O slideshow foi denunciado.
Seu SlideShare está sendo baixado. ×
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Anúncio
Próximos SlideShares
Fin a01
Fin a01
Carregando em…3
×

Confira estes a seguir

1 de 36 Anúncio

Mais Conteúdo rRelacionado

Diapositivos para si (16)

Semelhante a Fin a01 (20)

Anúncio

Fin a01

  1. 1. Material de Apoio Prof. Angelo Yasui
  2. 2. Voltando ao passado na 5ª e 6ª Séries?
  3. 3. EXPRESSÕES NUMÉRICAS: SÃO VÁRIOS CÁLCULOS A SEREM FEITOS SUCESSIVAMENTE, RESPEITANDO ALGUMAS REGRAS: Resolva em: 1º lugar: raízes e multiplicação. 2º lugar: Multiplicação e Divisão. 3º lugar: Adição e Subtração. Priorize cálculos em: 1º lugar: parênteses. ( ) 2º lugar: Colchetes. [ ] 3º lugar: Chaves. { }
  4. 4. EXPRESSÕES NUMÉRICAS - Exemplo: Resolva a expressão numérica: { 2 + [100 – ( 3² x 5 – 1) ] } - 2 { 2 + [100 – ( 9 x 5 – 1) ] } - 2 { 2 + [100 – ( 45 – 1) ] } - 2 { 2 + [100 – 44 ] } - 2 { 2 + 56 } - 2 58- 2 56
  5. 5. EXPRESSÕES NUMÉRICAS - Exemplo: Resolva a expressão numérica: { 2 + [100 – ( 3² x 5 – 1) ] } - 2 { 2 + [100 – ( 9 x 5 – 1) ] } - 2 { 2 + [100 – ( 45 – 1) ] } - 2 { 2 + [100 – 44 ] } - 2 { 2 + 56 } - 2 58- 2 56
  6. 6. OPERAÇÕES COM NÚMEROS INTEIROS OU RELATIVOS
  7. 7. SOMA ALGÉBRICA 1º Caso: números com sinais iguais. - Somamos e repetimos o sinal. Exemplos: a) +2+3 = +5 b) -2 -4 = -6 2º Caso: números com sinais diferentes: - Subtraímos o maior do menor. - Colocamos o sinal do maior no resultado. Exemplos: a) + 10 – 4 = +6 b) +8 – 10 = -2
  8. 8. SOMA ALGÉBRICA (continuação): 3º Caso: Expressões números de adição e subtração: - Somamos os positivos. -Somamos os negativos. -Subtraímos os 2 resultados. Exemplo: +3 – 4 + 7 – 10 = +10 -14 = -4
  9. 9. E os sinais...
  10. 10. JOGO DO SINAL: Tabela do Jogo do Sinal (+) (+) = (+) (-) (-) = (+) (+) (-) = (-) (-) (+) = (-) O jogo do sinal é usado em apenas 3 casos: 1º caso: Ao eliminar parênteses. 2º caso: Na multiplicação. 3º caso: Na divisão.
  11. 11. JOGO DO SINAL - Exemplos: a) Ao eliminar parênteses: ( - 6 ) + ( + 5 ) – (+4) – (- 7) = +2 -6 +5 –4 +7 b) Na multiplicação: ( - 3 ) x ( + 10 ) = -30 c) Na divisão: (-16) : (-8) = +2
  12. 12. OPERAÇÕES COM NÚMEROS RACIONAIS
  13. 13. OPERAÇÕES COM FRAÇÕES 1.1 ADIÇÃO E SUBTRAÇÃO 1º Caso) Com denominadores iguais: Como fazer? Somamos/subtraímos os numeradores e repetimos os denominadores. Exemplo: Calcule os resultados das adições e subtrações de frações com denominadores iguais. 2 1 3 a)   8 8 8 20 12 8 b)   11 11 11
  14. 14. OPERAÇÕES COM FRAÇÕES 1.1 ADIÇÃO E SUBTRAÇÃO 2º Caso) Com denominadores diferentes: Como fazer? • Não podemos somar nem subtrair frações com denominadores diferentes. • Assim, precisamos tirar o m.m.c. dos denominadores diferentes. • O resultado do m.m.c. será o novo denominador de todas as frações envolvidas. • Para acharmos o novo numerador, temos que pegar o novo denominador. Voltar na fração anterior, dividir pelo “debaixo” e multiplicar o resultado pelo “de cima”.
  15. 15. MÍNIMO MÚLTIPLO COMUM - Exemplos Calcule o m.m.c dos números a seguir, apresentado o cálculo realizado: a) m.m.c (6,8) = 6,8 2 3,4 2 Multiplique todos os valores!!! 3,2 2 3,1 3 1,1 24
  16. 16. MÍNIMO MÚLTIPLO COMUM - Exemplos b) m.m.c (10,12) = 10 , 12 2 5,6 2 Multiplique todos os valores!!! 5,3 3 5,1 5 1,1 60
  17. 17. ADIÇÃO E SUBTRAÇÃO DE FRAÇÕES Calcule: Tiramos o mmc 6,8 2 2 1 dos a)  denominadores 3,4 2 8 6 diferentes! 3,2 2 6 4 3,1 3  24 24 1,1 24 Divida pelo 10 debaixo e 24 multiplique pelo de cima
  18. 18. OPERAÇÕES COM FRAÇÕES 1.2 MULTIPLICAÇÃO Como fazer? • Numerador multiplica numerador. • Denominador multiplica denominador. Exemplo: Efetue as multiplicações de frações: 1 3 3 a) x  4 8 32 9 7 63 b) x  5 2 10
  19. 19. OPERAÇÕES COM FRAÇÕES 1.3 DIVISÃO DE FRAÇÕES Como fazer? Repetimos a primeira fração. Multiplicamos pelo inverso da segunda fração. Exemplo: Efetue as divisões de frações: 8 1   3 6 8 6 x  3 1 48  16 3
  20. 20. Exemplos de equação do 1º grau: 5x + 10 = 36
  21. 21. Exemplos de equação do 1º grau: 5x + 10 = 36 5x = 36 – 10 5x = 26 x = 26 / 5
  22. 22. Exemplos de equação do 1º grau: 5 (x + 10) = 36 (x-2) + 3 2
  23. 23. 5 (x + 10) = 36 (x-2) + 3 2 5x + 50 = 36x – 72 + 3 2 10x + 100 = 72x – 144 + 3 10x – 72x = -144 +3 – 100 -62x = -241 X = -241 / -62
  24. 24. O termo percentagem ou porcentagem significa por cem, ou seja dividir algo por cem e é representado pelo símbolo %. Exemplo: 20% (vinte por cento) Representa a vigésima parte de cem.
  25. 25. Quando se quer calcular a porcentagem de algum valor é só dividi-lo por cem e multiplicar pela quantidade desejada. Vejamos isso num exemplo prático:
  26. 26. Calcule 30% de 400. Primeiro precisamos compreender o que estamos fazendo, após isso podemos utilizar as diversas maneiras que há para serem resolvidos as operações matemáticas. Resolução: Divida 400 por 100, então você terá o valor de 1% e como você deseja 30%, multiplique esse valor por 30. Ou seja: 400 : 100 = 4 4 x 30 = 120 Logo, 30% de 400 é igual a 120.
  27. 27. Outro exemplo: Vamos supor que você um vendedor comissionado e receberá 15% sobre as vendas que efetuar. No mês de março você conseguiu vender R$ 12.000,00, então quantos reais será a tua comissão?
  28. 28. Venda: R$ 12.000,00 Comissão: 15% Resolução: Obteremos 1% de 12000 12000 : 100 = 120 A tua comissão representa 15 vezes esse valor então, 120 x 15 = 1800 Logo, tua comissão é R$ 1.800,00.
  29. 29. Algumas situações são simples, vejamos: Caso se queira calcular 50% é só fazer a seguinte análise: 50 é a metade de 100, logo 50% é a metade de 100%. Com isto podemos definir que, para calcular 50% é só dividir por 2.
  30. 30. Exemplo: Calcular 50% de 500. Resolução: Como 50% representa a metade, então temos: 500 : 2 = 250
  31. 31. Outro caso simples: Caso se queira calcular 25%, basta seguir o raciocínio: 25 é a quarta parte de 100, ou seja 100 : 4 = 25 Isto quer dizer que para calcular 25% é só dividir por 4.
  32. 32. Vejamos um exemplo: Calcular 25% de 800. Resolução: Como 25% é a quarta parte de 100%, então: 800 : 4 = 200
  33. 33. Exponencial: 3ª - 2 = 4 3ª = 6 Ln 3ª = Ln 6 (HP12 C) a . Ln 3 = Ln 6 a = Ln 6 Ln 3 a = 1,791759 = 1,630929 1,098612
  34. 34. Calcular o valor de x nas equações abaixo: 1) 2 – 10.x + 22 = 5² 6) -10.x + 22 = 4² 2) 10 – 2.x + 22 = 32 7) 10.x – 2 + 23 = 16 8 2 7 2 3) 32. x +10 -20 = 2 8) 22. x +10.2 = 2 7 7 4) 4.x - 28 = 33 9) 3.x - 13 = 30 2 4 5) 43.x – 21. 2 – 2 = 10 10) 21.x – 5.3 – 2 = 8 EXERCÍCIOS A SEREM FEITOS HOJE!

×