. Encontre o valor de x. Solução: Sabemos que a área do triângulo de vértices A, B e C é 20. Então: 15 Profa. Me. Kaline Andreza de França Correia Andrade
  • 16. Condição de alinhamento de três pontos Com três pontos distintos e não alinhados formamos um plano, para que com eles seja formada uma reta é preciso que eles estejam alinhados. Considere os pontos A(1,2), B(3,0), C(4,-1). Colocando-os em um plano cartesiano percebemos que a união irá formar uma reta, ou seja, eles estão alinhados. Unir os três pontos distintos em um plano cartesiano é uma opção para verificar seu alinhamento, mas isso nem sempre apresenta uma resposta segura, pois um dos três pontos pode estar milímetros fora da reta formada, o que deixa os três pontos não alinhados. Por esse motivo, ao verificar se os três pontos são alinhados, é preciso seguir a seguinte condição: 16 Profa. Me. Kaline Andreza de França Correia Andrade
  • 17. Condição de alinhamento de três pontos Três pontos não alinhados em um plano cartesiano formam um triângulo de vértices A(xA, yA), B(xB, yB) e C(xC, yC). A sua área poderá ser calculada da seguinte forma: Para que exista a área do triângulo esse determinante deverá ser diferente de zero. Caso seja igual a zero os três pontos, que eram os vértices do triângulo, só poderão estar alinhados. Portanto, podemos concluir que três pontos distintos A(xA, yA), B(xB, yB) e C(xC, yC) estarão alinhados se = 0 17 Profa. Me. Kaline Andreza de França Correia Andrade
  • 18. Condição de alinhamento de três pontos Exemplo1: Verifique se os pontos A(0,5), B(1,3) e C(2,1) são ou não colineares (são alinhados). Exemplo2: Verifique se os pontos A(-1,4), B(5,-2) e C(2,3) são ou não colineares (são alinhados). 18 Profa. Me. Kaline Andreza de França Correia Andrade